
Risk-Aware Identification of Highly Suspected COVID-19 Cases in
Social IoT: A Joint Graph Theory and Reinforcement Learning
Approach
Wang, B., Sun, Y., Duong, T. Q., Nguyen, L. D., & Hanzo, L. (2020). Risk-Aware Identification of Highly
Suspected COVID-19 Cases in Social IoT: A Joint Graph Theory and Reinforcement Learning Approach. IEEE
Access, 8, 115655-115661. https://doi.org/10.1109/ACCESS.2020.3003750

Published in:
IEEE Access

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:07. Dec. 2024

https://doi.org/10.1109/ACCESS.2020.3003750
https://pure.qub.ac.uk/en/publications/1f0f4e3b-5ea0-4378-8c1b-e96446a7fe0d


Received June 6, 2020, accepted June 11, 2020, date of publication June 19, 2020, date of current version July 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003750

Risk-Aware Identification of Highly Suspected
COVID-19 Cases in Social IoT: A Joint Graph
Theory and Reinforcement Learning Approach
BOWEN WANG 1, YANJING SUN 1, (Member, IEEE),
TRUNG Q. DUONG 2, (Senior Member, IEEE), LONG D. NGUYEN 3, (Member, IEEE),
AND LAJOS HANZO 4, (Fellow, IEEE)
1Xuzhou Engineering Research Center of Intelligent Industry Safety and Emergency Collaboration, Xuzhou 221116, China
2School of Electronics, Electrical Engineering, and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, U.K.
3Duy Tan University, Da Nang 810000, Vietnam
4School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

Corresponding author: Trung Q. Duong (trung.q.duong@qub.ac.uk)

This work was supported in part by the Royal Academy of Engineering (RAEng) through the RAEng Research Fellowships Schemer under
Grant RF14151422, in part by the Researcher Links through the Newton Fund Partnership under Grant 527612186, and in part by the U.K.
Department for Business, Energy and Industrial Strategy and delivered by the British Council. L. Hanzo would like to acknowledge the
financial support of the Engineering and Physical Sciences Research Council projects EP/N004558/1, EP/P034284/1, EP/P034284/1,
EP/P003990/1 (COALESCE), of the Royal Society’s Global Challenges Research Fund Grant as well as of the European Research
Council’s Advanced Fellow Grant QuantCom.

ABSTRACT The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly become a
pandemic, which calls for prompt action in identifying suspected cases at an early stage through risk
prediction. To suppress its further spread, we exploit the social relationships between mobile devices in the
Social Internet of Things (SIoT) to help control its propagation by allocating the limited protective resources
to the influential so-called high-degree individuals to stem the tide of precipitated spreading. By exploiting
the so-called differential contact intensity and the infectious rate in susceptible-exposed-infected-removed
(SEIR) epidemic model, the resultant optimization problem can be transformed into the minimum weight
vertex cover (MWVC) problem of graph theory. To solve this problem in a high-dynamic random network
topology, we propose an adaptive scheme by relying on the graph embedding technique during the state
representation and reinforcement learning in the training phase. By relying on a pair of real-life datasets,
the results demonstrate that our scheme can beneficially reduce the epidemiological reproduction rate of the
infection. This technique has the potential of assisting in the early identification of COVID-19 cases.

INDEX TERMS Social Internet of Thing (SIoT), COVID-19, reinforcement learning, graph theory.

I. INTRODUCTION
The coronavirus disease 2019 (COVID-19) has spread over
215 countries with the numbers of infected cases and deaths
still increasing. As of the 19th April 2020, a cumulative total
of 2,228,455 (154,309) cases (fatalities) were reported in the
world. During this outbreak, every aspect of our daily lives
has been deeply impacted. One of the gravest challenges
is its high human-to-human transmission rate via droplet
inhalation or contact with contaminated surfaces. Recent
studies have demonstrated that asymptomatic patients are
particularly contagious [1], [2], because people tend to avoid
contact with others showing obvious symptoms, but asymp-
tomatic people cannot be readily identified. Therefore, early
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identification of suspected cases and the judicious allocation
of limited medical resources is vital [3].

