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Two-Parametric Nyquist Pulses with Better Performance
Based on Inverse Hyperbolic Functions

Songbing Liang, and Stylianos D. Assimonis ∗

Abstract

In this article, three new inter-symbol interference (ISI)-free pulses with enhanced performance compared
to the state-of-the-art are proposed and studied in terms of frequency and time domain characteristics. They
are based on inverse hyperbolic functions and on the concept of inner and outer functions, which was first
introduced by the authors. New pulses are two-parametric, i.e., their design depends only on the roll-off
factor and the timing jitter parameter, and they outperform most of the well-known pulses reported in the
literature, since they present lower error probability, smaller maximum distortion and wider eye-diagram.

Keywords: Nyquist pulses, intersymbol interference (ISI), matched filters, pulse shaping methods, timing
jitter.

1 Introduction
The raised-cosine (RC) pulse, proposed by Nyquist almost a century ago [1], is the most commonly used pulse
in digital communication systems in order to minimize the inter-symbol interference (ISI) effect, due to the
delay distortion, which is inherent on these types of systems. A strong research activity in the field of pulse
shaping has been going on since then and many authors have proposed two-parametric (i.e., its shape depends
only on the roll-off factor, 𝛼, and the timing jitter parameter, 𝑡/𝑇) [2–8] and more than two-parameters Nyquist
pulses [9–12], which outperform the RC pulse. Regarding the latter, the extra design parameters (i.e., except of
𝛼, 𝑡/𝑇), are obtained through various optimization techniques in order ISI to be reduced for each roll-of-factor
and timing jitter combination. However, in practical digital transmission systems, although 𝛼 can be predefined,
timing jitter is a random variable and should be predicted. Hence, in this work we focus on the design of new
two-parametric pulses, which present better performance for every combination of 𝛼 and 𝑡/𝑇 , consequently, we
will not include in our performance analysis Nyquist pulses with more than two parameters, because such a
comparison would be unfair.

In pulse shaping, inverse hyperbolic functions were first utilized by Assalini and Tonello [5], who namely
proposed the flipped-hyperbolic secant (fsech) and the flipped-inverse hyperbolic secant (farcsech) pulses. The
concept of inner and outer functions was first introduced by Assimonis et al. [3,6], by proposing two families of
Nyquist ISI-free pulses. Specifically, in [3] the ISI-free pulse cos[log], among others, was presented, which is based
on the composition of the functions inverse cosine (outer function) and natural logarithm (inner function), while
in [6] the pulse acos[asinh] was presented, having the inverse cosine and the inverse hyperbolic sine function,
as inner and outer function, respectively. To the very best of our knowledge, these two ISI-free pulses present
superior performance in terms of bit error rate (BER) among state-of-the-art of two-parametric Nyquist pulses.

In this work, we present three new two-parametric Nyquist ISI-free pulses, which are tested in terms of
frequency and time domain characteristics and they present superior performance in terms of BER and eye-
diagram compared to the state-of-the-art of two-parametric Nyquist pulses.

∗The authors are with the Institute of Electronics, Communications and Information Technology (ECIT), Queen’s University
Belfast, Belfast, BT3 9DT, U.K., (e-mail: {sliang07, s.assimonis}@qub.ac.uk).
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2 New Two-Parametric Nyquist Pulses

2.1 Frequency Domain Characteristics
Based on the inner and outer functions’ concept [3], we proposed three new ISI-free pulses, whose frequency
response reads as,

𝑆 ( 𝑓 ) =

𝑇, | 𝑓 | ≤ 𝐵 (1 − 𝛼)

𝑇

{
1 − 1

2𝛾
𝐺

(
| 𝑓 | − 𝐵 (1 − 𝛼)

2𝛼𝐵

)}
, 𝐵 (1 − 𝛼) ≤ | 𝑓 | ≤ 𝐵

𝑇

{
1

2𝛾
𝐺

(
− | 𝑓 | + 𝐵 (1 + 𝛼)

2𝛼𝐵

)}
, 𝐵 ≤ | 𝑓 | ≤ 𝐵 (1 + 𝛼)

0, | 𝑓 | ≥ 𝐵 (1 + 𝛼)

(1)

where 𝛼 represents the roll-off factor (0 ≤ 𝛼 ≤ 1), i.e., the excess bandwidth beyond the Nyquist bandwidth
and 𝑇 denotes the symbol-period of the system, which defines the corresponding Nyquist frequency 𝐵 = 1/(2𝑇).
Also, 𝐺 ( 𝑓 ) = 𝑔 (ℎ ( 𝑓 )) is the composition function of the functions ℎ( 𝑓 ) (inner) and 𝑔( 𝑓 ) (outer). In particular,
the three new pulses are proposed according to 𝐺 ( 𝑓 ) = acsch(log( 𝑓 )), 𝐺 ( 𝑓 ) = acoth(acsch( 𝑓 )) and 𝐺 ( 𝑓 ) =

acsch(asech( 𝑓 )), where, acsch, acoth and asech represents the inverse hyperbolic cosecant, the inverse hyperbolic
cotangent and the inverse hyperbolic secant function, respectively, while log is the natural logarithm function.
Continuity of (1) implies that 𝛾 should meet the condition [3]

