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Abstract—Lower precision arithmetic can improve the
throughput of adaptive filters, while requiring less hardware
resources and less power. Such benefits are crucial for adaptive
filters, especially for IoT and wearable applications. In order
to apply lower precision arithmetic to adaptive filters, a clear
rounding error analysis framework is required, since lower pre-
cision arithmetic can degrade the filter performance. Previously,
rounding error analyses of adaptive filters were based on forward
error analysis. This limited the descriptiveness of rounding
error impact on adaptive filter performance in relation to other
external variables such as measurement noise, regularisation, and
numerical stability of an algorithm. To overcome such limitations,
we first present a new backward error analysis framework for
adaptive Recursive Least Squares (RLS) filters. Our framework
transforms finite precision arithmetic adaptive filters into exact
arithmetic adaptive filters with the input data corrupted by
rounding error noise that is additive to measurement noise.
Findings throughout our backward error analysis framework
can provide a guide on how to apply lower precision arithmetic
to adaptive filters: (i) the magnitudes of the rounding error
noise depend on the numerical stability of the implementation
algorithm, arithmetic precision, and regularisation, (ii) the round-
ing error noise is independently additive to measurement noise,
(iii) a higher regularisation is recommended for lower precision
arithmetic adaptive filters, and (iv) adaptive filters using lower
precision arithmetic have equivalent filter performance to those
using higher precision if the magnitudes of rounding error noise
are lower than measurement noise.

Index Terms—Lower Precision Adaptive Filter; Rounding
Error; Lower Precision RLS; Backward Error Analysis

I. INTRODUCTION

Linear regression using least squares is a very common esti-
mation structure in a wide range of adaptive filter applications
[1], [2]. The Recursive Least Squares (RLS) algorithm, in
particular, has been widely used in adaptive filter applications
such as system identification, noise cancellation, prediction,
and inverse modelling, thanks to its fast convergence and
tracking ability [3], [4]. Adaptive filters adapt the weights per
input sample arrival in real time. As a consequence, adaptive
filters often require the improved throughput using a reduced
memory footprint due to resource and throughput constraints.
For example, the improved throughput is required to deal
with a flood of real-time data and the implementation of an
adaptive filter should fit into the memory budget given by an
embedded system especially designed for IoT applications or
a wearable device. Therefore, the modest computational cost
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and storage are required for adaptive filters along with other
characteristics such as good convergence, good generalisation
ability, numerical robustness, etc. [3].

Recently, many research attempts have explored minimising
the computational cost of RLS adaptive filters in order to
improve their throughput capability [5]–[11]. Most of this
work has explored low dimensional approximation techniques
in order to reduce computational complexity of RLS. Applying
lower precision arithmetic (i.e., a lower precision of arithmetic
than is used by a baseline implementation) to RLS adaptive
filters is another promising approach towards high through-
put filter capabilities, since the reduced precision arithmetic
computation reduces the memory footprint and the time spent
transferring data across buses and interconnects [12], [13].
While arithmetic precision is an important lever to accelerate
signal processing applications, many applications may not
tolerate lower precision arithmetic as the lack of sufficient
precision would result in inaccurate predictions. For example,
the rounding errors magnified by reduced precision arithmetic
can break an essential mathematical property of an RLS algo-
rithm, resulting in inaccurate predictions [14], [15]. Therefore,
it is problematic to apply lower precision arithmetic to RLS
without first understanding how the increased rounding error
caused by lower precision arithmetic affects RLS performance.
A simple, clear analysis model that describes the rounding
error effects to RLS performance is required to provide a
guide on how to apply safely lower precision arithmetic to
RLS adaptive filters.

The numerical linear algebra community has utilised two
types of rounding error analysis: forward error analysis and
backward error analysis [16]. Forward error analysis inves-
tigates the error in the computed solution by tracking the
propagation of the rounding error; the error analysis follows
the forward direction, analysing the effect of rounding error
to the computed solution accuracy. In contrast, backward
error analysis investigates the minimum perturbation of the
system that makes the computed solution (including rounding
error) the exact solution for the perturbed system; the error
analysis follows the backward direction, analysing the effect
of rounding error to the perturbation of the system. Previous
research attempts discovered several important properties of
rounding error effects to the performance of RLS filters [4],
[14], [15], [17]. All of these works, to the best of our
knowledge, explored forward error analysis, generating a large
number of intermediate variables. In contrast, backward error
analysis supports a simple, clear rounding error analysis model
for least squares algorithms, providing a better insight into
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the numerical stability of the algorithms over forward error
analysis [16].

Backward error analysis interprets a finite precision arith-
metic system as an exact arithmetic system with perturbations
[18]; Wilkinson invented the backward error analysis tech-
nique, and it was named as “backward type of error analysis”
in [19]. Backward error analysis has been recognised as a
significant error analysis tool particularly for the numerical
linear algebra community [16], [18], [20], [21]. However, it
was unacquainted in other communities, including the signal
processing community. Although the work of [22] used the
concept of “backward consistency” in its rounding error prop-
agation analysis, it did not investigate the backward errors (i.e.,
the perturbation of the original system such as the perturbation
on the targets in RLS).

To the best of our knowledge, this paper is the first to
present an exact arithmetic model of finite precision arith-
metic adaptive filter, generated by backward error, in which
rounding error components sits on an equal footing with the
measurement noise; finite precision arithmetic RLS filters are
converted to exact arithmetic filters with input data corrupted
by noise generated by rounding errors that is additive to
measurement noise. We will denote the noise generated by
rounding error as rounding error noise from this point forward
in order to distinguish it from measurement noise. The main
contributions in this paper are three fold:

• We present a new rounding error analysis model for an
adaptive filter that includes rounding error explicitly on
an equal footing with measurement noise.

• Based on our model, we evaluate the impact of lower
precision on the rounding error noise with respect to
different types of RLS (e.g., different numerical stability
of the algorithm). We also analyse the mutual impacts
between regularisation and rounding error noise theoret-
ically and empirically - such evaluation was not feasible
with traditional adaptive filter rounding error modelling,
since rounding error components were not explicitly
included in traditional modelling.

• Our findings from the analysis model can provide useful
information on application of lower precision arithmetic
to RLS adaptive filters. The findings are as follows:

– The magnitude of rounding error noise depends on
arithmetic precision, the numerical stability of the
implementation algorithm, and the feature size.

– Applying lower precision arithmetic to adaptive fil-
ters requires a higher regularisation to abate the
rounding error noise effects on performance. There-
fore, higher regularisation can be considered for
lower precision adaptive filters for IoT or wearable
applications having the constraints of hardware bud-
gets, computational throughput, and power.

– Rounding error noise is independently additive to
measurement noise. Therefore, we can apply lower
precision arithmetic without losing the filter perfor-
mance unless the magnitude of rounding error noise
exceeds the magnitude of measurement noise.