Recently, both ‘big data’ analysis and human social net-
working solutions were proposed for detecting suspected
cases during an epidemic. For example, in [4], the authors
proposed a spatio-temporal model termed as HiRES, which
relies on a risk map for detecting suspected individuals based
on the trajectory of big data and mean-field theory. In [5],
the authors proposed a sentinel node detection strategy for
disease surveillance by relying on social networks. However,
the latency in the associated trajectory and inaccuracy of
social data may render these models somewhat inefficient.
Hence, a deep-routed research-question arises, namely how to
take advantage of both the real-time social data and of accu-
rate trajectory data for identifying suspected virus careers.
In [6], the authors proposed the Social Internet of Things
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(SIoT) concept, which paves a new way for building the
social relationships among devices without human interven-
tion. Despite the delay in human data feedback, portable
equipment such as smart phones and wearable devices may
be employed for sensing, computation and communications,
while relying on positioning information to perform real-time
symptom recognition, contact tracking and data exchange.
For example, the so-called co-located object relationship
(C-LOR) of the SIoT characterizes the geographic loca-
tion similarity of two devices, while the social object rela-
tionship (SOR) quantifies the contact intensity, when the
device-owners are in each others’ proximity, which are useful
for identifying the individuals at risk of infection.

By collecting the data from SIoT, the complex networks
of virus transmission may be viewed as a weighted undirec-
tional graph (WUG), where each vertex represents a mobile
user, each edge indicates the contact between two users and
the vertex weight is related to the probability of becoming
infected. Based on this graph, we will identify those vertices
which may have high impact on other vertices, corresponding
to the influential individuals in a resource-constrained envi-
ronment, since the medical resources such as surgical masks
and nucleic acid detection reagents are scarce. Hence, the
optimization objective is to select high-risk vertices within
a limited budget of resources to minimize the propagation
rate of the epidemic. This epidemic propagation rate min-
imization problem of identifying the suspected COVID-19
cases in SIoT may be viewed to be analogous to the rumor
influence minimization problem of identifying the highly
influential nodes in mobile social networks. The latter can be
further transformed into the classic minimum-weight vertex
cover (MWVC) problem of graph theory [7]. Most prior
studies resorted to heuristic algorithms or to local search
for solving MWVC problems at an acceptable complex-
ity [8]. However, considering the dynamically evolving net-
work topology over time, recomputing the solution from
scratch is time-consuming. As an efficient decision-making
technique in dynamic environments, reinforcement learning
has been widely used in the field of wireless communica-
tions, aerospace, power system, etc [9], [10]. In [11], the
authors proposed an adaptive strategy based on graph embed-
ding and reinforcement learning for solving the associated
combinatorial optimization problem, which inspired us to
design an adaptive identification scheme for highly suspected
COVID-19 cases in response to these topology changes.

The main contributions of this paper are summarized as
follows:
• By using the dynamic WUG model, we propose a new
network topology of SIoT-aided inter-device social rela-
tionship establishment process, which takes into account
the fact that the network structure evolves dynamically
throughout the epidemic propagation.

• We conceive the high-risk vertex selection problem rely-
ing on the MWVC framework and propose a risk-aware
adaptive identification algorithm based on joint graph
embedding and reinforcement learning for solving the
MWVC problem in a dynamic topology.

FIGURE 1. Framework of our proposed scheme for MWVC.

• We conduct simulations based on a pair of realistic
datasets to demonstrate that our proposed scheme is effi-
cient in suppressing the propagation speed in both large-
scale and small-scale scenarios. Besides, we evaluate
our proposed scheme on the Erdos-Renyi social graph
relying on adjustable contact probability to verify the
scalability.

The rest of this paper is outlined as follows. First our
system model is presented and then our optimization prob-
lem is formulated in Section II. The adaptive scheme for
identifying the suspected cased with high risk is illustrated
in Section III. Simulation results are shown in Section IV,
followed by concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In the absence of global restrictions COVID-19 spreads with-
out limits since many asymptomatic carriers are contagious.
To characterize the spread of COVID-19, we consider the
modified susceptible-exposed-infected-removed (SEIR) epi-
demic model, where asymptomatic individuals are based
on [12]. When a susceptible individual comes in contact
with either a symptomatic or asymptomatic individual, the
probability of being exposed is βs or βa, respectively. Fur-
thermore, the probability of those exposed individuals being
symptomatic or asymptomatic is αs or 1 − αs, respectively.
Finally, the probability of being removed from the set through
recovery or death is γ .

Naturally, the rate of propagation is also influenced by
contact intensity, as determined by the contact frequency
and duration. As shown in Fig. 1, each device can rely
on the global positioning system (GPS), wireless network
signaling, human social networks, radio frequency identifi-
cation (RFID), bluetooth, and Wifi to track their owner’s
contacts, perform co-location detection, and establish rela-
tionship with other devices through owner control and rela-
tionship management modules [6]. Then, the collected data
will be gathered and aggregated by mobile vehicles or
unmanned aerial vehicles, and finally delivered to the edge
data center for real-time data analysis and decision-making.
Herein, we mainly focus on the decision-making process
since the data collection and analysis problems are beyond the
scope of this paper and can be addressed by several existing
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works [3], [4]. Given a time span T which is discretized into
{1, . . . , t, . . . ,T } time slots, the average contact intensity
between two users i and j can be denoted as [13]

δi,j(t) =

∑N c
i,j(t)

x=1 tdx
N c
i,j(t)

, (1)

where N c
i,j(t) represents the total number of contacts before

the time slot t , while tdx is the corresponding contact dura-
tion. Note that even short exposures such as two seconds of
contact are perilous and multiple short contacts do increase
the overall risk of exposure. Furthermore, the weight of each
contact is quantified by Eq. (1), where a short exposure time
corresponds to a low weight.

