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Abstract. Holographic Case-Based Reasoning is a framework devel-
oped to build cognitively appealing case-based reasoners with proactive
and interconnected cases. Improved realizations of the Holographic CBR
framework are developed using the principles of dynamic memory pro-
posed by Roger Schank and tested on their cognitive appeal, efficiency,
and solution quality compared to other relevant systems.
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1 Introduction

Case-Based Reasoning (CBR) has its inspiration in Roger Schank’s seminal work
on Dynamic Memory [11] that aspired to model learning in computers based on
how learning happens in humans. Schank also proposed the concepts of scripts,
plans, and goals as possible knowledge structures used by humans while under-
standing a piece of text. Kolodner actively worked on Schank’s work on dynamic
memory and built a computer program called CYRUS [7] which stands for Com-
puterized Yale Retrieval and Updating System. In particular, CYRUS was an
attempt to model the reconstructive nature of human memory. CYRUS can be
uniquely contrasted against the current day CBR systems in terms of its rich case
representation. CBR systems like CREEK [1] , CELIA [13] , CHEF [6] were also
built with richly inter-connected case structures. However, in the conventional
CBR theory, a case is usually represented as a simple problem and solution pair
with no provision to accommodate the interconnections/dependencies between
cases. In other words, the conventional CBR theory does not have provisions
to neatly accommodate the richly inter-connected case representations found in
the complex CBR systems of the past. Holographic CBR [5] is an attempt to
provide a single conceptual framework that can cover a spectrum of CBR sys-
tems with case representations ranging from simple problem-solution pairs to
complex inter-connected cases. This is achieved by modifying the case represen-
tation to include a solo and a holo component. While the solo component stands
for the conventional problem-solution pair, the holo component is responsible
for acquiring/storing/updating all the interconnections between cases.
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The idea of holographic CBR was inspired by the holographic nature of the
human brain. The term ’holographic’ refers to the concept of every part bearing
information about the whole. For example, when a holographic image of an apple
is broken down into small pieces, every piece would still be able to reconstruct
the entire apple image under appropriate conditions. Similarly, the holonomic
brain theory suggests that every part of the brain contains information about the
whole. Motivated by this observation, holographic CBR was proposed with a holo
component to capture the connection/relation of a single case to the entire case
base. However, the realizations proposed in [5] are simplistic in that they restrict
themselves to the mode of knowledge acquisition during the case acquisition/case
addition process. In knowledge-rich domains, a holographic reasoner learns the
relation of a case to the whole from the domain expert, whereas, in a knowledge-
light setting, it attempts to infer the same from the cases already present in the
case base using bottom-up learning methods. It is interesting to note that the
paradigm of holographic CBR opens an avenue for integrating both top-down
and bottom-up approaches in the building of a cognitively appealing case base.
While there is significant scope for exploration in this aspect, in this paper, we
focus primarily on forming generalized cases in a holographic reasoner during the
case acquisition process itself. This involves invoking a failure-driven reminding
process combined with bottom-up learning of the connections between cases. We
have, however, restricted our work to regression and classification tasks. In the
past, there have been works on generalizations and abstraction in CBR [2,9,15].
However, we are interested in developing a robust and cognitively appealing
bottom-up approach to the same.

We discuss the Holographic CBR framework in Section 2. Section 3 intro-
duces the key ideas realized and the realizations built. We present our results in
Section 4 and summarize our findings, and discuss the future scope in Section 5.

2 Holographic Case-Based Reasoning

Traditional CBR systems treat cases as isolated entities. Any changes made to
one case do not affect the rest of the case base. This is unlike human mem-
ory, where a new experience affects related memories, and information is not
localized. This idea stems from the experiments of Lashley on mice [8] and ob-
servations of Pribram on accident victims [10]. Even when parts of the brain
were removed, an organism could still form a hazy recollection of past expe-
riences instead of completely losing them. This shows the ’holographic’ nature
of human memory, where every part of the system contains information about
the entire system. Inspired by this, Holographic CBR treats cases as proactive
interconnected entities which actively affect and are affected by any changes to
the rest of the case base. Holographic cases develop their own local knowledge
containers, which helps them understand their problem-solving competence in
relation to the rest of the case base. They also proactively interact with and
modify the case base. More importantly, this interaction is not necessarily engi-
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neered in the reasoner but is learned as the reasoner solves new problems. This
Holographic CBR framework has certain key properties.