– Rounding error noise is not white noise. Therefore,

rounding error noise dominantly affects adaptive fil-
ter performance if measurement noise follows white
Gaussian noise, since an exact arithmetic RLS is an
unbiased estimator against white Gaussian noise [3].

We describe two RLS algorithms, Matrix Inversion Lemma
RLS (MIL-RLS) and QR-RLS used in [23], and general back-
ward error analysis in Section II, our theoretical framework in
Section III (with traditional rounding error analysis models in
Section III-C and our new model in Section III-D), experi-
mental framework in Section IV, related work in Section V,
discussion in Section VI, and conclusion in Section VII.
Since it is well known that when the forgetting factor is
less than ‘1’, the numerical stability against rounding errors
has been improved [14], [15], [17], [24], we focus on the
regularised RLS algorithms when the forgetting factor equals
‘1’ to consider the worst case for lower precision RLS filter
performance.

II. REGULARISED RLS AND BACKWARD ERROR
ANALYSIS

We discuss two regularised RLS algorithms, the IEEE 754
standard [25], and backward error analysis in this section.

A. Regularised RLS Algorithms

An RLS algorithm for linear regression seeks the weights
ŵt that minimise [3]

min
ŵt

‖Xtŵt − ẏt‖22, (1)

where Xt = [x1, ...,xt]
T ∈ Rt×N where xi is an input vector

at time i having N features, ẏt = [ẏ1, ..., ẏt]
T ∈ Rt×1, ẏi is

a target at time i, and ‖·‖2 represents the 2 norm of a vector
[26]. Eq. (1) is equivalent to seek ŵt in

(XT
t Xt)ŵt = XT

t ẏt (2)

Regularisation plays an essential role in adaptive filters to
make them converge to the optimal Wiener solution smoothly
and continuously in the presence of measurement noise [27],
[28]. Also, regularisation is essential in RLS due to the ill-
posed nature of least-squares estimation [3]. Therefore, we
explore the impact of rounding errors on the optimal regulari-
sation parameter in regularised RLS algorithms. A regularised
RLS seeks the weights, ŵt, that solves the minimisation
problem with a regularisation parameter λ:

min
ŵt

‖Xtŵt − ẏt‖22+λ‖ŵt‖2, (3)

where λ is a Tikhonov regularisation [29] parameter that we
consider in this paper. The ŵt in Eq. (3) can be sought with

ŵt = (XT
t Xt + λI)−1XT

t ẏt, (4)

where I ∈ RN×N is an identical matrix. The RLS algorithm
for adaptive filters updates the weights:

ŵt = ŵt−1 + (ẏt − ŵT
t−1xt)Ptxt, (5)

where Pt (=(XTX + λI)−1) can be found by recursive
operations and the regularisation λ should be used when Pt

is initialised as Eq. (7) for a MIL-RLS and Eq. (11) for



IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

a QR-RLS. Depending on how Pt is updated, RLS can be
implemented using various types of numerical schemes such
as a MIL, a QR decomposition using Givens rotation [23], etc.

1) Numerically Unstable MIL-RLS: MIL-RLS utilises
Eq. (6) to update the matrix Pt and Eq. (5) to update ŵt

at time t:

Pt = Pt−1 −
Pt−1xtx

T
t Pt−1

1 + xT
t Pt−1xt

. (6)

MIL-RLS is numerically unstable due to so called “divergence
phenomenon [14]”; the positive definiteness of Pt can be bro-
ken due to the accumulation of rounding errors. For example,
if xT

t Pt−1xt ≈ −1, some of the updated matrix elements will
blow up. The P1 is initialised with:

P1 =
1

λ
I. (7)

2) Numerically Stable QR-RLS: Using a QR decomposi-
tion, the matrix Pt is represented as [23]

Pt = (XT
t Xt)

−1 = ((QtRt)
T (QtRt))

−1 = R−1
t R−T

t . (8)

Hence, Eq. (5) becomes

ŵt = ŵt−1 +
(ẏt − ŵT

t−1xt)

1 + ‖R−T
t−1xt‖22

R−1
t−1R

−T
t−1xt. (9)

By denoting ut = R−T
t−1xt,

ŵt = ŵt−1 +
(ẏt − ŵT

t−1xt)

1 + ‖ut‖22
R−1

t−1ut. (10)

QR-RLS is more widely used than MIL-RLS due to its
superior numerical stability [3]. No divergence phenomenon
occurs by replacing xT

t Pt−1xt to ‖ut‖2. R−1
t−1 is initialised

with:
R−1

t−1 =
1√
λ
I (11)

and updated: [
R−1

t rt
]

=
[
R−1

t−1 0
]
QT

t , (12)

where rt = −R−1
t−1ut/

√
1 + ‖ut‖22. QR-RLS updates R−1

t

using (12) and ŵt using (10) at time t.

B. IEEE 754 Standard

The IEEE 754 floating point data format [25] consists of
sign, exponent, and significand as shown in Eq. (13). For
example, a floating point number has a (p+ 1)-bit significand
(including the hidden one), an e-bit exponent, and an 1
sign bit. The value represented by the radix 2 floating point
number format is as follows:

sign×(1×20+d1×2−1+...+dp×2−p)×2exponent−bias, (13)

where d1, ... , dp represent binary digits, the ‘1’ associated
with the coefficient 20 is referred to as the hidden ‘1’, the
exponent is stored in offset notation, and the bias is a positive
constant. For double precision format, p = 52, e = 11, and
bias = 1023, and for single precision format, p = 23, e =
8, and bias = 127. The machine epsilon εmach is defined

as 2−(p+1). For example, single precision machine epsilon is
2−24, and double precision machine epsilon is 2−53.

IEEE 754 standard requires exact rounding for addition,
subtraction, multiplication, and division; the floating point
arithmetic result should be identical to the one obtained from
the final rounding after exact calculation. Based on the IEEE
754 rounding to nearest mode, floating point arithmetic should
follow Eq. (14) [26]:

fl(x1 � x2) = (x1 � x2)(1 + εr), (14)

where |εr|≤ εmach, � is one of the four arithmetic operations
(addition, subtraction, multiplication, and division) and fl(·)
represents the result from the floating point arithmetic. Eq. (14)
is used for forward error analysis to obtain the error bound
of the computed quantity [20]. In other words, forward error
analysis is used to analyse the propagation of the error from
the input to the output.