Given an individual setV (t) = {v1(t), . . . , vi(t), . . . , vN (t)},
the network topology at time slot t can be abstracted as a
WUG G(t) = (V (t),E(t)), where V (t) denotes the vertex set,
E(t) denotes the edge set, andωi(t) denotes the vertex weight,
and can be

ωi(t) =
|N s
i (t)|∑
j=1

βsδi,j(t)+
|N a
i (t)|∑
k=1

βaδi,j(t), (2)

whereN s
i (t) andN

a
i (t) represent the symptomatic and asymp-

tomatic neighbors of vi(t), respectively. Note that the param-
eter ωi(t) quantifies the degree of risk. It is worth mentioning
that the corresponding edge eij(t) can only be inserted into
G(t) if the social distance between the pair of vertices vi(t)
and vj(t) in their contact is lower than a certain threshold.
Note that the social distance threshold was initially three
inches as declared by theWorld Health Organization (WHO),
because the authors of [14] found that people who kept at least
three inches of social distance between them were able to
reduce the infection rate by approximately 82%. As a further
result [1], the authors have demonstrated that two meters
of social distance reduced infection rate by approximately
96%, since this social distance can prevent the transmission
of droplets [14]. Hence here we use the latter metric as the
threshold of social distance.

In a resource-constrained environment, we assume that the
arrival process of medical resources obeys the Poisson distri-
bution with arrival rate λ. Hence, we have to allocate these
resources to those individuals at high-risk of being exposed
in order to cut off the transmission paths, i.e. to remove the
corresponding edges from G(t). Let I (t), N (t), R(t), and D(t)
denote the number of infected individuals, all the individuals,
all available resource blocks and the detected individuals,
respectively. Here, we assume that a resource block can only
be assigned to a single individual for detection. Therefore, the
optimization problem is that of minimizing the infection rate
(propagation speed), which can be formulated as

min
D

∑T

t=1

I (t)
N (1)

(3a)

s.t. C1 : D(t) 6 R(t), ∀t ∈ T , (3b)

where (C1) indicates that the number of detected individuals
should be no higher than that of the available resources.

In graph theory, a vertex cover of G(t) is a subset of the
vertex set Vc(t) ⊆ V (t) so that for every edge, at least one
of its endpoints belongs to Vc(t). The MWVC is a vertex
cover having the lowest possible number of vertices and
sumweights. For the convenience of problem transformation,
we turn the edge weights into negative values.
Proposition 1 (Detection Threshold): The MWVC of G(t)

is the minimum number of vertices required for cuttikng off
all the transmission paths (remove all edge) from G(t).

Proof: Considering the definition of MWVC, all edges
can be omitted by removing the edges connected to Vc(t) and
meanwhile the Vc(t) has the minimum size, which concludes
the proposition 1.

Therefore, the problem (3) can be naturally transformed
into a MWVC problem. It is worth mentioning that we
consider the MWVC rather than MVC, because the former
outperforms the latter when the size of minimum vertex cover
exceeds the resources available. Next, wewill investigate how
to select higher-risk vertices from a MWVC.

III. ADAPTIVE IDENTIFICATION SCHEME
In this section, we propose an adaptive identification scheme,
which incrementally identifies the high-risk vertices instead
of identifying all of them at once. More specifically, the
adaptive identification process is divided into several rounds.
In each round, our scheme can dynamically block the epi-
demic propagation based on a snapshot of the current network
topology. Upon considering the case of R(t) ≤ Vc(t) at time
slot t , selecting any R(t) vertices from the set of Vc(t) for
detection will lead to different results. Given a limited budget,
we should grant different priorities according to the asso-
ciated hazard levels, which can be quantified by the vertex
weight.