𝛾 = 𝐺 (1/2) . (2)

Thus, for the first (i.e., acsch[log]), second (i.e., acoth[acsch]) and third (i.e., acsch[asech]) pulse 𝛾 constant is
defined as

𝛾acsch[log] = acsch (log (1/2)) ≈ −1.16, (3)
𝛾acoth[acsch] = acoth (acsch (1/2)) ≈ 0.85, (4)
𝛾acsch[asech] = acoth (acsch (1/2)) ≈ 0.7. (5)

The frequency responses of the three new pulses are illustrated in Fig. 2. It is also depicted the acos[asinh]
and acos[log] pulses for comparison purposes. It can be observed that all pulses’ frequency response shows
concave when 𝐵(1 − 𝛼) ≤ | 𝑓 | ≤ 𝐵, while convex in 𝐵 ≤ | 𝑓 | ≤ 𝐵(1 + 𝛼). Thus, they tend to transfer more power
in higher-frequency region, which leads to lower first side-lobes in the time domain, as it will be shown, which
in turn, leads to improved robustness against the time-jitter effects [3].

2.2 Time-Domain Characteristics
The impulse responses of the three new pulses are illustrated in Fig. 1, alongside with the acos[asinh] and
acos[log] pulses for comparison sake. It is evident that the acsch[asech] pulse have strong ability to suppress
the first sidelobe. In general, the acsch[asech] is the best among all of five pulses considering the sidelobes
suppression, while the acsch[log] pulse is not efficient in suppressing the sidelobes, although it presents the
lower third and fourth sidelobe among these five pulses. It is noted that the new three pulses presented in this
work and defined in the frequency domain in (1) do not have closed-form expression in time domain, and hence,
they have been numerically evaluated, similarly to the pulses presented in [3, 5, 6].

The decay rate can be estimated using the Theorem 1 introduced previously in [4], among all these pulses.
More specifically, we show that the following lemma is fulfilled.

Lemma 1 : The decay rate of the pulse-family in (1) is 1/𝑡2 when 𝛼 ≠ 0 and 1/|𝑡 | when 𝛼 = 0.
Proof : For the shake of simplicity, we test in terms of time-domain properties only the pulse acsch[asech],

while applying a similar procedure over the acsch[log] and acoth[acsch] will lead to exactly the same conclusion.
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Figure 1: Frequency response of the reference and new pulses with roll-off factor 𝛼 = 0.35.

Figure 2: Impulse response of the reference and new pulses with roll-off factor 𝛼 = 0.35.

Assuming 𝛼 ≠ 0 the first (i.e., 𝑚 = 1) derivative of acsch[asech] is given by,

𝑆′ ( 𝑓 ) =

0, | 𝑓 | ≤ 𝐵 (1 − 𝛼)
𝑇

𝐵𝛼

𝛾𝑐21

√︃
𝑐21 + 1

(
asinh

(
𝑐21
)
− 1

) , 𝐵 (1 − 𝛼) ≤ | 𝑓 | ≤ 𝐵

𝑇
𝐵𝛼

𝛾𝑐22

√︃
𝑐22 + 1

(
asinh

(
𝑐22
)
− 1

) , 𝐵 ≤ | 𝑓 | ≤ 𝐵 (1 + 𝛼)

0, | 𝑓 | ≥ 𝐵 (1 + 𝛼)

(6)

where,

𝑐1 =
2𝐵𝛼

𝑓 − 𝐵 (1 − 𝛼) , 𝑐2 =
2𝐵𝛼

𝑓 − 𝐵 (1 + 𝛼) . (7)

Thus, based on (6), (7), we can readily observe that,

lim
𝑓 →𝐵 (1−𝛼)

𝑆′ ( 𝑓 ) = lim
𝑓 →𝐵 (1+𝛼)

𝑆′ ( 𝑓 ) → ∞ (8)
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Table 1: Eye width and max distortion of eye patterns
pulse eye-width max distortion

acos[log] 0.780 1.467
acos[asinh] 0.794 1.475
acsch[log] 0.812 1.460

acoth[acsch] 0.802 1.443
acsch[asech] 0.800 1.440

Table 2: Bit error rate (BER) with 𝑁 = 29 Interfering Symbols and 𝑆𝑁𝑅 = 15 dB.
𝛼 pulse 𝑡/𝑇 = ±0.05 𝑡/𝑇 = ±0.1 𝑡/𝑇 = ±0.2 𝑡/𝑇 = ±0.3

0.25

acos[log] 5.3332e-8 1.0726e-6 2.7416e-4 1.2183e-2
acos[asinh] 5.1488e-8 9.9816e-7 2.4946e-4 1.1349e-2
acsch[log] 5.3700e-8 1.0861e-6 2.7826e-4 1.2345e-2
acoth[acsch] 5.1677e-8 1.0003e-6 2.4874e-4 1.1393e-2
acsch[asech] 4.9210e-8 9.0533e-7 2.1816e-4 1.0306e-2