C. Backward Error Analysis

While forward error analysis is used to seek the errors from
intermediate computing components, backward error analysis
is used to seek which perturbed system works with the exact
arithmetic due to finite precision arithmetic [16]. For example,
Eq. (14) can be represented in another way:

fl(x1 � x2) = x1(1 + εr1)� x2(1 + εr2). (15)

The interpretation of Eq. (15) is different to Eq. (14). In
Eq. (15), the floating point arithmetic can be interpreted as the
exact arithmetic on the two perturbed (noisy) data, x1(1+εr1)
and x2(1 + εr2). The εr1 and εr2 are not unique in general
[20]. One of the possible values is εr1 = εr2 = εr if � is
a floating point addition. Backward error analysis seeks the
possible smallest size of εr1 and εr2 (e.g., the minimum of√
ε2r1 + ε2r2 ) that satisfies Eq. (15). Backward error also can

be defined for a linear system solver as follows:

Definition 1. Backward Error for Linear Solver:Ax = b [18]
The norm-wise backward error, ηALG(x̃), for an algorithm
ALG that solves a linear system is

ηALG(x̃) = min{ε : (A+ ∆A)x̃ = b + ∆b}, (16)

satisfying both ‖∆A‖2≤ ε‖E‖2 and ‖∆b‖2≤ ε‖f‖2, where
the matrix E and the vector f are arbitrary.

For example, the computed weights x̃ is the exact solution
for a perturbed system, (A+∆A)x̃ = b+∆b due to rounding
errors from finite precision arithmetic. Then, the backward
error, ηALG(x̃), is [18]

ηALG(x̃) =
‖b−Ax̃‖2

‖E‖2‖x̃‖2+‖f‖2
. (17)

An algorithm is called backward stable if it produces a
small backward error for any input data, A and b. The
definition of “small” depends on circumstances of the problem
that the algorithm solves. Adaptive filters implemented with
a numerically stable algorithm such as QR-RLS will limit
the backward error within finite bounds, while adaptive filters
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implemented with a numerically unstable algorithm such as
MIL-RLS may not limit the backward error.

In backward error analysis, the accuracy of the weights in
RLS depends on two factors including the backward error
and the condition number of the system (i.e., the condition
number of XTX) [26]. The backward error depends on how to
implement algorithm and the regularisation parameter in RLS
(e.g., lower backward error, more stable), and the accuracy of
the weights improves in proportion to ((backward error) ×
(condition number))−1. In other words, the forward error (i.e.,
the error in the computed weights) is bounded by the condition
number if the algorithm is backward stable.

III. FORWARD VS BACKWARD ERROR ANALYSIS OF
ADAPTIVE FILTERS

A. Application of Linear Regression to Adaptive Filters

Our rounding error analysis model is constructed based on
the linear regression model:

ẏt = w̃T
t−1xt + ẽt, (18)

where ẏt is a target at time t, xt is the input sample at time t,
w̃t−1 is the updated weights at time (t−1), and ẽt is the error
between the target and the estimation at time t. We apply the
linear regression model to an adaptive filter application (i.e.,
system identification) by mapping the ẏt to noisy targets such
that ẏt = yt + σt where yt is a true target at time t and σt is
the measurement noise.

B. Exact Arithmetic Adaptive Filter

Fig. 1 shows an adaptive filter used for system identification
[4]. The adaptive filter consists of the two types of computa-
tions: the estimated system output, ŷt, and the weight updates.
The ŷt is estimated by the inner product between ŵt−1 and
xt at time t. The weights are updated using the information
of the estimation error, et, every time step. The measurement
from the system output ẏt is subject to inevitable measurement
imperfection (i.e., measurement noise σt) at time t.

w

𝐰" t-1

xt yt Σ

σt

Σ
y$t

+
+

+
_ et

ẏt

Fig. 1. Exact Arithmetic Adaptive Filter Model [4]

C. Forward Error Analysis of Adaptive Filters

Fig. 2 represents the exact arithmetic model for an adaptive
filter implemented with finite precision arithmetic, interpreted
by forward error analysis. There are the three rounding error
terms in the figure: σ(f1)

t , σ(f2)
t , and σ

(f3)
t . These terms

represent the rounding error from the estimation computation
of w̃T

(t−1)xt, the rounding error from the subtraction, and the

rounding error from the weight updates respectively. Notice
that in Fig. 2, the weights, w̃t, have been updated at time
t with implicit rounding errors (i.e., all rounding errors are
located between computational components.). Therefore, such
forward error analysis was used in signal processing commu-
nity to identify the numerical stability of individual computing
components in [14], [15], [17].

Σ

σt

w

𝐰" t-1

xt
Σ

Σ

+
+

+
_+

+
e$ty$t

yt

σt(f1)

ẏt

Σ

σt(f2)

+
+

Σ

+
+
σt(f3)

Fig. 2. Finite Precision Adaptive Filter Model by Forward Error Analysis

Such forward error analysis models are limited in under-
standing the mutual impacts between the rounding errors and
the external variables of the system. In order to understand
those mutual impacts, the rounding error component should
be explicitly described on an RLS adaptive filter system.

D. Backward Error Analysis of Adaptive Filters

The application of backward error analysis to adaptive filters
can make the rounding error analysis model simpler and more
useful, providing a way to interpret internal rounding errors
as external input noise. Our backward analysis framework of
adaptive filters requires zero matrices for E and XT

t ẏt for f
in Definition 1. Then, backward error analysis can describe
the weights, w̃t, of an adaptive filter implemented with finite
precision arithmetic as

(XT
t Xt)w̃t = XT

t ẏt + ∆XT
t ẏt

, (19)

where ∆XT
t ẏt

represents a vector generated by rounding er-
rors, and w̃t represents the perturbed weights to make Eq. (19)
hold. We assume that

• XT
t Xt and XT

t ẏt are explicitly known,
• XT

t Xt is not a singular matrix.
We can simply find ∆XT

t ẏt
= XT

t (Xtw̃t − ẏt) = −XT
t rt,

where rt = ẏt − Xtw̃t. Notice that we employ the two
notations for the weights: ŵt for the exact weights with data
corrupted only by measurement noise and w̃t for the exact
weights with data corrupted by both measurement noise and
rounding error noise.

Fig. 3 represents the exact arithmetic model used for the
adaptive filter implemented with finite precision arithmetic,
interpreted by backward error analysis. There exists only one
rounding error term in the figure: δẏt. More importantly,
the rounding error’s effects on the filter performance are
indicated outside computational components so that they can
be interpreted as another external noise in the system; we name
δẏt as rounding error noise. In this rounding analysis model,
the weights are updated using exact arithmetic from the input
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σt

w

𝐰" t-1

xt
Σ

Σ

+
+

+
_

Σ+
+

e$ty$ t

yt ÿt

𝛿ẏt
ẏt

Fig. 3. Finite Precision Adaptive Filter Model by Backward Error Analysis

samples Xt = [x1, ...,xt]
T with the perturbed observations,

ÿt = ẏt + δẏt = [ẏ1 + δẏ1, ..., ẏt + δẏt]
T . By linearity, we

can set δẏt = [δẏ1, ..., δẏt]
T . Replacing XT

t ẏt with XT
t ÿt in

Eq. (2) yields

(XT
t Xt)w̃t = XT

t ẏt + XT
t δẏt. (20)

To make Eq. (20) identical to Eq. (19) for the existence of
the rounding error noise, Eq. (21) should be hold.

