A feedback loop between the androgen receptor and 6-phosphogluconate dehydrogenase (6PGD) drives prostate cancer growth

Published in:
eLife

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021 the authors.
This is an open access manuscript distributed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
A feedback loop between the androgen receptor and 6-phosphogluconate dehydrogenase (6PGD) drives prostate cancer growth

Running title: Cooperativity between 6PGD and AR drives prostate cancer growth

Joanna L. Gillis1,2, Josephine A. Hinneh1,2,3, Natalie Ryan1,2, Swati Irani1,2, Max Moldovan2, Lake-Ee Quek4, Raj Shrestha1,5,6,7, Adrienne R. Hanson5, Jianling Xie5, Andrew J. Hoy8, Jeff Holst9, Margaret M. Centenera1,2,7, Ian G. Mills10,11, David J. Lynn2,5, Luke A. Selth1,5,6,7* and Lisa M. Butler1,2,7*

1Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
2South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
3Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
4School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
5Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, SA 5042, Australia.
6Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, SA 5005, Australia.
7Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5005, Australia.
8School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.
9School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
10Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Northern Ireland, UK.
*Corresponding authors:

Luke A. Selth: luke.selth@flinders.edu.au

Lisa M. Butler: lisa.butler@adelaide.edu.au
ABSTRACT

Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity, as revealed by $^{1,2-^{13}}$C$_2$ glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively-collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by ACC1 and mTOR; and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.
Altered cellular metabolism is a hallmark of cancer. Perhaps the best characterised metabolic transformation in malignant cells is the so-called Warburg effect, in which cancer cells favour metabolism via glycolysis rather than the more efficient oxidative phosphorylation (1). While Warburg-like metabolism plays a key role in many malignancies, more recent work has demonstrated the diversity of cancer metabolism and revealed that tissue-of-origin is likely to be the critical determinant of malignant metabolic reprogramming (2). One tissue that exhibits a unique metabolic profile is the prostate (3). Normal prostate epithelial cells exhibit a truncated tricarboxylic acid (TCA) cycle to enable production of citrate, a key component of prostatic fluid, resulting in high rates of glycolysis (2). By contrast, malignant transformation switches metabolism of prostate cells to a more energetically favourable phenotype by re-establishing an intact TCA cycle, whereby citrate is utilised for oxidative phosphorylation and biosynthetic processes such as lipogenesis (4).

A major regulator of the unique metabolism of the normal and malignant prostate is the androgen receptor (AR) (5). AR is a hormone (androgen)-activated transcription factor that regulates expression of a large suite of genes involved in various aspects of metabolism, either directly or indirectly through activation of other master regulators such as SREBP (6, 7). Given its integral metabolic functions, it is unsurprising that AR is the primary oncogenic driver of prostate cancer (PCa) and the major therapeutic target in advanced and metastatic disease. While suppression of AR activity by androgen receptor pathway inhibitors (ARPIs) is initially effective in almost all men, prostate tumours inevitably develop resistance and progress to a lethal disease state known as castration-resistant prostate cancer (CRPC). One key feature of CRPC is the maintenance or re-activation of the AR signalling axis, as revealed by the therapeutic benefit of 2nd-generation ARPIs, such as the AR antagonist enzalutamide, in CRPC (8).
Unfortunately, the overall survival benefits of these newer ARPIs in men with CRPC are in the order of months (9), despite many tumours retaining dependence on AR (10). Collectively, these clinical observations highlight the ongoing dependence of CRPC on AR signalling and the intractable problems associated with therapies that inhibit this pathway.

Direct alterations to AR – including mutation, amplification, alternative splicing and altered ligand availability – have been well characterised as mechanisms of resistance in CRPC (11). However, the extent to which AR-mediated metabolic reprogramming is involved in therapy resistance in CRPC is less well understood. Herein, using an unbiased approach to discover potential PCa survival factors, we identify 6-phosphogluconate dehydrogenase (6PGD) as a novel AR-regulated gene. 6PGD is a key enzyme in the pentose phosphate pathway (PPP) (also referred to as the phosphogluconate pathway or the hexose monophosphate shunt), an alternative metabolic pathway for glucose breakdown. The PPP is comprised of two phases: an irreversible oxidative phase that generates NAPDH and ribulose 5-phosphate (Ru5P); and a subsequent reversible non-oxidative phase in which Ru5P is converted to ribose 5-phosphate (RSP), a sugar precursor for generation of nucleotides (12, 13). NADPH produced by the PPP is used for many anabolic reactions, including fatty acid synthesis, as well as an electron donor to generate reduced glutathione, the major endogenous antioxidant (13). Thus, the PPP is a major regulator of both redox homeostasis as well as anabolic reactions, depending on cellular requirements. We demonstrate that 6PGD plays a key role in PCa growth and survival, at least in part through moderating oxidative stress, and uncover a novel feedback mechanism linking 6PGD and the AR signalling axis that provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.
RESULTS

6PGD is an androgen-regulated gene in prostate cancer

The current clinical ARPIs, such as enzalutamide, do not target the entire repertoire of genes regulated by the AR in prostate tumour cells (14). We hypothesised that ablation of AR expression would be the most appropriate “therapeutic benchmark” to identify the key regulators of tumour cell survival regulated by AR. To qualitatively and quantitatively compare downstream responses to AR ablation and AR antagonism, LNCaP cells were treated with AR siRNA (siAR; i.e. AR ablation) or enzalutamide (Enz; AR antagonism) and subsequently evaluated by RNA-seq. The experimental conditions were optimised to achieve comparable suppression of the canonical AR target, PSA, which is encoded by the KLK3 gene (Figure 1A). Genes affected by siAR were highly concordant with an independent dataset (15) (Figure 1-figure supplement 1A). As expected, most (78%) genes altered by enzalutamide (compared to vehicle control) were also similarly dysregulated by siAR (compared to a control siRNA, siCon) (Figure 1B, Dataset S1). An additional 2,574 genes were altered in their expression by siAR but not enzalutamide (Figure 1B; q < 0.05). On closer examination, many of these genes were altered in their expression by enzalutamide but not sufficiently for them to be identified as statistically significant differentially expressed genes. A further direct statistical comparison of gene expression between the two treatment groups identified that there were 581 genes that were differentially expressed in the siAR treated cells compared to those treated with enzalutamide including, as expected, AR itself (Figure 1B-C, Dataset S1; q < 0.05). These results provide further evidence for the hypothesis that AR ablation is more effective at suppressing the AR-regulated transcriptome compared with AR antagonism, at least in this experimental system.
The gene most significantly associated with AR ablation and not AR antagonism was 6PGD (Figure 1C, Dataset S1), which encodes an enzyme in the PPP. We confirmed that 6PGD expression was down-regulated by AR knockdown but not by acute AR antagonism in multiple PCa cell lines (LNCaP and VCaP) at both the mRNA and protein level (Figure 1D-E; Figure 1-figure supplement 1B-D). Down-regulation of 6PGD was also seen with a second AR siRNA, validating 6PGD as a bona fide target of AR (Figure 1-figure supplement 1B-D). In further support of differential regulation by siAR versus AR antagonism, neither of the newest clinically approved AR antagonists (apalutamide and darolutamide) altered 6PGD protein or mRNA expression (Figure 1-figure supplement 1E-F).