The Holographic Case: Cases in a holographic CBR system are made up of
two parts. The solo component stores the problem-solution as in traditional
CBR systems and represents the individual experience that the case stands
for. On the other hand, the holo component defines the case’s role with
respect to the case base and captures diverse forms of relationship of a case
with other cases in the case base.

Holographic Case Addition: New cases are added to the case base only when
the system is unable to solve the new case using the existing cases. Thus, the
case base grows only when it identifies a knowledge gap. Instead of merely
adding the new case to the case base, the system informs the existing cases
of the new case’s presence. It highlights why the existing case base could
not solve the problem and the new case’s value-addition and is later used to
decide when/how to use the newly added case to solve future problems.

Holographic Problem Solving: The system has a coarse knowledge of the
competence of the different cases inside it, but problem-solving happens in
a decentralized manner. Cases are expert problem solvers in their neighbor-
hoods. The system uses its global similarity knowledge to retrieve a case to
solve a new problem. The retrieved case, in turn, uses its holo component
to identify if any other cases can solve the problem better and, if found,
transfers control to such a better case.

This treatment of CBR has several advantages. The ability of cases to interact
with other cases allows us to design helpful ways to use, modify, and reorganize
the case base. The presence of explanations for adding a case not only ensures
that only useful cases get added but also highlights the added case’s novelty.
Ganesan et al. built holographic CBR realizations, which demonstrated some of
these ideas. However, the realizations restrict themselves to the mode of knowl-
edge acquisition during the case acquisition/case addition process and explored
only limited cognitive ideas. We utilize this framework to infuse several dynamic
memory ideas, absent in Ganesan et al.’s initial realizations like forming gener-
alizations based on multiple cases, updating links between cases based on usage,
etc., into our CBR realizations to make it more cognitively appealing. These
ideas draw inspiration from Schank’s works on human understanding and the
properties of a dynamic memory system.

3 Methodology

3.1 Key Ideas

In this section, we provide the intuition and justification for the key cognitive
ideas implemented. These are then implemented in holographic CBR systems in
section 3.2. We use an example of an animal classification task from the UCI
Zoo Dataset to motivate these ideas. In this task, each animal (case) has certain
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binary biological features like - lays eggs, produces milk, is a predator, airborne,
etc., and belongs to a class which is one of mammal, bird, fish, amphibian, reptile,
flight, and non-flight invertebrate. The CBR system is presented with the cases
one at a time from which it learns and then classifies new cases.

Forming Generalizations Schank observed that past experiences stored in
memory might contain detailed information not relevant to solving a given task.
When two experiences are similar, and when their differences do not contribute
additional value to problem-solving, it is useful to form generalizations by com-
bining such similar experiences. These generalizations should only retain infor-
mation which 1) help them solve the task and 2) differentiate them from other
non-similar experiences. This makes the system more efficient by focusing only
on important information and ignoring unnecessary details. Moreover, it helps
in identifying novel information present in new experiences by comparing them
with existing generalizations.

For example, whether an animal is a predator or not does not help in the
classification. When the system sees several animals with the same class but
different predator values, it should identify this unnecessary feature. Similarly,
it should be able to find features that have typical values for a certain class.
For example, the class mammals has lays eggs as predominantly false. With this
information, the system should form generalizations about mammals that ignore
the useless feature and highlights the typical feature. This generalization can
immediately capture interesting information in new cases. For example, when
faced with a platypus case (which lays eggs but is still a mammal), the system
can identify its novelty by comparing it to the mammal generalization.