Since we have to dynamically find MWVC in the face of
evolving network topologies obeying different graph struc-
tures, we first utilize the graph embedding process, in which
each vertex can be represented by a m-dimensional vec-
tor paving the way for the learning phase. This is because
reinforcement learning is more efficient when processing
low-dimensional vectors than graphs. Similar to [11], we
capitalize on the deep learning architecture termed as Struc-
ture2Vec [15] for graph embedding, which computes a
m-dimensional feature embedding µvi for each vertex vi.
Initially, we set µvi (t) = 0 and the update strategy can be
formulated as [11]

µvi (t + 1) = relu(θ1xvi + θ2
∑

vj∈NBi(t)

µvj (t)

+ θ3
∑

vj∈NBi(t)

relu(θ4ωij(t))), (4)

where the neighbor set NBi(t) is equivalent to N s
i (t) ∪ N

a
i (t),

’relu’ represents the rectified linear unit, i.e., relu(·) =
max(0, ·), xvi is a binary variable, which indicates, whether
the state is being selected or not, θ1 ∼ θ4 are model
parameters, and ωij(t) represents the edge weight in graph
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embedding, which is determined by the structural similarity
(structural distance ) fij(t), i.e.,ωij(t) = e−fij(t).Note that fij(t)
can be calculated by dynamic time warping (DTW) [15].

When the computation process of graph embedding is
completed and the representation h(S(t)) of the selected ver-
tex set S(t) is obtained, we then define the evaluation function
Q̂(h(S(t)), vi,2), where 2 is the associated neural network
parameter. When µvi (T ) obtained at the final slot, the pooled
embedding of the entire graph G = {G(t)}Tt=1 can be repre-
sented as

∑
vi∈S(T ) µvi (T ). In this way, Q̂(h(S(t)), vi,2) can

be approximated by

Q̂(h(S(t)), vi,2) = θ>5 relu([θ6
∑

vi∈S(T )

µvi (T ), θ7µvi (T )]),

(5)

where [·, ·] denotes the concatenation operator and 2 =
{θj}

7
j=1.
Next, we will invoke reinforcement learning for determin-

ing the function Q̂(h(S(t)), vi,2). In the neural network, the
n-step fitted Q-Learning [11] is invoked to train2. We define
the states, actions and rewards in the reinforcement learning
framework as follows:
• States: the selected vertices for detection at slot t , i.e.,
S(t).

• Transition: the state variable xvi .
• Actions: push a new vertex into S(t).
• Rewards: the reward function r(S(t), vi(t)) is defined as
the change in the cost function after taking action vi and
transitioning to a new state S ′(t), which can be expressed
as

r(S(t), vi(t)) = −1+ ωi(t). (6)

Note that we set a penalty of −1 for the increment in
vertex number and ωi(t) for the increment in weight to
ensure that we can find a MWVC.

The training phase based on n-step fitted Q-learning is
illustrated in Algorithm 1. Note that the termination criterion
is whether the MWVC is achieved, i.e. whether all edges are
covered, while the sum weights are minimum.

Note that the n-step Q-learning can handle the issue of
delayed rewards during an episode by waiting n steps before
updating the parameters. This fits our scenario quite natu-
rally, where the final objective value is only revealed after
the addition of a series of vertices. In this way, the reward
received so far can be used for estimating that in the future
more accurately. Hence, the parameter y in the squared loss
function can be expressed as

y=
n∑

k=1

r(S(t+k), vi(t + k))+γ max
v′

Q̂(h(S(t+n)), v′,2).

(7)

Furthermore, the fitted Q-iteration will rely on experience
replay for updating the Q-function using a batch of samples
instead of updating it sample-by-sample. In this process, the

Algorithm 1 Q-Learning Based Training for MWVC
1: Input: Adjacency matrix of G
2: Output: Parameter 2
3: Experience replay memory M is initialized to N
4: for episode l = 1 : L do
5: Initialize the state S(1) to empty set
6: for t = 1 : T do
7: vi(t) =
8: {

randomly selection from V \ S(t), w.p.ε,
argmaxv∈V\S(t) Q̂(h(S(t)), vi,2), Otherwise,

9: Push vi(t) into S(t + 1), i.e., S(t + 1) = S(t)∪ vi(t)
10: if t ≥ n then
11: Push tuple (S(t − n), vt−n,Rt−n,t , S(t)) to M
12: Randomly sample batch from B
13: Update2 by stochastic gradient descent to mini-

mize the squared loss (y− Q̂(h(S(t)), vi,2))2 for
B

14: end if
15: end for
16: end for

cumulative rewards Rt−n can be represented by Rt−n,t =∑n−1
k=0 r(S(t − n), vi(t − n)). Based on the above discussion,

our risk-aware adaptive identification (RAI) algorithm can be
summarized in Algorithm 2.