Conversely, AR activation with the androgen 5α-dihydrotestosterone (DHT) stimulated 6PGD expression, and this effect was abolished by co-treatment with siAR (Figure 1F). To determine whether AR inhibition affects 6PGD in more biologically relevant systems, we utilised our patient-derived explant (PDE) model (16). Similar to 2-dimensional PCa cell line culture, we did not observe enzalutamide-mediated changes to 6PGD mRNA expression in the PDE model over a time-frame of 48h, under conditions that caused significant repression of the well-characterised AR target genes KLK2 and KLK3 (Figure 1G). By contrast, longer term (~14 weeks) androgen deprivation therapy in patients caused a significant decrease in 6PGD mRNA levels (Figure 1H). Collectively, these findings reveal 6PGD as a novel AR-regulated factor in both PCa cell lines and clinical samples.

As an initial assessment of the relevance of 6PGD in clinical PCa, we examined its expression in a clinical transcriptomic dataset (The Cancer Genome Atlas (17)) and found that 6PGD mRNA expression was significantly elevated in cancer compared to patient-matched normal tissue and also showed an association with increasing Gleason grade (Figure 1I-J), although it was not associated with biochemical recurrence (data not shown). An association with malignancy was recapitulated at the protein level (Figure 1K) in a distinct set of patient samples for which
proteomes were profiled using mass spectrometry (18). We further examined 6PGD protein expression in prostate tumours by immunohistochemistry (IHC). 6PGD was detected in all tissues that were examined and was predominantly localised to the cytoplasm and peri-nuclear regions of epithelial cells (Figure 1-figure supplement 2). Moreover, we observed a trend towards increasing protein levels in the more aggressive tumours (Figure 1-figure supplement 2). In summary, 6PGD is highly expressed in prostate tumours, suggesting that the PPP may play an important metabolic role in this cancer type.
Figure 1. 6PGD is an AR-regulated gene and is elevated in prostate cancer. (A) Effect of siAR and enzalutamide (Enz) on the AR target, PSA. LNCaP cells were transfected with AR (siAR; 12.5 nM) or control (siCon) siRNA for 48 h or treated with Enz (1 µM) or vehicle (Veh) for 24 h, after which AR and PSA proteins were evaluated by immunoblotting. GAPDH was used as loading control. (B) Numbers of genes differentially expressed (FDR < 0.05) by siAR (vs siCon) or Enz (vs Veh) are shown in the Venn diagram (at top). Below: an alternative analysis identified 581 genes differentially expressed (FDR < 0.05) by siAR versus Enz. (C) Scatterplot of genes affected by siAR and Enz. The 581 genes differentially expressed by siAR versus Enz are shown in blue (n = 72, genes differentially expressed by siAR versus siCon and Enz versus Veh) and yellow (n = 509, genes differentially expressed by siAR versus siCon but not by Enz versus Veh. (D) Validation of 6PGD expression in response to siAR and Enz by RT-qPCR. Gene expression was normalised to GUSB and L19 and represents the mean ± standard error (SE) of three biological replicates; siCon and
Veh were set to 1. Differential expression was evaluated using unpaired t tests (a, p < 0.01; b, p < 0.001; c, p < 0.0001; NS, not significant). (E) 6PGD protein levels in response to siAR and Enz treatments were measured by immunoblotting in LNCaP (left) and VCaP (right) cells. HSP90 and GAPDH were used as loading controls. (F) RT-qPCR of 6PGD expression in response to DHT and siAR in VCaP cells. Cells were transfected with siRNAs for 24 h, and then treated with 1 nM DHT for another 24 h. Gene expression was normalised and graphed as in D. Differential expression was evaluated by t tests (*, p < 0.05). (G) RT-qPCR of KLK2, KLK3 and 6PGD expression in response to Enz treatment (1 µM, 72 h) in patient-derived explants. Gene expression was normalised to GAPDH, PPIA and TUBA1B and is represented as fold-change of enzalutamide relative to vehicle treatment. Differential expression was evaluated by one sample t tests (**, p < 0.01; ***, p < 0.001). (H) 6PGD mRNA expression in prostate tumours pre- and post-androgen deprivation therapy (ADT; GSE48403). A Wilcoxon matched-pairs signed rank test was used to compare expression in the groups. (I) 6PGD expression is elevated in primary prostate cancer. The TCGA dataset comprises 52 patient-matched normal and cancer samples. Boxes show minimum and maximum (bottom and top lines, respectively) and mean (line within the boxes) values. A paired t test was used to compare expression in normal versus cancer. FPKM, fragments per kilobase of exon per million mapped reads. (J) 6PGD expression by Gleason grade in the TCGA cohort. Boxes show minimum and maximum (bottom and top lines, respectively) and mean (line within the boxes) values. Unpaired t tests were used to compare expression between the groups. FPKM, fragments per kilobase of exon per million mapped reads. (K) 6PGD protein expression in clinical prostate samples (benign prostatic hyperplasia (BPH) and tumours) were measured by mass spectrometry. Boxes show minimum and maximum (bottom and top lines, respectively) and mean (line within the boxes) values. An unpaired t test was used to compare expression between the groups.
Figure 1—figure supplement 1. (A) Concordance between our siAR RNA-seq data and an independent dataset, as demonstrated by gene set enrichment analysis (GSEA) (19). RNA-seq data from He and colleagues (15) was kindly provided by Nicholas Mitsiades (Baylor College of Medicine), and genes were ranked by fold-change in siAR treatment versus siControl. Genes down-regulated by siAR versus siControl in our dataset (FDR < 0.01, n = 305) were used as the gene set of interest. Running enrichment scores are plotted (top graph) and normalized enrichment scores (NES) and \(P \) values are indicated. (B) Two distinct AR siRNAs (siAR (1) and siAR (2); 12.5 nM) reduce the expression of 6PGD at the protein level in LNCaP cells. Cells were transfected with 12.5 nM of each siRNA; after 48 h, proteins were extracted and assessed by Western blotting. (C) siAR (2) reduces the expression of 6PGD mRNA in LNCaP cells. Transfection
of siRNAs was performed as in A. Differential expression was evaluated using an unpaired t test (**, p < 0.001). (D) siAR (1) and siAR (2), but not enzalutamide (Enz, 1 uM), reduce the expression of 6PGD mRNA in VCaP cells. Transfection of siRNAs was performed as in A. Cells were treated with DMSO or Enz for 24 h. Differential expression compared to DMSO or siCon was determined using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01). (E-F) Next-generation AR antagonists apalutamide and darolutamide inhibit AR target gene expression at the protein (E) and mRNA (F) level, but do not reduce expression of 6PGD protein or mRNA. Cells were treated for 24 h with the indicated doses of each drug.
Figure 1-figure supplement 2. Representative images of 6PGD immunohistochemistry in patient tumours. Gleason grades are shown. Scale bars represent 100 µm.
SREBP mediates induction of 6PGD downstream of the androgen receptor