Failure-Driven Reminding When a CBR system uses a similar past case
to solve a new problem, it expects that the solutions to the past and the new
problem are similar. When such expectations do not match the ground truth
(expectation-failure), there is a scope for the system to learn. Schank hypothe-
sized that a dynamic memory system should explain such expectation failures
and use them to extract valuable information from the new experience and re-
tain it in memory. Thus, we want a system that remembers its past mistakes and
their reasons, which it uses to avoid making similar mistakes again. For example,
a tuatara (reptile) and a newt (amphibian) share all features except aquatic but
belong to different classes. So, a CBR system might incorrectly use its memory
of tuatara to classify a newt. Once the mistake is identified, the system should
realize that the aquatic feature explains the failure. This intuition forms the
basis for our failure-driven links present in a case’s holo component. These links
are created when a case makes a mistake in solving a new case. They hold ex-
planations identified by the system for failures and connect the two cases. They
later help the system avoid mistakes by reminding it of its past mistakes. In our
example, if the system retrieves tuatara again to solve a new problem, it checks
if the new case is also aquatic. If so, the system remembers its past mistakes and
instead transfer problem-solving control to the connected case newt.
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Outcome-driven Solo and Holo Component Weights Cases in holographic
CBR have two components - a solo component and a holo component. However,
not all information present in these components would be equally important
in solving the CBR task. More importantly, which information is important
might differ from one case to another. For example, a seal (mammal) and a frog
(amphibian) differ in four features - hair, legs, milk, and eggs. But the differ-
ing feature legs is less important as there are other 4-legged mammals. However,
between a honeybee (flight-invertebrate) and a carp (fish), the feature legs is im-
portant as all flight-invertebrates have legs while no fish do. We have introduced
the concept of outcome-driven weights to handle this by which the feature legs
gets a higher weight in certain cases and a lower weight in certain other cases.
These weights indicate the case’s confidence in the correctness and utility of
different parts of information stored in it. The system progressively learns these
weights as it solves new problems.

3.2 Holographic CBR Realization Framework

In this section, we describe a framework of Holographic CBR, which implements
the concepts described earlier. We use this framework to build and test two
systems for a classification task and a regression task.

Components of the Framework We propose two levels of memory units
- cases and generalized cases. Generalized cases are made of multiple cases as
discussed in Section 3.1. These units have a solo component that stores their
standalone expertise and a holo component connecting them with other units.
Both these components have outcome-driven weights (solo-weights and holo-
weights) as discussed in Section 3.1 which denote their importance in the unit.
When faced with a new problem, these units are retrieved by the system and
are used to solve the new problem.

Cases: Cases are the storehouses of knowledge from individual training data
points. Each case represents one data point from which the system has learned
and serves as a primary knowledge source to solve new problems. Each case
is stored within a generalized case. A case as shown in Figure 1 contains the
problem definition, solution, and local knowledge in its solo component. It has
information about its relative competence with respect to its generalized case in
its holo component that is updated as the system learns.

Generalized Cases (GCs): Schank introduced Memory Organization Packets
which are organizers of individual experiences centered around common con-
texts or similar themes. Storing experiences within these MOPs would highlight
the interesting aspects of the experiences, and if such interesting aspects are ab-
sent or irrelevant, the MOPs aid in removing the unnecessary experience. MOPs
are also connected to other MOPs based on important differences.

Similar to this, Generalized Cases are combinations of cases with similar
problem representations and similar solutions. Every time a GC is retrieved to
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solve a new case during training and is able to do so, the knowledge in the
new case updates the GC, and the new case is stored within the GC. The GC
can replace the individual cases if the individual case offers no additional value.
Thus, a GC represents a region in the problem space that has similar solutions.
A GC, as shown in Figure 1 contains a generalized problem description which
is a combination of the problem descriptions of the individual cases. The GC’s
relative competence with respect to other GCs is stored in its holo component
as failure-driven links. Multiple cases are retained within a GC.