∆XT
t ẏt

= XT
t δẏt. (21)

Such rounding error noise exists as shown in Numerical
Property 1.

Numerical Property 1. Existence of Rounding Error Noise
The rounding error noise, δẏt making Eq. (21) hold exists, and
XT

t δẏt = −XT
t rt if ‖rt‖2 is bounded.

Proof. From Eq. (2), using the properties of XT
t−1ẏt−1 +

ẏtxt = XT
t ẏt and ŵt−1 = (XT

t−1Xt−1)−1XT
t−1ẏt−1 can

find ŵt with a recursive relation:

ŵt = (XT
t Xt)

−1(XT
t−1ẏt−1 + ẏtxt)

= (XT
t Xt)

−1((XT
t−1Xt−1)ŵt−1 + ẏtxt)

= (XT
t Xt)

−1((XT
t Xt − xtx

T
t )ŵt−1 + ẏtxt)

= ŵt−1 + (ẏt − ŵT
t−1xt)Ptxt.

(22)

The application of backward error analysis to an RLS
updates the weights, w̃t, in a system perturbed by the rounding
error noise, δẏt:

(XT
t Xt)w̃t = XT

t ẏt −XT rt. (23)

From Eq. (23), the computed weights are represented:

w̃t = Pt(X
T
t−1ẏt−1 + ẏtxt −XT rt)

= Pt((X
T
t−1Xt−1)w̃t−1 + ẏtxt)−PtX

T rt

= w̃t−1 + (ẏt − w̃T
t−1xt)Ptxt −PtX

T rt.

(24)

Now, let us derive the weights, w̃t, from Fig. 3:

w̃t = Pt(X
T
t−1ÿt−1 + ÿtxt)

= Pt(X
T
t−2ÿt−2 + ÿt−1xt−1 + ÿtxt)

...
= Pt(Σ

t
i=1ÿixi)

= Pt(Σ
t
i=1(ẏixi) + Σt

i=1(δẏixi))

= Pt(X
T
t ẏt + XT

t δẏt)

= w̃t−1 + (ẏt − w̃T
t−1xt)Ptxt + PtX

T
t δẏt.

(25)

Therefore, the application of backward error analysis to the
adaptive filter is valid under the numerical condition:

XT
t δẏt = −XT

t rt. (26)

Numerous vectors satisfy δẏt to make Eq. (26) hold. Out of
the vectors, the rounding error noise corresponds to a vector
that has the minimum 2 norm.

Numerical Property 2. Magnitude of Backward Error
Backward error depends on the applied arithmetic pre-
cision, the numerical stability of an algorithm, and the
feature size [26]. For example, ‖XT

t rt‖2= ‖XT
t δẏt‖2≤

c(N)c(A)εmach‖XT
t ẏt‖2, where c(N) is a positive value

depending on a feature size, N , and c(A) is a positive value
depending on the numerical stability of the implementation
algorithm, A. For the proof, please refer to [18], [30].

We denote ‖XT
t δẏt‖2 as the magnitude of rounding error

noise from this point forward. Similarly, we denote ‖XT
t σt‖2

as the magnitude of measurement error noise. More precisely,
those magnitudes are error quantities projected onto input
feature space, Xt [26].

Numerical Property 3. Independence of Backward Error
from Measurement Noise
The backward error, ηALG(w̃t), is independent from measure-
ment noise for adaptive filters.

Proof. In our backward analyses for RLS, the backward error
for a least squares is converted to the backward error for a
linear system of Eq. (2) in Definition 1 as the targets contain-
ing the measurement noise, ẏt, are projected onto the reduced
dimensional subspace (i.e., ẏt ∈ Rt×1 → XT

t ẏt ∈ RN×1,
where t ≥ N .). As consequence, the backward error, with
our setting of E = 0 and f = XT

t ẏt in Definition 1, can be
expressed as

ηALG(w̃t) =
‖XT

t ẏt −XT
t Xtw̃t‖2

‖XT
t ẏt‖2

=
‖XT

t ẏt −XT
t Xt(wt + δwt)‖2
‖XT

t ẏt‖2

=
‖XT

t Xt(δwt)‖2
‖XT

t ẏt‖2
,

(27)

where δwt is the error in the weights caused by rounding
error in solving the system: XT

t Xtwt = XT
t ẏt. Therefore,

regardless of which system used in Eq. (27), the backward
error mainly depends on the relative rounding error in solving
the system, implying that the backward error is independent
of measurement noise, since the backward error is generated
in solving the system already corrupted by the measurement
noise due to finite precision arithmetic. If exact arithmetic
is applied, no backward error exists in Eq. (27) regardless
of the measurement noise. Therefore, the backward error is
independent of the measurement noise.

Using the property that the magnitudes of rounding error
noise are equal to the magnitudes of backward error multiplied
by ‖XT

t ẏt‖2, along with Numerical Properties 1, 2, and 3, we
are led to the following corollaries.
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Corollary 1. Rounding error noise is independently additive
to measurement noise in the adaptive filter.

Corollary 2. If the magnitude of the rounding error noise is
relatively lower than the measurement noise, employing lower
precision arithmetic does not affect the performance of the
adaptive filter.

Corollary 3. Applying lower precision arithmetic to the adap-
tive filter requires a higher regularisation if the magnitude
of rounding error noise is higher than the magnitude of
measurement noise.

Corollary 4. Rounding error noise is not white noise. It makes
the method of least-squares a biased estimator even though
measurement noise is white noise.

E. Role of Regularisation on Backward Error Analysis

Applying a regularisation to adaptive filters validates the
assumptions we made in III-D for the application of back-
ward error analysis to adaptive filters. First, regularisation
can prevent the correlation matrix, (XT

t Xt), from being a
singular matrix by increasing the values of the diagonal
elements. Second, regularisation makes ‖rt‖2 bounded in
practice [31] so that the computed value of w̃t can be as-
sessed by the backward error analysis framework. Notice that
our backward error analysis of RLS adaptive filters deviates
from that in common usage by the numerical linear algebra
community. For example, the residual measurement from our
backward error analysis after applying a regularisation, λ, is:
(XT

t Xt)ŵt − XT
t ẏt instead of (XT

t Xt + λI)ŵt − XT
t ẏt,

even though an adaptive filter employs a non-zero λ. Such
deviation makes it possible to interpret λ as a regularisation
parameter to suppress both the rounding error noise and the
measurement noise effects to filter performance. Therefore,
employing regularisation generates the bias that makes the
system deviate from the original system. For example, a
higher λ deviates the system further from the original system,
resulting in a higher bias. In this case, the rounding error noise
magnitude in Numerical Property 2 should consider the effects
from employing a regularisation parameter. This leads to:

‖XT
t δẏt‖2≤ c(N)c(A, λ)(1 + α|bias(λ)|)εmach‖XT

t ẏt‖2,
(28)

where α ≥ 0. With our backward error analysis framework,
a trade-off exists in the magnitude of rounding error noise
according to the magnitude of a regularisation. For example,
employing a lower regularisation can either decrease the
magnitude of rounding error noise by minimising the bias (i.e.,
|bias(λ)|∝ λ.) or increase the magnitude of rounding error
noise by making an algorithm less numerically stable (i.e.,
c(A, λ) ∝ λ−1.). Therefore, the optimal value of λ minimises
the rounding error noise in Eq. (28), and the approximated
optimal λ can be sought using a statistic approach such as
cross-validation [32]. Our work constructs a mathematical
model that formally explains how the rounding error interacts
with other types of errors caused by measurement noise, the
algorithm used for the implementation, and the regularisation
employed for the system. The optimal λ can experimentally be

determined using cross-validation, but it is possible to evaluate
the impact of rounding errors on the optimal λ within our
model, which was not previously feasible.

F. Bias-Variance Decomposition with Rounding Error Noise

To explore the effects of rounding error noise on the bias-
variance decomposition of [33], we consider a simple linear
regression that the targets, ẏt, which are generated based on a
linear model with white noise: ẏt = wTxt +wt, where w are
true system weights and wt is white noise. Including rounding
error noise, Eq. (18) should be modified as follows:

ẏt + δẏt = w̃T
t−1xt + ẽt. (29)

Our task, essentially, is making a guess at w with w̃t

in Eq. (29) using the dataset D having n samples: D =
{(x1, ẏ1), ..., (xn, ẏn)}. When the magnitude of measurement
noise is lower than rounding error noise with lower precision
arithmetic, a regularisation chosen by cross-validation, λCV , is
increased with lower precision arithmetic. In such case, lower
precision arithmetic increases the bias due to the increased
regularisation. However, when the magnitude of rounding error
noise is lower than measurement noise, the optimal regulari-
sation parameter is determined mainly by measurement noise.
Since lower precision arithmetic increases the rounding error
noise, the regularisation needs to consider both measurement
noise and rounding error noise for lower precision adaptive
filters. For example, Eq. (30) employs a regularisation, λ,
derived from both measurement noise, σt, and rounding error
noise, δẏt:

(XT
t Xt + λI)w̃t = XT

t yt + XT
t σt + XT

t δẏt. (30)

Based on Eq. (30), the λ regulates the effects of both mea-
surement noise and rounding error noise on filter performance,
resulting in the decreased variance in the bias-variance de-
composition. In other words, the optimal λ minimises the
overfitting occurred when the weights tend to be fitted to the
noise rather than the original data; without noise (i.e., σt = 0,
δẏt = 0), the optimal value for λ should be zero since there
is no need to deal with overfitting.

IV. EXPERIMENTAL FRAMEWORK

We experiment on the impact of lower precision on adaptive
RLS filters in terms of the regularisation and the filter perfor-
mance, and compare experimental results with the theoretical
numerical properties and corollaries. We aim to evaluate the
impact of lower precision arithmetic on MIL-RLS and QR-
RLS adaptive filter performances.

A. Experimental Setup

The experimental setting is as follows:
- Source code: MATLAB
- Algorithms: MIL-RLS and Givens rotation QR-RLS (e.g., the
implementation of [23]). In our setting, the forgetting factor
equals ‘1’ as discussed in Section I and the regularisation
parameters, λs, used for the experiments range from 2−50 to
1.
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- Problem: System identification of w in Eq. (31) with data
{xi, yi} with the feature size, N = 10, where i = 1, 2, ..., n.

yi = wTxi. (31)

The target weights w are generated with standard normal
distribution. The 11, 000 data samples with N = 10 are
generated with the standard normal distribution for training.
The early 1, 000 samples are used for 10-fold cross-validation
[32] to choose an adequate regularisation parameter according
to arithmetic precision, numerical stability of an algorithm,
and measurement noise (i.e., for each fold, 900 data samples
are used for training and 100 data samples are used for
validation.). For testing, another 1, 000 samples are generated.
White Gaussian noise with various standard deviations, σs,
as a measurement noise has been used to generate the noisy
targets.

B. Independence of Backward Errors from Measurement
Noise

We will show empirically that the magnitudes of backward
errors are independent with respect to measurement noise,
supporting Numerical Property 3. The backward error magni-
tudes are measured based on Eq. (32) using double precision
arithmetic.

ηALG(w̃t) =
‖XT

t (ẏt −Xtw̃t)‖2
‖XT

t ẏt‖2
. (32)

The magnitudes of the backward errors are described in
Fig. 4, 5, 6, and 7 according to the magnitudes of measurement
noise (i.e., stochastic noise), with the λ = 2−50, 2−30, 2−15,
and 2−7 respectively. We used 1000 training samples for the
experiments. In the figures, the magnitudes of backward errors
are independent of measurement noise that corresponds to
Numerical Property 3.

When the magnitude of the regularisation is minuscule
in Fig. 4, the magnitudes of the backward errors are 2−50

for double precision QR-RLS and 2−22 for single precision
QR-RLS, while 2−4 for double precision MIL-RLS and ∞
(unbounded) for single precision MIL-RLS. For the numer-
ically stable QR-RLS, the rounding error noise magnitude
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gap between single and double precision is approximately
the machine epsilon gap between single and double precision
(i.e., log2εdouble − log2εsingle = −29). In Fig. 5, increasing
the value of λ to 2−30 makes the backward errors decrease
for MIL-RLS, while it increases for double precision QR-
RLS. Now, the backward error for single precision MIL-
RLS is bounded, and the magnitudes of backward errors for
single precision QR-RLS are equivalent to double precision
MIL-RLS. Compared to Fig. 4, it is the bias increment by
the increased λ that lets the magnitudes of the backward
errors for double precision QR-RLS increase. In contrast, the
backward error of MIL-RLS is decreased by improving the
numerical stability of the algorithm with higher regularisation.
For example, higher regularisation makes c(A) in Numerical
Property 2 lower for MIL-RLS but does not affect c(A) for
QR-RLS in practice. In Fig. 6, employing a higher λ = 2−15

lets the backward errors of double precision MIL-RLS go
down further, and become equivalent to double precision QR-
RLS. The magnitudes of the backward errors have increased
for double precision QR-RLS compared to λ = 2−30, while
remained equivalent for single precision QR-RLS. Finally, the
backward errors are equivalent for all cases when λ = 2−7

in Fig. 7. When we increase the value of the λ further,
the magnitudes of the backward errors increase, keeping the
magnitudes of the backward errors equivalent among all the
four cases.