AR binds to gene enhancers or promoters to directly regulate transcription (20). However, we found no clear evidence of AR binding sites proximal the 6PGD transcriptional start site in genome-wide DNA binding (ChIP-seq) datasets from tissues and cell lines (Figure 2A and data not shown), suggesting that the AR pathway may indirectly regulate 6PGD expression via another downstream pathway(s) or factor(s). One credible intermediary between AR and 6PGD is sterol regulatory element-binding protein-1 (SREBP1), a transcriptional master regulator of genes with a role in lipid and cholesterol production (21). AR enhances SREBP1 expression and activity in a multifaceted manner, most notably by upregulating the SREBP1 activator SCAP (21) and by activating the mTOR pathway, which in turn leads to elevated SREBP1 expression (22). Additionally, SREBP1 has been proposed to directly regulate 6PGD in mouse adipocytes by direct binding to its promoter (23). We mined ENCODE SREBP1 ChIP-seq data and identified an SREBP1 binding site at the 6PGD promoter in two cancer cell lines, HEPG2 (liver) and MCF7 (breast) (Figure 2B). Regulation of 6PGD by SREBP1 in PCa cells was confirmed by siRNA-mediated knockdown of SREBP1 (Figure 2C). To test whether SREBP1 acts downstream of AR to increase 6PGD expression, we treated LNCaP cells with siSREBP1 or a pharmacological inhibitor of SREBP1 (fatostatin) and then evaluated 6PGD expression in the presence or absence of DHT. Supporting our hypothesis, either knockdown (Figure 2D) or inhibition of SREBP1 antagonised androgen-mediated induction of 6PGD (Figure 2E). We validated this effect in an independent AR-responsive cell line, VCaP (Figure 2D). Collectively, these results reveal the presence of a functional AR-SREBP1-6PGD circuit in PCa cells and implicate SREBP1 as a key mediator of PPP activation by AR.
Figure 2. SREBP mediates induction of 6PGD downstream of the androgen receptor. (A) ChIP-seq data showing AR DNA binding near the 6PGD gene in non-malignant and prostate tumor samples (24) and the LNCaP (25) and VCaP (14) cell line models. The grey box indicates a region +/- 50kb of the 6PGD transcriptional start site. (B) ChIP-seq data showing SREBP1 DNA binding at the 6PGD promoter in HEPG2 and MCF7 cells. Data is from ENCODE (26) (HEPG2: ENCFF000XXR; MCF7: ENCF911YFI). (C) Effect of siSREBP1 on 6PGD protein. LNCaP cells were transfected with siRNA (siSREBP1; 12.5 nM) or control (siCon) for 72 h after which SREBP1 and 6PGD protein levels were evaluated by immunoblotting. GAPDH was used as loading control. (D) Effect of siSREBP1 on 6PGD induction by DHT. LNCaP (left) or VCaP (right) cells were transfected with siRNA (siSREBP1; 12.5 nM) or control (siCon) in charcoal-stripped FBS media for 72 h and then treated with 10 nM DHT.
for another 24 h. SREBP1 and 6PGD protein levels were evaluated by immunoblotting. GAPDH was used as loading control. (E) RT-qPCR of 6PGD expression in response to DHT and Fatostatin in LNCaP cells. Cells were serum starved in charcoal-stripped FBS media for 72 h and then treated with Veh or 10 nM DHT +/- 10 µM Fatostatin for another 24 h. Gene expression was normalised to GUSB and L19 and represents the mean ± standard error (SE) of three biological replicates. Treatment effects were evaluated using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01; ****, p < 0.0001; NS, not significant).
An AR-SREBP1-6PGD axis influences prostate cancer cell growth and activity of the pentose phosphate pathway

Regulation of 6PGD by the AR signalling axis supports other recent reports linking the PPP to PCa (27, 28); and although the role of the PPP in this malignancy is not fully elucidated, it could serve to fuel cell growth and protect against oxidative stress. In support of this, knockdown of 6PGD with two highly effective siRNAs (Figure 3-figure supplement 1) significantly decreased viability (Figure 3A) and increased death (Figure 3B) of LNCaP and VCaP cells. These findings were recapitulated in models of CRPC (V16D) and enzalutamide-resistant CRPC (MR49F) (Figures 3A-B).