Fig. 1: Memory Units Visualized

Solo Component: The solo component of a memory unit contains:

• Problem Description: These are features and their corresponding values. In
addition, GCs have outcome-driven weights discussed in Section 3.1 that in-
dicate the importance of a feature-value combination. For GCs, the value for
a real feature is the mean value from the cases stored within it. In contrast,
categorical features have multiple values for each feature (the feature’s value
in each case inside it) with different importance weights for each value.

• Solution: The solution to the problem the memory unit represents. For regres-
sion tasks, a GC’s solution is the mean solution of the cases within it.

• Local Adaptation Knowledge: This is present only in regression tasks and mod-
ifies a memory unit’s solution to account for differences between its problem
description and that of a new case. We have used the difference between the
values of features in the retrieved and to-be-solved case to perform adapta-
tion. Let the unit retrieved be represented as a feature vector x = [x1, . . . xn]
and the new problem by x̃ = [x̃1, . . . x̃n]. We know f(x) and want to predict
f(x̃). We define adaptation weights wa

1 , . . . w
a
n for each feature which are

initialized as 0 and progressively learned. We perform adaptation using:

f(x̃) = f(x) + wa
1(x̃1 − x1) + wa

2(x̃2 − x2) + . . .+ wa
n(x̃n − xn) (1)
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Holo Component: This stores the relative competence of a memory unit with
respect to the rest of the case base. In a regression setup, GCs initially store
the individual cases within them and compare their adaptation success to that
of the GC for future problems. The results of this comparison (how better the
case is at solving new problems when compared to its GC, measured in terms
of closeness of adapted solution to the ground truth) are stored in each case’s
holo component and are used to remove cases that do not add additional value
over the GC. In classification setups, where the GC and its cases have the same
solution and adaptation is not required, such competence is meaningless. Hence,
cases update the GCs but are not retained in the case base.

For a GC, the holo component stores the failure-driven links explained in
Section 3.1 and connects GCs with one another. When a GC is retrieved but
cannot solve a new problem, the explanations for the failure identified are stored
in these links, and the new problem is added to the case base and connected
via this link. These links are later used to transfer problem-solving control from
the retrieved GC to another GC linked to it. In addition, these links also have
weights denoting the GC’s confidence in their explanation.

Learning Processes in the Framework This section describes how the mem-
ory units are created/updated during the learning phase. The system is presented
with training data points one at a time, and it iteratively learns by solving.

Class 1: Holographic CBR System
1 Class HOLOGRAPHIC SYSTEM :
2 GC base //List of GCs in the system
3 Function ADD CASE(newCase):
4 if GC base is not emtpty then
5 retGC = Retrieve GC in GC base with closest solo-weighted distance to newCase

(Line 15)
6 retCG.ADD CASE(newCase)

7 else
8 Create newGC by copying newCase, initialize empty holo component and add to

GC base (Line 15)

9 end

10 end
11 Function SOLVE(newCase):
12 retGC = Retrieve GC in GC base with closest solo-weighted distance to newCase
13 retGC.SOLVE(newCase)

14 end

15 end

Initial Solo-based Retrieval: When a new case (QUERY) is encountered, the sys-
tem compares this problem description with the solo problem description of each
of its GCs (GCi) to compute a distance between the two (RETd(GCi,QUERY)).

It weighs each feature f by the corresponding outcome-driven solo weight (w
(S,i)
f ).
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For real features, we use a standardized-Euclidean distance:

RETd(GCi,QUERY) =

√√√√ ∑
f∈features

w
(S,i)
f · (xf,GCi

− xf,QUERY)
2

Var(f)
(2)

And for categorical features we use a modified weighted-Hamming distance:

RETd(GCi,QUERY) =
∑

f∈features

∑
xf,k∈GCi(f)

w(S,i)
xf,k
· I(xf,k 6= xf,QUERY) (3)

where xf is the value taken by the feature f (Categorical features in a GC can
have multiple values each of which is represented as xf,k), V ar(f) is the variance
of feature f , and I(condition) = 1 if the condition is true and 0 otherwise. The
GC with the lowest distance to the new case is retrieved (Class 1, Step 5) and
is used to predict the solution to the new problem (Class 2, Step 6), and this
solution is validated with the ground truth (expectation validation).