Algorithm 2 Risk-Aware Adaptive Identification (RAI)
1: Input: Adjacency matrix of current snapshot of G, i.e.,

G(t), available resource R(t)
2: Output: A set of vertices Vc(t) at risk of being infected
3: Initialize the state S(t) to empty set
4: Each vertex in G(t) is embeded into a m-dimensional

vector using Eq. (4) and (5)
5: Search for the MWVC S(t) using the Algorithm 1
6: if |S(t)| > R(t) then
7: Select R(t) vertices from S(t) as Vc(t) based on the

ascending order of their weights
8: else
9: D(t)← S(t)
10: end if

As shown in Fig. 1, when the furst stage of contact tracking
is accomplished, graph embedding is performed to obtain the
‘‘node score’’ (green bars), which quantifies the degree of risk
from the perspective of graph structure. In the final stage,
reinforcement learning is invoked for solving the MWVC
by considering both the node score and weight. The specific
nodes associated with a high degree of risk are marked in red.

IV. SIMULATION RESULTS
In this section, we first evaluate our proposed scheme on the
Erdos-Renyi social graph [16] relying on adjustable contact
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probability (edge insertion probability) and then on a pair
of real-world datasets [12], [17]. The data in [12] collected
from a primary school was used for evaluating our proposed
scheme on a small-scale dynamic network and that in [17]
collected from a museum was used for characterizing our
proposed scheme on a large-scale dynamic network. In the
dataset [17], 410 vertices are connected by 17,298 edges
and the time span of 1 hour is discretized into 8 time slots.
By contrast, in [12], 242 vertices are connected by 125,773
edges and the time span of 1 hour is discretized into 18 time
slots.

In the learning phase, we set the batch size to 64, embed-
ding dimension size to 64, the number of iterations to 5, n
to 5, ε to 0.05, training size to 10000, and the learning rate
to 0.0001 based on [11]. For the SEIR model, we set the
βs to 0.8, βa to 0.4, αs to 0.7, and γ to 0.3 based on the
current data analysis about COVID-19 [4]. The initial number
of randomly infected individuals is 0.2N , where N represents
the number of all vertices in the initial stage. The arrival
rate of resources ranges from 0 to 0.05 per second. Note that
the vertices corresponding to the removed individuals will be
removed from the current snapshot.

To comprehensively characterize our proposed scheme,
we further compare RAI to four benchmarks: 1) degree cen-
trality (to measure the risk of being infected by neighbors)
selects D(t) vertices with highest degree in the current snap-
shot [18], 2) betweenness centrality (to measure the risk of
being infected on a large scale) can be calculated by

CB(v) =
∑

u 6=s6=v∈V (t)

Ns,u(v)
Ns,u

. (8)

where Ns,u denotes the number of shortest paths connecting
s and v, and Ns,u(v) denotes those shortest paths passing
through v [18], 3) closeness centrality (measure the risk of
being infected on a small scale) can be calculated by

Cc(v) =
|V (t)| − 1∑
u 6=v∈V (t) du,v

, (9)

where du,v denotes the length of shortest paths connecting
u and v [18], and 4) Q-learning based greedy algorithm for
MVC (abbreviated as ‘‘GreedyMVC’’) [11], which approxi-
mates the set of MVC nodes of the input graph by greedily
selecting the uncovered edge having the maximum sum of
degrees of its endpoints. Then we protect k nodes from this
unordered MVC set.

To verify the scalability and efficiency of our proposed
scheme, we have conducted simulations relying on the classic
Erdos-Renyi social graph, which is representative of most of
the popular graph structures associated with varying contact
probability. Fig. 2 shows the infection rate vs. contact prob-
ability, when the arrival rate of resources is set to 0.04 per
second and the number of vertices is set to 100. The contact
duration obeys the normal distribution associated with the
expectation of 30s and standard deviation of 5s. The number
of contacts obeys a Poisson distribution and the arrival rate is
randomly chosen from {1, 2, 3} per time slot. The time span

FIGURE 2. Infection rate versus the varying contact probability.

FIGURE 3. Infection rate versus the arrival rate of resource on
dataset [12].

of 1 hour is discretized into 10 time slots. We can observe
that our proposed RAI always outperforms other methods
upon increasing the contact probability. Compared to the sce-
nario of ‘‘without detection’’, our proposed scheme achieves
approximately 43% infection rate reduction, when the contact
probability is set to 0.8, which demonstrates the efficiency
of early detection of highly suspected cases. Furthermore,
since the degree and closeness centralities always select those
specific vertices which are close to each other in the crowded
parts of the graph, they exhibit a higher propagation rate than
that of betweenness centrality (selecting the vertices which
are in most of the multi-hop neighbor sets of other vertices)
when the graph becomes dense, i.e., the number of edges
becomes high.