C. Impact of Lower Precision on Regularisation

We use 10-fold cross-validation [32] to seek λCV s (i.e.,
regularisation parameters chosen by cross-validation) using
1, 000 data samples. In our 10-fold cross-validation setup, the
1, 000 data samples are divided evenly into 10 data groups,
G1, ..., G10, where each group has 100 data samples. The
filter performance with a particular λ is evaluated at each
run in the cross-validation using the data in each group (e.g.,
G1) in terms of the Mean Squared Error (MSE) after the
filter is trained using the data from the other 9 groups (e.g.,
G2, ..., G10). Therefore, the filter performance with a particular
value of λ is evaluated 10 times using the data from G1 to
G10. The MSEs from 10 different runs are then averaged out
to provide one representative MSE for the filter performance
with the λ. The λ having the minimum average MSE is
finally chosen for the λCV after the filter performance is
evaluated with all λs in the hyperparameter set. We first
seek λCV variation according to the 11 different types of
measurement noise having standard deviation from 2−20 to 20

with a multiplicative scale of 22. We perform 30 times cross-
validations with 30 times measurement noise generation per
each standard deviation in order to seek the average regularisa-
tion parameter chosen by cross-validation. The regularisation
parameter set for cross-validation also ranges from 2−20 to 20

with a multiplicative scale of 22.
1) Relation between Rounding Error Noise and Optimal

Regularisation Parameter: Fig. 8 shows the average opti-
mal regularisation parameters chosen by the cross-validation
according to measurement noise with standard error bars.
As expected, the regularisation parameter chosen by cross-
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validation increases in proportion to the measurement noise for
all algorithms using double precision arithmetic. The relation
between the optimal regularisation parameter and the rounding
error noise can be observed with fixing the measurement
noise. For example, when the measurement noise is fixed
to 2−12, single precision arithmetic having larger rounding
error noise requires a higher regularisation parameter over
double precision arithmetic for both MIL-RLS and QR-RLS.
This supports Corollary 3 empirically; while fixing the mea-
surement noise, higher rounding error noise requires a higher
regularisation. The regularisation parameters are identical for
the two double precision RLS algorithms; double precision
arithmetic is excessively high for the two algorithms compared
to measurement noise. Single precision MIL-RLS keeps the
regularisation parameter as 2−8 until the standard deviation
of measurement noise reaches 2−6 since the regularisation
of λ ≈ 2−7 makes the backward error minimised for single
precision MIL-RLS in our cross-validation hyperparameter set
(refer to Fig. 7). When the standard deviation of measurement
noise is higher than 2−6, the regularisation parameters are
equivalent for all the four cases (with slight deviation from
single precision MIL-RLS).

D. Impact of Lower Precision on Learning Curves

This section will support Corollary 2 empirically. We ex-
plore the learning curves for data with and without measure-
ment noise using a standard deviation between 2−20 and 2−14

inclusively. We employ regularisation parameters chosen from
the cross-validation. Fig. 9 shows the learning curves from the
two different types of algorithms employing λ = 2−30 with
the data without measurement noise. Here, the rounding error
noise is only noise source for adaptive filter accuracy. The
Mean Squared Errors (MSEs) should be zeros for linear regres-
sions using exact arithmetic in our experimental setting when
the number of training samples is higher than 10. The selected
regularisation parameters minimise the effect of rounding error
noise on adaptive filter performance. Double precision QR-
RLS shows the best adaptive filter performance while single
precision MIL-RLS degrades the performance significantly
due to large rounding error noise. The magnitudes of the
MSEs increase with single precision arithmetic for both QR-
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RLS and MIL-RLS algorithms due to the increased magnitude
of rounding error noise, because rounding error noise is in
proportion to a εmach. The MSEs follow the backward error
magnitudes (i.e., rounding error noise magnitudes) in this case.
Fig. 10 shows the MSEs from MIL-RLS and QR-RLS with the
regularisation parameters selected from the cross-validation
according to the level of measurement noise using validation
data set. The MSEs measured with both double precision MIL-
RLS and QR-RLS follow the variance of the measurement
noise, σ2s, since the magnitude of the measurement noise
is higher than the rounding error noise. However, when the
rounding error noise larger than the measurement noise in sin-
gle precision MIL-RLS, rounding error noise affects the filter
performance. When rounding error noise magnitude is lower
than measurement noise for single precision MIL-RLS (i.e.,
σ = 2−14 in Fig. 10), the MSEs become equivalent in all four
cases. Therefore, the adaptive filter performance is equivalent
regardless of arithmetic precision when measurement noise is
higher than rounding error noise, supporting Corollary 2.

E. Impact of Lower Precision on Adaptive Filter Performance

Fig. 11 represents the magnitudes of backward errors for
half, single and double precision arithmetic MIL-RLS and QR-
RLS without measurement noise and with the regularisation
parameters selected from cross-validation. As expected, the
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magnitudes of backward errors are in proportion to the ma-
chine epsilons. The backward errors of MIL-RLS are larger
than QR-RLS since c(A) is higher for MIL-RLS.

Fig. 12 represents adaptive filter performance (i.e., MSEs)
variation for half, single and double precision arithmetic MIL-
RLS and QR-RLS without measurement noise and with the
regularisation parameters selected from cross-validation. As
expected, the magnitudes of MSEs approximately follow the
squares of the magnitudes of the backward error for QR-RLS.
For a numerically unstable MIL-RLS, such tendency becomes
weaker from a higher bias in the bias-variance decomposition
due to a higher regularisation for MIL-RLS compared to QR-
RLS.

V. RELATED WORK

A. Application of Linear Algebra to Signal Processing

Backward error analysis of least squares was discussed for
general cases in [16], [34]. In [35], linear algebra techniques
were applied to signal processing applications and the back-
ward error was discussed in terms of numerical stability of the
algorithm.

B. Rounding Error Analysis of RLS

The work of [4] performed forward error analysis of the
three individual computing components in MIL-RLS including
inner product, weight correct term computation, and weight
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update computation, and showed that the weights of MIL-
RLS were no longer unbiased weights under finite precision
arithmetic even with a forgetting factor equal to ‘1’ (i.e.,
rounding error noise is not white noise if this finding is
interpreted with our backward error analysis.). The analysis
in [4] also found that the weights update computation is
numerically unstable when the forgetting factor approaches
‘1’. The numerical stability of RLS algorithms has been in-
tensively investigated in [14], [15], [17]. Unlike other previous
related work, this work explores the impact of lower precision
on adaptive filter performance by introducing rounding error
noise. The rounding error noise in this paper is different to
the noise introduced in [4] and [17]. Both the “floating point
noise” in [4] and the “round-off noise” in [17] were derived
from forward error analysis, therefore such noise cannot be
interpreted as explicit noise in the input data.