Formation of Generalized Cases: The first case encountered by the system is
stored within a GC with features, values, and solution equal to this case (Class
1, Step 8). It has equal outcome-driven weights for all features and no holo
components. When a GC is later retrieved, and there is an expectation success,
the problem descriptions are modified to the means of the problem descriptions
of the existing cases within the GC, and the new case (for real features) or
new feature-value pairs are added to the description (for categorical features) as
shown in Class 3, Step 7. If none of the existing GCs can solve a new case, a
new GC is again created by copying the new case in Class 3, Step 19.

Update of Outcome-driven Solo Weights: The outcome-driven solo weight of a
feature in a GC is increased if the values for the feature in the GC and the case
are close during expectation success (Class 3, Step 8) and are far apart during
expectation failures(Class 3, Step 16). For example, if a GC containing frog and
newt (amphibians) is retrieved to classify a toad (also an amphibian and hence
an expectation success), the weight for the feature backbone, that has a matching
value of 1 in both the GC and the new case, increases. Similarly, if the same
GC is retrieved to classify a flea (flight-invertebrate and hence an expectation
failure), the weight for the feature backbone, which has mismatching values in the
GC and the unsolvable case, increases again. Thus, mismatching during failures
and matching during successes increases the feature-value importance and vice-
versa. For categorical features, we use the ratio of times the feature had matching
values in successes and mismatching values in failures to the number of times
the GC was retrieved as the weight for a feature. For real features, we compute
the difference in values (DIFFf (GCi,QUERY)) for feature f in the GC (GCi)
and a new case (QUERY) as:

DIFFf (GCi,QUERY) =
(xGCi,f − xQUERY,f )2

Var(f)
(4)
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Class 2: Holographic Case
1 Class CASE :
2 solo component //Problem definition, solution and adaptation weights
3 holo component //Relative competence with GC
4 pointer to GC //Parent GC within which the CASE is stored
5 Function PREDICT(newCase):
6 Use adaptation weights to predict solution for newCase
7 end
8 Function UPDATE ADAPT(newCase):
9 Use difference between CASE.predict(newCase) and newCase’s solution to update

adaptation weights of CASE

10 end
11 Function UPDATE HOLO(newCase):
12 Check whether CASE or CASE.pointer to GC is better at predicting newCase and store

result in CASE.holo (Section 3.2)
13 If CASE is consistently worse, DELETE CASE

14 end

15 end

Class 3: Holographic Generalized Case
1 Class GC(CASE):
2 solo component //Problem definition, solution and adaptation weights
3 holo component //Failure driven links connecting to other GCs
4 cases //Cases stored within GC pointer to system
5 Function ADD CASE(newCase):
6 if GC.PREDICT(newCase) close to solution of newCase then
7 Update problem description and solution of GC
8 Increase(decrease) solo weights of features with close(far) values in newCase and GC
9 Decrease(increase) holo weights of links with close(far) values in newCase and GC

10 for case in GC.cases do
11 case.ADAPT WEIGHT(newCase)
12 end
13 GC.ADAPT WEIGHT(newCase)
14 Add newCase to GC.cases

15 else
16 Decrease(increase) solo weights of features with close(far) values in newCase and GC
17 transfers = Use holo links to find linked GCs with correct linkGC.predict(newCase)
18 if transfers is empty then
19 Create newGC by copying newCase, initialize empty holo component, add to GC base
20 Create holo link from GC to newGC for every feature
21 Initialize holo weights based on difference in feature values between newGC and GC