In Fig. 3 and Fig. 4, we study the impact of early detection
based on two different real-world datasets. As clearly seen
from these two figures, the proposed RAI scheme always
outperforms the other methods upon increasing the arrival
rate of resources for both datasets. In the small-scale sce-
nario, the dominant form of infection is direct person-to-
person transmission (one-hop transmission), while in the

VOLUME 8, 2020 115659
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FIGURE 4. Infection rate versus the arrival rate of resource on
dataset [17].

large-scale scenario, the cross infection (multi-hop trans-
mission) becomes dominant. When the resources are very
scarce, say for an arrival rate below 0.02 per second, the
degree centrality method outperforms the ‘‘GreedyMVC’’,
because the degree centrality represents the degree of risk
better within a limited budget. Upon increasing the arrival
rate, the ‘‘GreedyMVC’’ performs better, because it can cut
off more transmission paths within a certain budget. Note
that the performance achieved by closeness centrality is better
than that of betweenness centrality based on the dataset [12],
but basedworse on [17]. This is because the closeness central-
ity is efficient in small-scale scenarios (the selected vertices
rapidly infect their one-hop neighbors) while the betweenness
centrality is efficient in large-scale scenarios (the selected
vertices can infect more multi-hop neighbors).

Finally, we discuss some characteristics inferred from the
simulation and experimental results. Although the COVID-
19 datasets are not available, Fig. 2 readily justifies that the
proposed method outperforms the graph-theoretic methods
for diverse graph structures. This is because the control effi-
ciency is only related to the graph structures determined by
the densities of the vertices and edges, plus the vertex weight.
On one hand, the graph embedding is eminently suitable for
extracting the centrality features of different graph structures.
On the other hand, by solving the MWVC, the vertex weight
is also considered. Since the traditional graph-theoretic based
methods only consider the centrality feature, our proposed
method would outperform the graph-theoretic based meth-
ods, regardless of the specific nature of the dataset.

Secondly, we justify the employment of reinforcement
learning. Generally, traditional techniques of solving the
graph optimization problem cam be classified into three
main categories: exact algorithms, approximate algorithms
and heuristic algorithms [11]. The exact algorithms perform
well for small-scale scenarios, but their complexity tends to
become prohibitive for large-scale scenarios. The approxi-
mate algorithms tend to have realistic complexity, but fail to
provide sufficiently strong optimality guarantees. Finally, the

heuristic algorithms tend to be efficient, but lack of theoretical
guarantees. However, all three types of algorithms may only
adapt to partial graph structures and thus their performance
may be degraded in dynamically time-varying environments.
Fortunately, this problem can be solved by reinforcement
learning. It was demosntrated by extensive simulations in [11]
that reinforcement learning based algorithms are capable of
performing well in continuously envolving graph structures.
Although different real datasets correspond to different sce-
narios, the graph structures inferred can typically be handled
by relying on the Erdos-Renyi social graph. Futhermore, the
reward function and other parameters are also influenced by
the specific graph structures. As for the reward function,
we carefully take into account the specific number of vertices
and the vertex weight, which allows us to satisfy both the
‘‘minimum-weight’’ and ‘‘minimum set cover’’ conditions.
Hence, the reward function used in the paper is suitable for the
MWVC problem in the context of different graph structures.
For other learning related parameters, the authors of [11]
have indeed justified that this setting is suitable for most
graph structures and thus we do not discuss this issue in
detail. In conclusion, our proposed scheme exhibits excellent
scalability and it is expected to perform well for diverse
datasets, including COVID-19 datasets.

V. CONCLUSION
In this paper, we have studied how to exploit the social rela-
tionships between mobile devices in SIoT to help control the
infection rate by the early identification of suspected COVID-
19 cases. Then, we transformed the optimization problem into
a MWVC problem and proposed a RAI algorithm for solving
this problem for a dynamic network topology. By relying on
a pair of realistic datasets, we demonstrate that our scheme
substantially reduces the epidemic infection rate compared to
the benchmarks in both large-scale and small-scale scenarios.
In conclusion, the proposed technique is eminently suitable
for disease control and prevention by relying on the early
identification of COVID-19 cases. At the time of writing
no COVID-19 dataset is available concerning the accurate
contact history of a crowd and their subsequent health con-
ditions, but no doubt, real-life datasets will soon be available.
This contribution may however assist both governments and
other decision-making authorities in their decision making.
In our future research we will use more data sources to verify
and revise this early identification scheme at an increased
accuracy.

REFERENCES

[1] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo,
A. Di Matteo, and M. Colaneri, ‘‘Modelling the COVID-19 epidemic and
implementation of population-wide interventions in Italy,’’ Nature Med.,
vol. 26, no. 6, pp. 1–6, Apr. 2020.

[2] C. Rothe, M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch,
T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. Seilmaier, C. Drosten,
P. Vollmar, K. Zwirglmaier, S. Zange, R. Wölfel, and M. Hoelscher,
‘‘Transmission of 2019-nCoV infection from an asymptomatic contact in
Germany,’’NewEngland J.Med., vol. 382, no. 10, pp. 970–971,Mar. 2020.