In addition to these phenotypic effects, mass spectrometry revealed accumulation of 6PGD’s substrate, 6-phosphogluconate (6-PG) (Figure 3C) in LNCaP cells transfected with siRNA, confirming specificity of the knockdown.

To more directly investigate the involvement of 6PGD, AR and SREBP1 in the PPP, we conducted mass spectrometry tracing experiments with 1,2-^{13}C_2 glucose. After 48 hours of siRNA transfection, 1,2-^{13}C_2 glucose was spiked in to growth media at a ratio of 1:1 with natural glucose and PPP flux was estimated over a period of 15 minutes by measuring the incorporation of ^{13}C into the immediate product of 6PGD’s catalytic activity, ribulose 5-phosphate (Ru5P). A schematic detailing the differential incorporation of ^{13}C isotope into Ru5P by both the oxidative (irreversible; m1 Ru5P) and non-oxidative (reversible; m2 Ru5P) branches of the PPP is shown in Figure 3D.

Isotopic steady-state enrichments of glucose 6-phosphate (G6P) confirmed that approximate 1:1 ratio labelling was achieved consistently between treatment groups (Figure 3E), demonstrating that PPP flux could be inferred from labelled Ru5P without correcting for enrichment bias between treatments. Next, we used the accumulation profiles of m1 (singly labelled) Ru5P (Figure 3F) to estimate the rate of Ru5P production via 6PGD from exogenous glucose (i.e. dilution rate; Figure 3G). These analyses revealed that flux through the oxidative PPP was significantly decreased with...
knockdown of 6PGD, AR and SREBP1 (Figures 3F-G). Interestingly, knockdown of AR and SREBP1 (but not 6PGD) also had a significant impact on flux through the non-oxidative phase of the PPP, as determined by evaluating m2 (doubly labelled) Ru5P production via F6P/GAP (Figures 3F-G).

Collectively, these glucose tracing data show that targeting 6PGD significantly suppresses PPP activity through the oxidative pathway, an effect that is also evident when targeting the upstream signalling factors AR and SREBP1.

Since a key role of the PPP is to regulate intracellular redox state (13), we also measured ROS using a flow cytometric-based assay. Knockdown of 6PGD (and AR) significantly increased levels of intracellular ROS in both androgen-sensitive and CRPC cell line models (Figure 3G). This phenotype could be rescued by the antioxidant Trolox (Figure 3H), verifying the specificity of the assay.
Figure 3. An AR-SREBP1-6PGD axis influences prostate cancer cell growth and activity of the pentose phosphate pathway. (A-B) Knockdown of 6PGD with two distinct siRNAs (si6PGD.1 and si6PGD.2) reduced viability (A) and increased cell death (B) of 4 prostate cancer cell lines, as assessed using Trypan blue exclusion assays. LNCaP and VCaP cells were evaluated 3 days post-transfection; V16D and MR49F cells were evaluated 5 days post-transfection. Error bars are SEM.
of triplicate samples, and are representative of 3 independent experiments. Treatment effects were evaluated using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (C) Knockdown of 6PGD causes accumulation of intracellular 6-PG in LNCaP cells, as determined by mass spectrometry. Results are representative of 2 independent experiments. Error bars are SEM of triplicate samples. Treatment effect was evaluated using an unpaired t test (p < 0.001). Colour key is as in (A). (D) Schematic demonstrating flux of 1,2-13C2 glucose through the PPP and incorporation into Ru5P and R5P. Unlabelled 12C carbon is shown as open circles whereas 13C is shown as filled circles. The oxidative and non-oxidative branches of the PPP are indicated in purple and green, respectively. 6PG, 6-phosphogluconate; E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate; G6P, glucose 6-phosphate; GAP, glyceraldehyde 3-phosphate; R5P, ribose 5-phosphate; Ru5P, ribulose 5-phosphate; S7P, sedoheptulose 7-phosphate; X5P, xylulose 5-phosphate. (E) Isotopic steady-state G6P enrichments of LNCaP cells fed with 1,2-13C2 glucose and natural glucose at 1:1 ratio show control and treatments cells were labelled to a similar extent. Error bars are standard deviation (SD). (F) Accumulation of singly (left, m1) and doubly (right, m2) labelled Ru5P produced via the oxidative and non-oxidative branches, respectively, of the PPP. Error bars are standard deviation (SD). (G) Dilution rate (turnover rate) calculated from the accumulation of singly and doubly labelled Ru5P (data from E) using the continuous stirred-tank reactor (CSTR) equation. For statistical analysis of treatment effects, refer to Materials and Methods (***, p < 0.001; NS, not significant). Error bars are SD. (H) Knockdown of 6PGD and AR causes increased levels of reactive oxygen species (ROS) in LNCaP, V16D and MR49F cells. Data was normalised to siCon, which was set to 100%. Error bars are SEM of triplicate samples. Treatment effects were evaluated using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01). (H) ROS production in LNCaP cells in response to si6PGD is reversed by the antioxidant. Trolox Data was normalised to siCon in the absence of Trolox, which was set to 100%. Error bars are SEM of triplicate samples. Treatment effects were evaluated using ANOVA and Tukey’s multiple comparison tests (*, p < 0.05; **, p < 0.01). Colour key is as in (A).
Figure 3-figure supplement 1. Two distinct 6PGD siRNAs (si6PGD.1 and si6PGD.2) effectively reduce 6PGD expression in LNCaP cells. Cells were transfected with 12.5 nM of each siRNA for 72 h, after which 6PGD mRNA was measured by RT-qPCR (A) or 6PGD protein was measured by immunoblotting (B).
Pharmacological inhibition of 6PGD suppresses prostate cancer growth and increases ROS

Having established that 6PGD is required for efficient activity of the PPP, optimal PCa cell growth and protection against oxidative stress, we evaluated pharmacological targeting of this enzyme as a potential therapeutic strategy. Physcion, a plant-derived anthraquinone, was recently identified as an inhibitor of 6PGD using an in vitro screening assay (29). Treatment of LNCaP cells with physcion dose-dependently inhibited growth and elicited death (Figure 4-figure supplement 1A-B).