22 else
23 for linkGC in transfers do
24 Increase(decrease) holo weight of links between linkGC and GC where the link value

and the corresponding feature value in newCase are close(far)

25 end

26 end

27 end

28 end
29 Function SOLVE(newCase) (Line 40):
30 if Solo-weighted distance between GC and newCase high then
31 transferGC = Use holo links to find linked GC with minimum holo link distance to

newCase
32 if Holo distance between newGC and transferGC small then
33 transferGC.SOLVE(newCase)
34 end

35 else
36 retCase = Case in GC.cases closest to newCase
37 RETURN retCase.PREDICT(newCase)

38 end

39 end

40 end
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Here xGCi,f and xQUERY,f are the values of the feature in the ith GC and a new
case respectively. Since small differences should increase feature weights during
expectation success and decrease weights during expectation failure, we update
the solo weights(w(S,i)) for feature f in the ith GC for expectation success as
follows. η is a learning rate parameter between 0 and 1 to avoid over-fitting.

w
(S,i)
f ← w

(S,i)
f + η(S,i) max(df ) + min(df )− df∑

f (max(df ) + min(df )− df )
(5)

w
(S,i)
f =

w
(S,i))
f∑

f w
(S,i)
f

(6)

For expectation failure we use:

w
(S,i)
f ← w

(S,i)
f + η(S) df∑

f df
w

(S,i)
f =

w
(S,i)
f∑

f w
(S,i)
f

(7)

Formation of Failure-driven Links and Holo Update: When an expectation fails,
the system must explain the failure and create failure-driven holo links (if they do
not exist). All feature-values of the unsolved new case are possible explanations
for the failure and become links between the initially retrieved GC and a new GC
which only has the new case (Class 3, Step 20). However, not all feature-value
pairs are equally valid explanations. Features whose values differ significantly
between the GC and the case are more likely to be the correct explanations and
are weighed more (Class 3, Step 24). However, during an expectation success,
the links are not needed, and existing links should not match with the new case.
Thus weights of links that match with the new case are reduced, and weights of
links that do not match are increased (Class 3, Step 9). Hence, every time a GC
is retrieved to solve a new problem, the holo weights of existing failure-driven
links are updated/created depending on whether they are useful or not.

For example, a GC made of antelope and buffalo (mammals) might have
links to another GC made of crab and lobster (non-flight invertebrates) with
features aquatic:1, eggs:1, and backbone:0. When the first GC is retrieved to
classify a dolphin (mammal but has aquatic:1 ), there is an expectation success,
and the failure-driven links should not be used. Thus, the weight of the link
aquatic:1, which spuriously matched, goes down while the confidence in eggs:1
and backbone:1 as valid failure-driven links goes up.

For categorical features, we assign the holo weight for a failure-driven link as
the ratio of the number of times the link matched when needed (expectation fail-
ure) or did not match when not needed (expectation success) to the total number
of times the GC was retrieved. For real features, we use the difference in feature
values between the link and new case defined as LINK DIFFf (linkij,f ,QUERY)
where linkij,f is the failure-driven link between GCs i andj with feature f . This
is calculated as:

LINK DIFFf (linkij,f ,QUERY) =
(linkij,f − xQUERY,f )2

Var(f)
(8)
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If the holo weights are w
(H,ij)
f , during expectation failure, we update it using:

w
(H,ij)
f ← w

(H,ij)
f + ηH

max(df ) + min(df )− df∑
f (max(df ) + min(df )− df )

(9)

w
(H,ij)
f =

w
(H,ij)
f∑

f w
(H,ij)
f

(10)

as features with small differences in values are more likely to be correct links.
Whereas, during expectation success, we want to decrease weights of features

which have small difference in values and update them as:

w
(H,ij)
f ← w

(H,ij)
f + ηH

df∑
f df

w
(H,ij)
f =

w
(H,ij)
f∑

f w
(H,ij)
f

(11)