115660 VOLUME 8, 2020



B. Wang et al.: Risk-Aware Identification of Highly Suspected COVID-19 Cases in Social IoT

[3] F. Shi, J.Wang, J. Shi, Z.Wu, Q.Wang, Z. Tang, K. He, Y. Shi, andD. Shen,
‘‘Review of artificial intelligence techniques in imaging data acquisition,
segmentation and diagnosis for COVID-19,’’ IEEE Rev. Biomed. Eng.,
early access, Apr. 16, 2020, doi: 10.1109/RBME.2020.2987975.

[4] C. Zhou, W. Yuan, J. Wang, H. Xu, Y. Jiang, X. Wang, Q. H. Wen,
and P. Zhang, ‘‘Detecting suspected epidemic cases using trajec-
tory big data,’’ 2020, arXiv:2004.00908. [Online]. Available: http://
arxiv.org/abs/2004.00908

[5] J. L. Herrera, R. Srinivasan, J. S. Brownstein, A. P. Galvani, and
L. A. Meyers, ‘‘Disease surveillance on complex social networks,’’ PLOS
Comput. Biol., vol. 12, no. 7, Jul. 2016, Art. no. e1004928.

[6] L. Atzori, A. Iera, G.Morabito, andM.Nitti, ‘‘The social Internet of Things
(SIoT)—When social networks meet the Internet of Things: Concept,
architecture and network characterization,’’Comput. Netw., vol. 56, no. 16,
pp. 3594–3608, Nov. 2012.

[7] Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, and Y. Li, ‘‘Cost-efficient strategies
for restraining rumor spreading in mobile social networks,’’ IEEE Trans.
Veh. Technol., vol. 66, no. 3, pp. 2789–2800, Mar. 2017.

[8] S. Cai, W. Hou, J. Lin, and Y. Li, ‘‘Improving local search for minimum
weight vertex cover by dynamic strategies,’’ in Proc. Twenty-Seventh Int.
Joint Conf. Artif. Intell., Stockholm, Sweden, Jul. 2018, pp. 1412–1418.

[9] C. Mu and Y. Zhang, ‘‘Learning-based robust tracking control of quadrotor
with time-varying and coupling uncertainties,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 1, pp. 259–273, Jan. 2020.

[10] C. Mu, Y. Zhang, H. Jia, and H. He, ‘‘Energy-storage-based intelligent
frequency control of microgrid with stochastic model uncertainties,’’ IEEE
Trans. Smart Grid, vol. 11, no. 2, pp. 1748–1758, Mar. 2020.

[11] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, ‘‘Learning
combinatorial optimization algorithms over graphs,’’ in Proc. Adv. Neural
Inf. Proc. Syst., Dec. 2017, pp. 6348–6358.

[12] V. Gemmetto, A. Barrat, and C. Cattuto, ‘‘Mitigation of infectious disease
at school: Targeted class closure vs school closure,’’ BMC Infectious
Diseases, vol. 14, no. 1, p. 695, Dec. 2014.

[13] B. Wang, Y. Sun, T. Q. Duong, L. D. Nguyen, and N. Zhao, ‘‘Security
enhanced content sharing in social IoT: A directed hypergraph-based learn-
ing scheme,’’ IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4412–4425,
Apr. 2020.

[14] D. K. Chu, E. A. Akl, S. Duda, K. Solo, S, Yaacoub, and
H. J. Schünemann, ‘‘Physical distancing, face masks, and eye
protection to prevent person-to-person transmission of SARS-CoV-2 and
COVID-19: A systematic review and meta-analysis,’’ Lancet, Jun. 2020,
doi: 10.1016/S0140-6736(20)31142-9.

[15] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, ‘‘Struc2vec:
Learning node representations from structural identity,’’ inProc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York, NY, USA,
Aug. 2017, pp. 385–394.

[16] M. E. J. Newman, D. J. Watts, and S. H. Strogatz, ‘‘Random graph
models of social networks,’’ Proc. Nat. Acad. Sci. USA, vol. 99, no. 1,
pp. 2566–2572, Feb. 2002.

[17] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and
W. Van den Broeck, ‘‘What’s in a crowd? Analysis of face-to-face
behavioral networks,’’ J. Theor. Biol., vol. 271, no. 1, pp. 166–180,
Feb. 2011.

[18] K. V. Aadithya, B. Ravindran, T. P. Michalak, and N. R. Jennings, ‘‘Effi-
cient computation of the Shapley value for centrality in networks,’’ in Inter-
net and Network Economics, A. Saberi, Ed. Berlin, Germany: Springer,
2010, pp. 1–13.