However, low solubility limits the pre-clinical and clinical utility of this compound. Therefore, we focussed our efforts on a derivative of physcion, S3, which has substantially improved solubility (~50-fold: 1 mM physcion c.f. 50 mM S3 in DMSO) (29). Similarly to physcion, S3 reduced LNCaP cell viability and caused cell death (Figure 4A-B). Cell kill was at least partly mediated via apoptosis, as demonstrated by flow cytometric-based Annexin/7-AAD assay (Figure 4C).

Importantly, S3 increased levels of cellular ROS in a dose-dependent manner (Figure 4D), strengthening the link between the PPP and control of redox homeostasis. S3 was active in a range of PCa models, including VCaP and models of CRPC (V16D and MR49F) (Figure 4E-F). The efficacy of S3 in MR49F cells was particularly notable, since this aggressive LNCaP-derived line is resistant to the 2nd-generation AR antagonist enzalutamide (30). S3 was also growth inhibitory in AR-negative PC3 cells, although this line was less sensitive than AR-driven models (Figure 4-figure supplement 1C). To assess the potential of targeting 6PGD with S3 in a more clinically-relevant setting, we exploited the PDE model (16). Notably, S3 reduced proliferation, as measured by IHC for Ki67, in all tumours (n = 9) that were evaluated (Figure 4G).
Figure 4. Pharmacological inhibition of 6PGD suppresses prostate cancer growth and increases ROS. (A-B) The 6PGD inhibitor, S3, dose dependently decreased viability (A) and increased death (B) of LNCaP cells, as determined by Trypan blue exclusion assays. Dead cells were counted at day 6. Data represents the mean ± SE of triplicate samples and are representative of 3 independent experiments. Growth (day 6) and death for each dose was compared to vehicle using ANOVA and Dunnett’s multiple comparison tests (****, p < 0.0001). Veh, vehicle. (C) S3 causes apoptosis of LNCaP cells, as determined using flow cytometry-based Annexin V/7-AAD assays. Cells were assessed 72 h after treatment. Data represents the mean ± SE of triplicate samples and are representative of 4 independent experiments. Dead cell proportions were compared to vehicle using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01; ***, p < 0.0001). (D) S3 causes increased levels of reactive oxygen species (ROS) in LNCaP cells. Data was normalised to Veh, which was set to 100%. Effects were evaluated using ANOVA and Dunnett’s multiple comparison tests (****, p < 0.0001). (E) S3 dose dependently decreased viability (left) and increased death (right) of VCaP cells, as determined by Trypan blue exclusion assays. Live and dead cells were counted 4 days after treatment. Data represents the mean ± SE of triplicate samples and are representative of 3 independent experiments. Effects were evaluated using ANOVA and Dunnett’s multiple comparison tests (**, p < 0.01; ***, p < 0.001; ****, p < 0.0001). (F) S3 suppresses the growth of CRPC cells (V16D) and enzalutamide-resistant CRPC cells (MR49F), as determined using CyQuant Direct Cell Proliferation Assay. Fluorescence from day 0...
was set to 100%. Data represents the mean ± SE of triplicate samples and are representative of 2
independent experiments. Effects (at day 5) were evaluated using ANOVA and Dunnett’s multiple
comparison tests (*, p < 0.05; ****, p < 0.0001). (G) S3 inhibits the proliferation of prospectively
collected human tumours grown as patient-derived explants (PDEs). PDEs (from n = 9 patients)
were treated for 72 h. Ki67 positivity, a marker of proliferation, was determined using IHC. Boxes
show minimum and maximum (bottom and top lines, respectively) and mean (line within the
boxes) values. A paired t test was used to compare Ki67 positivity in treated versus control
samples (***, p < 0.001).
Figure 4-figure supplement 1. Physcion effectively suppresses growth (A) and causes death (B) of LNCaP cells. Live and dead cells were measured (A, at the indicated time-points; B, at day 6) using Trypan blue exclusion assays. Physion’s effects on growth and death compared to vehicle (Veh) were determined using ANOVA and Dunnett’s multiple comparison tests (***, p < 0.0001; NS, not significant). (C) Effect of S3 on growth of PC3 cells. Cell viability assessed by CyQuant Direct Cell Proliferation Assay. Fluorescence at day 0 was set to 100%. The effect of S3 on growth compared to vehicle (Veh) was determined using ANOVA and Dunnett’s multiple comparison tests; only 20µM and 40µM doses were significantly different to Veh (****, p < 0.0001).
In addition to directly promoting cell growth and survival via anabolism and limiting oxidative stress, the PPP has been reported to suppress AMPK activity by inhibiting its phosphorylation (31), thereby activating key anabolic pathways mediated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin (mTORC1) (Figure 5A). Accordingly, we examined whether these pathways are altered in PCa cells in response to 6PGD inhibition. S3 treatment activated AMPK and repressed ACC1 and mTOR pathways in a dose-dependent manner in multiple PCa cell lines, as revealed by increased levels of phospho-AMPK (pAMPK) and phospho-ACC1 (pACC1) and decreased levels of phospho-S6K (pS6K) / phospho-S6 (pS6) (Figure 5B-C). Knockdown of PGD also repressed ACC1 and mTOR signalling (Figure 5-figure supplement 1), verifying that the effects we observed with the inhibitor were on-target. More importantly, we recapitulated the impact of S3 on mTOR signalling in our tumour PDE system (Figure 5C). Collectively, these results reveal that PPP is an upstream regulator of AMPK, ACC1 and mTOR in prostate cancer; therefore, targeting 6PGD could impede multiple cancer-promoting metabolic pathways.
Figure 5. Targeting 6PGD activates AMPK and represses ACC1 and mTOR pathways. (A) Schematic showing key metabolic pathways downstream of the PPP. By suppressing AMPK signalling, the PPP can enhance the activity of ACC1 and mTOR and subsequently various growth-promoting anabolic processes. (B) S3 activates AMPK and inhibits ACC1 and mTOR signalling. LNCaP (left) and VCaP (right) cells were treated for 24 h with the indicated doses of S3 prior to analysis of indicated proteins by immunoblotting. (C) S3 inhibits mTOR signalling, as indicated by reduced pS6, in patient-derived explants (PDEs). PDEs (from n = 11 patients) were treated for 72 h. The levels of pS6 were measured using IHC. Boxes (graph on left) show minimum and maximum (bottom and top lines, respectively) and mean (line within the boxes) values. A paired t test was used to compare Ki67 positivity in treated versus control samples (***, p < 0.001). Representative IHC images are shown on the right (scale bars represent 50 µm).
Figure 5-figure supplement 1. 6PGD knockdown inhibits ACC1 and mTOR signalling, as determined by increased levels of pACC1 and decreased levels of pS6/pS6K, respectively. VCaP cells were transfected with 2 distinct 6PGD siRNAs (siPGD.1 and siPGD.2) for 48 h prior to analysis of indicated proteins by immunoblotting.
A feedback loop between AR and 6PGD supports combinatorial targeting of these factors