0.35

acos[log] 3.5470e-8 4.3365e-7 7.3486e-5 4.5509e-3
acos[asinh] 3.4124e-8 4.0410e-7 6.7653e-5 4.2252e-3
acsch[log] 3.5723e-8 4.3760e-7 7.3741e-5 4.5841e-3
acoth[acsch] 3.4194e-8 4.0080e-7 6.5535e-5 4.1446e-3
acsch[asech] 3.2414e-8 3.6393e-7 5.8702e-5 3.7520e-3

0.5

acos[log] 2.1559e-8 1.4514e-7 1.4987e-5 1.2082e-3
acos[asinh] 2.0758e-8 1.3617e-7 1.4609e-5 1.2202e-3
acsch[log] 2.1693e-8 1.4525e-7 1.4541e-5 1.1712e-3
acoth[acsch] 2.0726e-8 1.3274e-7 1.3347e-5 1.1118e-3
acsch[asech] 1.9693e-8 1.2137e-7 1.2947e-5 1.1507e-3

and hence, discontinuity occurs at the transition points

𝑓 = 𝐵 (1 ∓ 𝛼) . (9)

Assuming 𝛼 = 0, the frequency response 𝑆( 𝑓 ) degenerates into a rectangular pulse with time-domain response
the sinc function (i.e., sinc( 𝑓 ) = sin(𝑡/𝑇)), which in turn, presents decay rate of 1/|𝑡 | [3,4]. The latter statement
concludes the proof. �

It is noted that despite the fact that the new pulses present lower decay rate than the well-known RC, which
has a decay rate of 1/𝑡3, they present superior performance in terms of BER, as it will be shown next, since
their first side-lobes amplitudes are lower than the RC: other studies [2, 3, 5, 6] came to the same conclusions.

2.3 Performance Evaluation
In this section, we evaluate the performance of the new three Nyquist pulses in terms of eye-diagram and BER.
In general, eye-diagram provides us with a great deal of visual information [13], including the severity of ISI,
sensitivity to timing jitter and the noise margin [14]. In our case, from the eye-diagram of the new pulses
depicted in Fig. 3, we can obtain the their maximum distortion and the eye-width values, which are tabulated
in Table 1: it can be observed that the three new pulses present wider eye-width than the two reference pulses,
which in turn leads to longer time interval whereinto the received signal can be sampled without the presence
of ISI. Additionally, new pulses have better performance in terms of max distortion (Table 1).

A quantitative analysis can be specified by the BER estimation in the presence of time sampling errors.
Please note that BER probability is the best measure of a digital system’s performance, since includes the
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Figure 3: Inner and outer boundaries of the eye-diagrams of the reference and the new pulses with roll-off factor
𝛼 = 0.35.

effects of noise, synchronization and distortion [15]. In this work BER was estimated according to [16]: we set
parameters 𝑁1 = −100, 𝑁2 = 100, signal-to-noise (SNR) ratio to 15 dB, number of the non-zero terms 𝑁𝑀 = 23
and 𝑁 = 29 interfering symbols. The results are tabulated in Table 2: this table gives the BERs of different
pulses with the presence of timing offset (timing jitter 𝑡/𝑇 parameter) for varied roll-off factor 𝛼. It can be
easily noticed that, the new acsch[asech] pulse outperforms all other pulses in terms of BER (expect for the
case of 𝛼 = 0.5 and 𝑡/𝑇 = ±0.3, where it finished second-best), and the BERs of acoth[acsch] and acos[asinh] are
very close, taking second and third place at the most of the cases. On the other hand, reference pulses acos[log]
and acsch[log] rank last at the most of the cases. Please note that, the lowest BER is underlined (bold font) in
Table 2 for each compination of 𝛼 and 𝑡/𝑇 .

Generally, it can be summarized that the three new Nyquist pulses always demonstrate an superior per-
formance in terms of many aspects. In particular, based on the above analysis it can be noticed that the
acsch[asech] is the best among all pulses we compared due to its lowest probability of getting distortion and the
lower BER than other two-parametric Nyquist pulses. Also, the dominant sidelobes are controlled better for
the acsch[asech].

3 Conclusion
In this work, three new ISI-free Nyquist pulses were presented and studied in terms of frequency and time
domain characteristics. The design of these pulses is low-complexity, since it is based only on the roll-off factor
and the timing jitter parameter (i.e., they are two-parametric pulses). They utilize the concept of the inner and
outer functions and, also, they use inverse hyperbolic functions in their design. A fair comparison with the state-
of-the-art of two-parametric pulses reveals their superiority in terms of performance. Specifically, to the best
of our knowledge, the proposed pulses outperform all the currently published in the literature two-parametric
Nyquist pulses it terms of BER and eye-diagram (i.e., maximum distortion, eye-width) and particularly, the
acsch[asech] pulse is the best among all the considered pulses.
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