C. Regularisation for RLS

In [28], effective regularisation was studied in terms of the
energy of the input data, the window length, and the echo to
noise ratio. In order to improve numerical stability of RLS
algorithms, various regularisation methods were proposed for
linear regression such as ridge regression employing square
2-norm regularisation parameters [31], LASSO employing
1-norm regularisation parameters [36], and elastic net that
combines the ridge regression and the LASSO [37].

D. Low Complexity/Precision for RLS

Recently, there have been many research attempts to im-
prove computational efficiency for RLS [5]–[11], [38]. In [5],
[6], a computationally efficient RLS algorithm was developed
by extending the idea of Kronecker product decomposition
proposed in [39]. The work of [5] performed the impulse
response decomposition based on Kronecker product to trans-
form a high dimension system identification problem to a
low dimension problem, resulting in lower computational
complexity of RLS compared to a conventional RLS algo-
rithm. Such idea was particularly fitted to echo cancellation,
and further extended to multiple input single output system
identification in [7]. In [8], the idea of the impulse response
decomposition for RLS was extended to a Kalman filter. In [9],
a low complexity RLS algorithm was proposed by exploiting
a dichotomous coordinate descent algorithm. The work of [9]
developed a transversal RLS adaptive filter requiring only 3N
multiplications rather than O(N2) multiplications required by
a conventional RLS algorithm. In [10], the algorithm of [9]
was implemented on FPGA, and the accuracy of the algorithm
was accessed empirically according to variable arithmetic
precision. In [11], a variation of RLS algorithm having com-
putational complexity from N2/2 to 5N2/6 was presented,
but the algorithm was not suitable for lower precision fixed
point arithmetic due to the accumulation of rounding errors.
In [38], the clipped LMS and RLS algorithms, that quantise
the input signals to {−1, 0, 1}, were evaluated in terms of
accuracy and computational complexity, compared to other
low-complexity RLS algorithm counterparts such as the signed
regressor RLS, the M Max tap-selection RLS, and the original

RLS. Based on the evaluations, the optimal step sizes and
forgetting factors for the clipped LMS and RLS that minimise
the weight misalignment were derived.

E. Comparison of Our Work to [22]

The work of [22] performed the rounding error propagation
analysis with various adaptive filter algorithms by utilising the
backward consistency concept. In [22], a conceptual backward
consistency manifold was created to analyse the propagation
of rounding error (i.e., forward error). An algorithm was re-
ferred to as a backward consistent algorithm “if the computed
state remains on the manifold” (i.e., “if it always leads to
a computed solution that can be interpreted as a perturbed
problem with the required structure”) in [22]. For example,
if an algorithm is backward consistent, the rounding errors
(e.g., the perturbation on the computed quantities) should
not break the required structure of the problem (e.g., the
symmetry and the positive definiteness of a Pt in an RLS).
Even though the backward consistency concept was considered
in [22], the backward errors (i.e., the perturbation on the
external system rather than the computed quantities) were not
explored. For example, in [22] “We focus here specifically
on the propagation of the numerical errors; We assume that
from a certain time instant onward no more round-off errors
are made and we observe how the effect of the accumulated
errors evolves in time from that point forward.” Therefore, [22]
explored the forward error rather than the backward error.

Fig. 13 describes the adaptive filter model used in [22].
The initial perturbation δw

(0)
t−1 and ∆P

(0)
t−1 were generated

due to the rounding errors until time (t − 1). The [22]
evaluated how δw

(0)
t−1 and ∆P

(0)
t−1 could propagate under

exact arithmetic by using a conceptual backward consistency
manifold. Notice that the rounding error propagation analysis
in [22] focused on the errors in the computed quantities (e.g.,
the propagation of (w̃t−1+δw

(0)
t−1) and (Pt−1+∆P

(0)
t−1) under

exact arithmetic in Fig. 13) rather than the deviation from the
external environment of the system.
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Fig. 13. Adaptive Filter Model in [22]

Several adaptive filter algorithms were examined using the
backward consistency manifold in [22]. For example, the back-
ward consistency was examined with a conventional Kalman
filter employing Riccati equation for a covariance matrix up-
date and a square-root Kalman filter employing the square-root
algorithm for a covariance matrix update. Under the backward
consistency requirement, the covariance matrix in a Kalman
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filter should be symmetric. The work of [22] decomposed
the rounding error in the covariance matrix (e.g., ∆P

(0)
t−1 for

an RLS) into symmetric and antisymmetric components. The
symmetric part in the error does not affect the symmetry when
it propagates under exact arithmetic, while the antisymmetric
part propagates in both symmetric and antisymmetric com-
ponents. In other words, the propagation of the symmetric
part always travels within the backward consistency manifold,
while the antisymmetric part could propagate both within the
manifold and outside the manifold. Therefore, maintaining the
backward consistency requires the antisymmetric component
not to be magnified through propagation.

If we apply the work of [22] to MIL-RLS, the rounding
error propagation using Eq. (6) can break the backward con-
sistency of the symmetry of Pt; the antisymmetric component
can be magnified through the propagation of ∆P

(0)
t−1 when

Pt−1xt → 0 and ‖∆P
(0)
t−1xt‖2> ‖Pt−1xt‖2 in Eq. (6). For

QR-RLS, the backward consistency of the symmetry will be
kept, since QR-RLS stores only a triangular matrix factorised
by QR decomposition (e.g., the antisymmetric component after
the rounding error propagation will be removed by keeping a
triangular matrix only.).

As mentioned by the example above, [22] used the back-
ward consistency concept (i.e., the backward consistency man-
ifold) to explain the effects of the rounding error propagation
on the backward consistency, improving the explainability
of the rounding error propagation analysis. In contrast, our
work sets up a new diagram in which rounding errors can be
interpreted as the explicit noise that sits on equal footing with
the measurement noise as shown in Fig. 3. To the best of our
knowledge, the aim of [22] was to enhance the explainability
of the rounding error propagation in terms of the backward
consistency, while our aim is to provide a guide on how to
apply lower precision arithmetic to adaptive filters. Since the
research aims are different, the approach and the findings of
our work are different to [22].

The summary of the comparison of our work to [22] is as
follows:

1) Research Method: Our aim is to provide a guide on how
to apply lower precision arithmetic to RLS filters. Therefore,
we derive the rounding error noise explicitly that sits on equal
footing with measurement noise from our backward error
analysis first, and then seek the mutual influence of the explicit
rounding error noise on another filter explicit variables such
as the measurement noise, the regularisation, the arithmetic
precision, and numerical stability of the implementation al-
gorithm later. In contrast, since [22] seeks to enhance the
explainability of rounding error propagation in terms of the
backward consistency, it derives the backward consistency
manifold from the concept of backward consistency first and
then explains the backward consistency conditions of rounding
error propagation using the backward consistency manifold
later.