During our investigations into the mode of action of S3 and physcion, we noted that both agents reduced steady-state levels of AR protein in models of castration-sensitive and castration-resistant prostate cancer (Figure 6A; Figure 6-figure supplement 1A). This observation suggested that targeting 6PGD would inhibit the AR signalling axis. We validated this hypothesis by demonstrating that S3 and physcion dose-dependently reduced the expression of AR target genes in multiple cell line models (Figures 6A-B, Figure 6-figure supplement 1B-D) and, importantly, in our clinical PDE tissues (Figure 6C). Although 6PGD inhibitors significantly decreased AR protein, they did not alter AR transcript levels (Figure 6B; Figure 6-figure supplement 1B-D), indicative of a post-transcriptional mechanism. Since the ubiquitin-proteasome system (UPS) plays an integral role in AR protein stability (32), we hypothesised that 6PGD inhibition could enhance AR ubiquitylation and turnover. To test this idea, LNCaP cells were treated with a combination of S3 and the proteasome inhibitor MG132, after which the levels of total and ubiquitylated AR were measured by Western blotting. In the presence of MG132, accumulation of ubiquitylated AR as well as the total cellular ubiquitylated protein pool was evident in S3 treated cells (Figure 6D). Moreover, in the presence of MG132, S3 did not reduce total AR protein levels beyond that caused by MG132 alone (Figure 6D). Collectively, these findings indicate that inhibition of 6PGD by S3 enhances turnover of AR by the UPS.

Our results demonstrated that AR induces 6PGD gene expression (via SREBP1) and that 6PGD can enhance the stability of AR protein, collectively revealing a positive feedback loop between androgen signalling and the PPP. The co-dependency of these pathways led us to speculate that a combinatorial targeting approach could be an effective PCa therapy. In support of this hypothesis, enzalutamide and S3 exhibited an additive effect in androgen-sensitive (VCAp) and CRPC (V16D)
Collectively, these findings highlight the complex interplay between AR and 6PGD in PCa cells and identify a potential new combinatorial therapy.

Figure 6. Targeting the AR/PGD feedback loop in prostate cancer. (A) Protein levels of AR and its target in response to S3 (24 h of treatment) and physcion (48 h of treatment) in LNCaP cells, as determined by immunoblotting. HSP90 was used as a loading control. (B) AR target gene expression in response to S3 treatment in LNCaP cells, as determined by RT-qPCR. Gene expression was normalised to GUSB and L19 and represents the mean ± standard error (SE) of
three biological replicates; Veh was set to 1. Differential expression was evaluated using ANOVA and Dunnett’s multiple comparison tests (a, p < 0.01; b, p < 0.001; c, p < 0.0001; NS, not significant). **(C)** S3 reduces AR protein levels in PDEs. AR levels in tumours from 14 patients were measured by IHC (left). Boxes show minimum and maximum (bottom and top lines, respectively) and mean (line within the boxes) values. A paired t test was used to compare AR levels in treated versus control samples (***, p < 0.001). Representative IHC images are shown on the right (scale bars represent 50 µm). **(D)** S3 enhances AR ubiquitylation. LNCaP cells were treated with indicated concentrations of S3 ± 10 µM MG132, or 10 µM MG132 alone, for 24 h prior to AR immunoprecipitation. Both immunoprecipitates and total protein inputs (1/30 of immunoprecipitates) were subjected to immunoblotting analysis for the indicated proteins. **(E-F)** Anti-cancer effects of combined Enz and S3 treatment in VCaP cells. Live (E) and dead (F) cells were measured by Trypan blue exclusion assays 4 days after treatment. Data represents the mean ± SE of triplicate samples and are representative of 3 independent experiments. **(G)** Anti-cancer effects of combined Enz and S3 treatment in V16D cells. Live cells (F) were measured as in D after 3 days of treatment; data are representative of 3 independent experiments.
Figure 6-figure supplement 1. (A) S3 decreases AR and PSA protein levels in MR49F (left) and V16D (right) cells. Protein was extracted from cells at 24h and assessed by Western blotting. HSP90 is shown as a loading control. EnzR, enzalutamide-resistant. (B-C) S3 suppresses AR target gene expression in VCaP (B) and V16D (C) cells after 24 h treatment. Expression is shown relative to GUSB and L19; vehicle (Veh) was set to 1. (D) Physcion suppresses AR target gene expression in LNCaP cells after 24 h treatment. Expression is shown relative to GUSB and L19. Differential
expression compared to vehicle (B-D) was determined using ANOVA and Dunnett’s multiple comparison tests (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; NS, not significant).

DISCUSSION

Prostate cancer possesses a unique androgen-regulated metabolic profile, characterised by high rates of lipogenesis and oxidative phosphorylation compared to the normal state. More recently, altered glucose metabolism has emerged as another feature of this common malignancy (3). In this study, we identified 6PGD as an AR-regulated gene that may not be effectively suppressed in tumour cells by current ARPIs such as enzalutamide. 6PGD is the third enzyme in a critically important glucose metabolic pathway, the PPP. Our data reveal that a positive feedback loop between AR and 6PGD enhances growth and survival of tumour cells. This work not only expands our knowledge of the interplay between hormones and glucose metabolism in PCa but also exposes a new therapeutic vulnerability.