Learning Adaptations: For regression tasks, the adaptation weights in the solo
component need to be learnt. During expectation success, when the difference
between problem descriptions of the new case and GC is small, the adaptation
weights of the GC and the cases stored within it are updated using the Newton’s
method for optimization (Class 3, Step 11). If f̂(x) and f(x) are the adapted
and true solutions of the new case respectively, we update the adaptation weight
vector(wa) to minimize the squared difference between these two using:

wa ← wa −
[
(x̃− x)((x̃− x))T

]−1
[(
f̂(x)− f(x)

)
(x̃− x)

]
(12)

Solving a New Problem We discuss how the system solves a new problem
during the prediction phase.

• GC Retrieval: The reasoner uses solo-weighted distance to find the closes GC
to solve the new problem (Class 1, Step 12). If the distance between the
retrieved GC and the new case is greater than a threshold, the system must
decide whether to use this GC or transfer control to another linked GC.

• Failure-driven Reminding: The reasoner matches failure-driven links to iden-
tify potential GCs to transfer problem-solving control (Class 3, Step 31).
The sum of matching weights that lead to any GC denotes the usefulness of
a transfer. Control is transferred to the linked GC with the maximum con-
fidence if the total weight leading to such a GC is greater than a threshold.

• Local-Adaptation: However, if the confidence is low, control is retained with
the GC. If the GC has cases stored inside it, the case closest to the new
problem is retrieved (Class 1, Step 36), and its solution is adapted using
the case’s local adaptation. If no cases are stored within the GC, the GC’s
adaptation knowledge is used to predict the solution.

Thus, the reasoner can use the interconnected and proactive case base of the holo-
graphic CBR framework to implement the dynamic memory ideas of outcome-
driven weighted retrievals, forming and validating expectations, creating gener-
alizations, and failure-driven reminding to learn and solve problems.
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4 Results and Interpretations

This section tests our realizations on their efficiency and solution quality. All
results are averages over 50 runs where the train-test split and the order of case
addition are randomized. We build two systems that solve different tasks using
data from the UCI Machine Learning Repository [4]:

• Zoo Case Base: This is a classification task that has been discussed before
in Section 3.1. It has animals from 7 classes represented by 16 categorical
biological features.

• Energy Efficiency Case Base [14]: This is a regression task to predict the heat-
ing load and cooling load requirements of buildings (that is, energy efficiency)
using eight real-valued building parameters.

4.1 Comparison with Baseline

In this section, we compare our holographic approach with other systems which
perform the same tasks. We use these systems as a baseline to illustrate the
improvements obtained by the holographic framework. For the classification task,
we compare with two machine learning models and two holographic systems
which lack some cognitive aspects developed in this work:

• Naive Bayes: This is a parametric ML model that does not retain experiences
but builds a model using the entire training data at once.

• K-Nearest Neighbors: This is a non-parametric model which retains the entire
training data but uses multiple (k) data points taken together to solve a
problem. This is a simplified version of our holographic CBR without weights,
failure-driven links, or generalizations.

• Ganesan et al.’s System: This previous holographic system does not have gen-
eralizations or outcome-driven weights but has expert-given failure-driven
links to connect cases.

• ML Switching Model: This is a modification made to our realization where the
failure-driven links transfer control to an ML model (Naive Bayes) instead
of other GCs during expectation failures.

For the regression task, we compare the system with:

• Ridge Polynomial Regression: This is a parametric method that, unlike our
approach, does not retain experiences but instead builds a model based on
all the training data points taken at once.

• K-Nearest Neighbors: This non-parametric model uses the average solution of
the k-nearest neighbors to predict the new solution.