2) Backward Error: Our work seeks the backward error of
the RLS adaptive filters. We derived the rounding error noise
from the backward errors. In contrast, the [22] did not seek
backward errors; the concept of backward error consistency

was employed to derive the backward consistency manifold.
3) Derived Object (DO): Our work derives the rounding

error noise: the rounding error noise is the noise imposed on
the target in the system, incurred by the rounding errors. In
contrast, [22] derived the backward consistency manifold. This
backward consistency manifold is a conceptual manifold that
consists of the set of the computed quantities satisfying the
backward consistency.

4) Exploitation of DO: Our work uses the rounding error
noise to explore its dependence on the measurement noise, the
arithmetic precision, the numerical stability of the implemen-
tation algorithm, the regularisation, and the feature size. In
contrast, the backward consistency conditions were explained
with the backward consistency manifold for various adaptive
filters in [22].

5) Findings from DO: The findings from our work are as
follows:

• Applying lower precision to adaptive filters requires a
higher regularisation to abate the rounding error noise
effects on performance; a higher regularisation is recom-
mended for lower precision adaptive filters.

• The rounding error noise is not white Gaussian noise;
the rounding error noise dominantly affects adaptive filter
performance if the measurement noise follows white
Gaussian noise.

• The rounding error noise is independent of measurement
noise; lower precision can be applied to RLS without
losing performance unless the magnitude of rounding
error noise exceeds the magnitude of measurement noise.

In contrast, the findings from [22] are as follows:

• The errors in the computed quantities can be decomposed
into the tangential and the normal component of the
backward consistency manifold.

• The error in the tangential component of the manifold
propagates only within the manifold under exact arith-
metic, while the error in the normal component of the
manifold can propagate in both tangential and normal
direction of the manifold.

• If the error in the normal component of the manifold
is magnified through the propagation of the error, the
algorithm can break the backward consistency condition.

6) Main Contribution: Our work provides a guide on how
to apply a lower precision arithmetic to adaptive filters. In
contrast, [22] enhanced the interpretation of the propagation
of the rounding errors.

Therefore, our work is not a simple application of [22] and
is instead orthogonal in terms of research aims, methods, and
findings. For example, we explore the backward error (i.e., the
deviation of the external system) while [22] did not seek the
backward error. Therefore, our work can evaluate the mutual
impacts between the explicit rounding error noise and the
external system variables such as the measurement noise and
the regularisation. The evaluation of such mutual impacts was
not a straightforward consequence of the techniques described
in [22].
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VI. DISCUSSION

The motivation of this work comes from the desire to
provide the signal processing community with (i) a simpler
rounding error analysis framework for adaptive filters and (ii)
a guide on how to apply lower precision to adaptive filters
in order to improve battery life, hardware resource utilisation,
and computational throughput at the same time. This paper can
be an initiative work exploring the answers for the question:
“What if we apply considerably low precision to adaptive
filters?” More specifically,

• How could the filter performance be affected with lower
precision arithmetic?

• Can the degraded filter performance due to lower preci-
sion arithmetic improve with a higher regularisation or a
lower regularisation?

This paper is the first to present the adaptive filter system
model including rounding error components that sits on equal
footing with the measurement noise, and by representing
rounding errors explicitly, it is possible to describe the mutual
impacts between the explicit rounding error components (i.e.,
rounding error noise) and other external variables (e.g., the
measurement noise and the optimal regularisation), and the
impact of the stability of the algorithm used for the imple-
mentation on the rounding error noise. It was not feasible to
describe such impacts from previous rounding error analysis
models, since the rounding error components in their models
were located between computing components. We believe that
our model and both the theoretical and empirical evaluation
of the model in a number of RLS can help to answer such
questions; our findings are described by Numerical Properties
with Corollaries that can be used as a guide on how to apply
lower precision arithmetic to adaptive filters without degrading
filter performance significantly compared to higher precision
arithmetic. For example, when a new optimal regularisation
parameter needs to be found for a lower precision arithmetic
RLS, only higher regularisation parameters can be considered
for the hyperparameter set in cross-validation, since lower
precision arithmetic generates larger rounding error noise.

Noise is represented as uncertainty of data due to various
circumstances. For example, measurement noise comes from
measurement, under-modelling noise comes from the limita-
tion of model complexity over data complexity, and rounding
error noise comes from finite precision arithmetic. We claim
that the three types of noise including measurement, under-
modelling, and rounding error noise should be considered for
low precision adaptive filters since rounding error noise can
be the main factor affecting performance, and the three types
of noise are actual noise after implementing an adaptive filter
on a finite precision computing machine.

Ljung presented his opinion on future system identification
in the next 40 years in an interview [40]: “We will use particle
filters and other techniques like that, Monte Carlo simulations,
to estimate nonlinear functions in a non-parametric way, so
you can approach the problem without any prejudice about
the structures you are going to see.” Our findings in numerical
properties and corollaries are currently limited to RLS filters
but can play the role of a cornerstone assisting future system

identification development in low precision arithmetic. For
example, kernel-based adaptive filters have drawn attention
of the signal processing community for non-linear system
identifications [41]. A kernel-based RLS described in [42]
is equivalent to the least squares algorithm (i.e., orthogonal
projection of data to a reduced dimensional space), but with in-
finite dimension feature mapping. This kernel RLS maps finite
dimensional data to infinite dimensional data and formulates a
kernel matrix instead of the correlation matrix. Therefore, our
backward error analysis can be applied to nonlinear system
identification using kernel RLS, but with a kernel matrix
instead of (XT

t Xt) in Eq. (19). Our future work includes
extending this work for non-linear system identification.

VII. CONCLUSION

The aim of this paper is to provide the signal processing
community with (i) a simpler rounding error analysis frame-
work for adaptive filters and (ii) a guide on how to apply lower
precision to adaptive filters, given constraints such as hardware
budget, power cap, computational throughput, and filter perfor-
mance. To the best of our knowledge, this paper is the first that
formulates rounding errors as external noise by applying the
backward error analysis to adaptive filters. This means we can
explore the impact of lower precision on the adaptive filter per-
formance with other external variables such as regularisation,
numerical stability of algorithm, and measurement noise. As
one of our representative findings, lower precision arithmetic
does not affect adaptive filter performance compared to exact
arithmetic when measurement noise is relatively larger than
rounding error noise since the measurement noise and the
rounding error noise are independently additive with respect to
each other. In other words, arithmetic precision can be scaled
down in proportion to measurement noise without losing the
filter performance.

Future work includes the enhancement of this mathematical
framework and the extension of this work to nonlinear adaptive
filter algorithms.
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