Our identification of 6PGD as an androgen-regulated PPP enzyme lends further support to this pathway being a key metabolic target of androgens in prostate cancer. Frigo and colleagues recently demonstrated that G6PD, the rate-limiting enzyme of this pathway, is also transcriptionally and post-transcriptionally regulated by AR signalling (27). Moreover, an enzyme that regulates the non-oxidative phase of the PPP, transketolase-like protein 1 (TKTL1), increases in expression during PCa progression, being highest in metastatic tumours (33). Such multi-level control of a single pathway emphasises the relevance of increased PPP flux in PCa. It is notable that the androgen-regulated enzymes of this pathway, 6PGD and G6PD, both catalyse steps in the NADPH-generating oxidative phase of the PPP; this represents another mechanism underlying hormonal protection against oxidative stress in the prostate.
Despite its role as a key downstream effector of androgen-regulated cellular metabolism, our data do not support a direct mode of transcriptional regulation of 6PGD by AR. Rather, AR harnesses another key metabolic transcription factor, SREBP1, to drive expression of 6PGD and hence activity of the PPP. SREBP1, a transcription factor that regulates genes involved in fatty acid and cholesterol biosynthesis and homeostasis that is activated and upregulated by AR signalling (21, 22), is itself a therapeutic target in prostate cancer (34). Some metabolic genes appear to be directly co-regulated by AR and SREBP1 based on the binding of both factors to cis-regulatory elements (e.g. FASN, (35, 36)). However, our observation that siRNA or pharmacological targeting of SREBP1 blocks androgen-mediated induction of 6PGD suggests that SREBP1 transcriptionally activates this gene downstream of AR. Further supporting the relevance of a closely interlinked AR/SREBP1/6PGD pathway in prostate cancer was our observation that targeting any one of these 3 factors had a pronounced impact on glucose flux through the oxidative branch of the PPP. Interestingly, knockdown of AR and SREBP1 also had a profound impact on the non-oxidative branch of the PPP. Although the precise mechanism(s) underlying this observation are not known, given their expansive and diverse roles in PCa cell metabolism it is plausible that AR and SREBP1 regulate other metabolic factors that stimulate the non-oxidative PPP. Importantly, regulation of the PPP by AR-SREBP1-6PGD has a broader clinical implication; therapeutic strategies that effectively suppress this pathway would impinge on the activity of 3 important oncogenic drivers with multifaceted cancer-promoting activities.

We propose that AR-mediated activation of the PPP in PCa would yield additional advantages beyond the generation of key substrates for nucleic acid anabolism and the antioxidant NADPH. Most notably, PPP suppression of AMPK, itself a hub for cellular metabolic and growth control, results in augmentation of ACC1 and mTOR activity (37). The importance of both ACC1 and mTOR in enabling PCa cells to meet their energy demands is increasingly well recognised; indeed, both of
these factors are key mediators of *de novo* lipogenesis, high levels of which are a hallmark of prostate tumours (38). Mechanistically, it has been reported that 6PGD-mediated production of Ru5P inhibits AMPK by disrupting the LKB1 complex, leading to activation of ACC1 and lipogenesis (29). Thus, in addition to its more direct impact on lipogenesis by regulation of lipid metabolic genes (38), our data reveal that AR also supports this metabolic process by activation of 6PGD and the PPP.

In addition to regulation of 6PGD by the androgen signalling axis, our work also revealed that 6PGD can act in a reciprocal manner to maintain AR protein levels and activity. Indeed, S3 was as effective as enzalutamide at inhibiting the expression of some AR target genes, albeit at higher doses. We propose that this positive feedback would serve as an effective circuit to fuel PCa growth and enhance survival. Mechanistically, we demonstrated that targeting of 6PGD results in increased ubiquitylation of AR, explaining why it is decreased at the protein level. Precisely how 6PGD inhibition regulates processing of AR by the ubiquitin-proteasome system is unclear. However, we note that S3 treatment increased ROS levels and activated AMPK signalling, both of which have been shown to promote AR degradation/turnover (39, 40). Thus, we propose that 6PGD regulation of AR protein ubiquitylation, and hence stability, likely occurs at multiple levels. More broadly, unravelling the complexity of the AR/6PGD feedback loop will be important to effectively harness co-targeting strategies.

Given the important role of the PPP in PCa growth and survival, established by this study in addition to earlier work (27, 28), targeting this pathway as a possible therapeutic strategy has merit. We investigated this concept using two inhibitors of 6PGD, physcion (1,8-dihydroxy-3-methoxy-6-methyl-anthraquinone; emodin-3-methyl ether) and S3 (1-hydroxy-8-methoxy-Anthraquinone). Physcion (also known as parietin; PubChem CID 10639) was the most active
inhibitor of 6PGD activity in an in vitro assay amongst a library of ~2,000 small molecules (29). A plant-derived anthraquinone, physcion was initially investigated for its anti-microbial and anti-inflammatory activities (41). More recently, there has been significant interest in its repurposing as an oncology agent since it has been reported to possess broad anti-cancer activity (i.e. suppression of growth and migration, induction of apoptosis) in leukemia, colorectal, cervical and breast cancer cells, amongst others (29, 42-45). However, while physcion has achieved impressive anti-cancer results in some pre-clinical studies, its poor pharmacological attributes, including low solubility, may impede efforts to progress it to the clinic (41). Therefore, we also tested the physcion derivative compound S3, which has been reported to possess improved pharmacological attributes (29). Our results represent the first evaluation of physcion and S3 in PCa and collectively highlight the potential of therapeutically targeting 6PGD in this disease. Indeed, our data suggest that S3/physcion would possess multi-pronged anti-tumour activity in PCa by: inhibiting oncogenic metabolism, including lipogenesis (i.e. activation of AMPK and suppression of ACC1 and mTOR); increasing levels of ROS, resulting in oxidative stress and lipid peroxidation; and finally, suppressing the levels and activity of AR, the primary oncogenic driver of this disease. Importantly, a Phase I trial reported that physcion was well tolerated with low toxicity (46), supporting its future clinical application.