• Ganesan et al.’s System: This previous system has local adaptation with a
weighted linear regression model in each case. It does not have control trans-
fers or generalizations and retains all training data points as cases.
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Table 1: Comparison with other systems (averages over 50 runs)
Classification Models Test Accuracy Regression Models Test RMSE
Current System 93.771 Current System 1.4606
Previous System 91.523 Previous System 1.8272
KNN 93.226 KNN 2.1749
Naive Bayes 91.649
ML Switching Model 92.718

Polynomial Ridge
Regression

3.1693

The results of the comparison are in Table 1. The improved holographic systems
outperform the ML models. The holographic system does not lose out on the
solution quality despite its cognitive appeal. KNN, which retains all the data
points, can still not outperform our approach, which only retains a fraction of the
training data. In our approach, cases are aware of each other’s competence and
can coordinate better to solve the problem. On the other hand, in (parametric)
ML models (Naive Bayes and Ridge Regression), the training data points interact
to create the model but lose their individual competencies when a model which
might not reflect the ground truth is enforced. Regression builds a model by
treating the entire problem space as one while the holographic system has local
pockets of knowledge in the local knowledge containers.

Our approach thus finds a middle ground by retaining cases but also allowing
them to interact in a holographic fashion. It is able to identify structures in the
problem in a bottom-up fashion and exploit it to achieve better performances.
Our system also outperforms the previous holographic realizations. The previ-
ous realizations treat all components equally important and miss out on the
merits of forming generalizations. This highlights the importance of the gener-
alization mechanism, which identifies regions of similarity in the problem space
and combines the knowledge present in multiple similar cases.

4.2 Tests for Efficiency

CBR systems suffer from the utility problem [13] where, as the case base grows,
the knowledge of the system and its solution quality improve, but the system’s
efficiency drops. It has been observed that better indexing and case base main-
tenance can handle this trade-off [3]. This section tests how our system handles
this trade-off by monitoring its efficiency as the number of training cases in-
creases. We track the number of problem-solving control transfers as a proxy
for efficiency. The holographic reasoner has additional computation costs over a
traditional CBR system due to control transfer using failure-driven links. The
number of such transfers is an indication of this additional cost. We also track
the test data accuracy (or RMSE for regression tasks). The system’s test accu-
racy should ideally increase with more training data without reducing efficiency.

In both the tasks, as shown in Figure 2a and Figure 2b, we observe that as
the training data increases, the test performance increases without significantly
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(a) Zoo Case Base (b) Energy Efficiency Case Base

Fig. 2: Tracking efficiency and accuracy with increase in training data

increasing the control transfers. Contrarily, the number of transfers decreases
after a point. As the amount of training data crosses a limit, the outcome-
driven weights are well-tuned, and as a consequence, the initial retrievals are
more accurate. Even when control transfers are used, they arrive at the correct
solution faster. This indicates the system’s ability to improve both its efficiency
and solution quality with increasing training data.

5 Conclusions and Future Scope

We have expanded the holographic CBR framework and developed improved
realizations that draw insights from popular models of dynamic memory and are
cognitively appealing. We have demonstrated holographic CBR’s broad scope,
which offers an interconnected and proactive case base to build practical systems
that can outperform traditional methods in selected tasks both in terms of effi-
ciency and solution quality. With this, we aim to establish holographic CBR as a
general-purpose CBR framework using which we can build a myriad of systems
with different applications, memory models, amount of domain knowledge, and
end goals. In this way, we establish holographic CBR not as a problem-solving
tool but rather as a paradigm to design such tools.
We aim to view CBR the way it was envisioned during its initial phases and look
past the haze created by practical constraints. By framing CBR as a Memory-
based Reasoning Framework and improving its cognitive appeal using insights
from models of human understanding, we aim to demonstrate the richness of
the CBR framework and its relevance in building better Artificial Intelligence
systems [12]. This research work is a step in that direction.
The ideas developed here - forming generalizations, expectation-failure-driven
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reminding, local knowledge containers, and outcome-driven weights are just a
few of the numerous cognitive mechanisms that can be realized. More impor-
tantly, the way in which these have been realized in this work is not the only
way to do so. Nevertheless, we hope that the results from this work and the
ideas presented pave the way for further integrating cognitive memory-based
reasoning components with holographic CBR.
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