BOWEN WANG received the Ph.D. degree in
information and communication engineering from
the China University of Mining and Technol-
ogy, Xuzhou, China, in 2020. He is currently
with the Xuzhou Engineering Research Center of
Intelligent Industry Safety and Emergency Collab-
oration, as a Research Fellow, and with China Uni-
versity of Mining and Technology, as an Associate
Professor. He was also a Visiting Ph.D. Student
with the School of Electronics, Electrical Engi-

neering and Computer Science, Queen’s University Belfast. He was awarded
the Best Paper Award in INISCOM 2019. His research interests include
matching theory, graph theory, UAV communications, and Social Internet
of Things (SIoT).

YANJING SUN (Member, IEEE) received the
Ph.D. degree in information and communication
engineering from the China University of Mining
and Technology, Xuzhou, China, in 2008. He is
currently with the Xuzhou Engineering Research
Center of Intelligent Industry Safety and Emer-
gency Collaboration, as a Research Fellow, and
with the China University of Mining and Technol-
ogy, as a Professor. His current research interests
include IBFD communications, embedded real-

time system, wireless sensor networks and cyber-physical systems.

TRUNG Q. DUONG (Senior Member, IEEE)
received the Ph.D. degree in telecommunications
systems from the Blekinge Institute of Technology
(BTH), Sweden, in 2012. He is currently with
Queen’s University Belfast, U.K., where he was a
Lecturer (Assistant Professor), from 2013 to 2017,
and a Reader (Associate Professor), in 2018. His
current research interests include the Internet of
Things (IoT), wireless communications, molecular
communications, and signal processing. He is the

author or a coauthor of over 330 technical articles published in scientific jour-
nals (200 articles) and presented at international conferences (136 papers).
He was awarded the Best Paper Award at the IEEE Vehicular Technol-
ogy Conference (VTC-Spring), in 2013, IEEE International Conference on
Communications (ICC) 2014, IEEE Global Communications Conference
(GLOBECOM) 2016, and IEEEDigital Signal ProcessingConference (DSP)
2017. He is a recipient of the prestigious Royal Academy of Engineering
Research Fellowship, from 2016 to 2021, and has won the prestigious
Newton Prize, in 2017. He currently serves as an Editor for the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS and the IEEE TRANSACTIONS ON

COMMUNICATIONS and a Lead Senior Editor for the IEEE COMMUNICATIONS

LETTERS.

LONG D. NGUYEN (Member, IEEE) was born in
Dong Nai, Vietnam. He received the B.S. degree in
electrical and electronics engineering and theM.S.
degree in telecommunication engineering from
the Ho Chi Minh City University of Technology
(HCMUT), Vietnam, in 2013 and 2015, respec-
tively, and the Ph.D. degree in electronics and
electrical engineering from Queen’s Univerisity
Belfast (QUB), U.K., in 2018. He was a Research
Fellow with Queen’s University Belfast, for a part

of Newton Project, from 2018 to 2019. He is currently with Dong Nai
University, Vietnam, as an Assistant Professor, and Duy Tan University
as an Adjunct Assistant Professor. His research interests include convex
optimization techniques for resource management in wireless communi-
cations, energy efficiency approaches (heterogeneous networks, relay net-
works, cell-free networks, and massive MIMO), and real-time embedded
optimization for wireless networks and the Internet of Things (IoT).

LAJOS HANZO (Fellow, IEEE) received the mas-
ter’s and Ph.D. degrees from the Technical Univer-
sity (TU) of Budapest, in 1976 and 1983, respec-
tively, and the D.Sc. degree from the University of
Southampton, in 2004, and the Honorary Doctor-
ates from the TU of Budapest, in 2009, and the
University of Edinburgh, in 2015. He is a Foreign
Member of the Hungarian Academy of Sciences
and a former Editor-in-Chief of the IEEE PRESS.
He has served several terms as Governor of both

IEEE ComSoc and of VTS. He has published 1900+ contributions at IEEE
Xplore, 19 Wiley-IEEE Press books and has helped the fast-track career of
123 Ph.D. students. Over 40 of them are Professors at various stages of
their careers in academia and many of them are leading scientists in the
wireless industry. He is also a Fellow of the Royal Academy of Engineering
(FREng), of the IET and of EURASIP. (http://www-mobile.ecs.soton.ac.uk,
https://en.wikipedia.org/wiki/Lajos_Hanzo)

VOLUME 8, 2020 115661

http://dx.doi.org/10.1109/RBME.2020.2987975
http://dx.doi.org/10.1016/S0140-6736(20)31142-9

	INTRODUCTION
	SYSTEM MODEL AND PROBLEM FORMULATION
	ADAPTIVE IDENTIFICATION SCHEME
	SIMULATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	BOWEN WANG
	YANJING SUN
	TRUNG Q. DUONG
	LONG D. NGUYEN
	LAJOS HANZO