Since AR-targeted therapies are not curative, there is intense interest in identifying combination therapies that would improve patient outcomes. Our work provides a solid rationale for co-targeting of AR and 6PGD; indeed, we observed synergistic effects of enzalutamide and S3 in PCa models. Moreover, the existence of an AR:6PGD feedback loop enhances the appeal of such a combinatorial strategy. Although we acknowledge that physcion and S3 may not be useful clinical agents due to pharmacological issues, we expect that the future development of therapies that
effectively suppress activity of 6PGD, or other components of the PPP, could have a major impact on PCa patients.
MATERIALS AND METHODS

Reagents

Chemicals, solvents and solutions, including physcion (C_{16}H_{12}O_{5}; 1,8-dihydroxy-3-methoxy-6-methyl-anthraquinone; emodin-3-methyl ether) and S3 (C_{15}H_{10}O_{4}; 1-hydroxy-8-methoxy-Anthraquinone), were obtained from Sigma-Aldrich (St Louis, MO, USA), except for: enzalutamide (Selleck Chemicals; Houston, TX, USA); apalutamide (ARN-509), darolutamide (ODM-201) and Trolox (Sapphire Bioscience; Redfern, NSW, AUS). All chemicals/reagents were dissolved in dimethyl sulfoxide (DMSO) except dihydrotestosterone (DHT), which was dissolved in ethanol.

Cell line models

LNCaP (RRID:CVCL_1379), VCaP (RRID:CVCL_2235), PC3 (RRID:CVCL_0035) and 22Rv1 (RRID:CVCL_1045) human prostate carcinoma cells were obtained from the American Type Culture Collection (ATCC, MD, USA). Dr. Amina Zoubeidi (Vancouver Prostate Centre, Vancouver, Canada) kindly provided LNCaP-V16D (castration-resistant, enzalutamide-sensitive) and LNCaP-MR49F (castration-resistant, enzalutamide-resistant) human prostate cancer cells (30). LNCaP, 22Rv1, V16D and MR49F cells were maintained in RPMI-1640 containing 10% FBS; the media for growth of MR49F cells was additionally supplemented with 10 µM enzalutamide. VCaP cells were maintained in Dulbecco’s Modified Eagle’s Medium containing 10% FBS, 1% sodium pyruvate, 1% MEM non-essential amino acids, and 0.1 nM 5α-dihydrotestosterone (DHT). PC3 cells were maintained in RPMI-1640 containing 5% FBS. All cell lines were authenticated using short tandem repeat profiling in 2018/2019 by ATCC or CellBank Australia, and undergo regular testing for mycoplasma contamination.

Transfection of prostate cancer cell lines
Gene-specific knockdown was achieved by reverse-transfection of PCa cell suspensions (total 5 × 10^5 cells) with 12.5 nM siRNA in 6 well plates using RNAiMAX transfection reagent (Life Technologies; Thermo Fisher Scientific, Scornsby, VIC, AUS), according to the manufacturer’s instructions. The siRNAs used in this study were: AR (Silencer Select #4390824/5; s1538, s1539 and custom #4399665; s551824 (Sense: GAACUUCGAUGAACUACAtt, Antisense: UGUAGUUCAUUCAGAAGUUCat), 6PGD (Silencer Select #4427038; s10394 and 10395; Thermo Fisher Scientific), SREBP1 (ON-TARGETplus 6720; Dharmacon) and Negative Control 2 #AM4637 (Ambion; Thermo Fisher Scientific).

Quantitative real-time PCR

Reverse transcription of (1 µg) and qPCR was done as described previously (47). GeNorm (48) was used to identify suitable reference genes: gene expression in cell lines is presented relative to L19 and GUSB, and gene expression in prostate tumour explants is presented relative to GAPDH, PPIA and TUBAIB. Primers sequences are provided in Supplementary File 1.

Immunoblotting

Whole cell lysates were prepared using RIPA buffer containing cOmplete ULTRA protease and phosphatase inhibitor (Cell Signaling Technology (CST), Danvers, MA, USA) and Western blotting was performed as described previously (49). A list of primary and secondary antibodies used in the study is provided in Supplementary File 2.

RNA sequencing (RNA-seq)

LNCaP cells were seeded at density 5 × 10^5 cells in 6-well dishes (Corning) and treated with 1 µM enzalutamide (or 0.1% DMSO control) or transfected with 12.5 nM AR siRNA (or scrambled siRNA control). Each treatment comprised 4 replicates. After 24 h, the cells were collected in Trizol (4
replicates, for RNA analysis) or RIPA Buffer + protease inhibitors (2 replicates, for protein analysis).

RNA extractions were completed using RNeasy Mini spin columns (Qiagen, Chadstone, VIC, AUS), according to the manufacturer’s instructions. RNA was eluted in 40 µl RNase-free H₂O. RT-qPCR and western blotting were performed to verify the expected response of known AR-regulated proteins and genes, PSA/KLK3 and FKBP51/FKBP5. Subsequently, libraries were generated using 800 ng of RNA and NEXTflex Rapid Illumina Directional RNA-Seq Library Prep Kits (Bio Scientific, Kirrawee, NSW, AUS), according to the manufacturer’s instructions. Sequencing was carried out at the South Australian Health and Medical Research Institute Genomics Facility using an Illumina NextSeq 500 (single read 75bp v2 sequencing chemistry). The quality and number of reads for each sample were assessed with FastQC v0.11.3 (50). Adaptors were trimmed from reads, and low-quality bases, with Phred scores < 28, were trimmed from ends of reads, using Trimgalore v0.4.4 (51). Trimmed reads of <20 nucleotides were discarded. Reads passing all quality control steps were aligned to the hg38 assembly of the human genome using TopHat v2.1.1 (52) allowing for up to two mismatches. Reads not uniquely aligned to the genome were discarded. HTSeq-count v0.6.1 (53) was used with the union model to assign uniquely aligned reads to Ensembl Hg38.86-annotated genes. Data were normalized across libraries by the trimmed mean of M-values (TMM) normalization method, implemented in the R v3.5.0, using Bioconductor v3.6 EdgeR v3.20.9 package (54). Only genes expressed at count-per-million value greater than 10 in at least 2 samples per group were retained for further analysis. Differential expressed genes were selected based on the robust version of the quasi-likelihood negative binomial generalized log-linear model (55), with false discovery rate (FDR) set at 0.05. RNA-seq data are available through NCBI’s Gene Expression Omnibus (GSE152254).

Cell growth and apoptosis assays
Cell growth curves were done using Trypan blue exclusion and manual counting of cells, as described previously (56). Cell viability was also determined by CyQuant™ Assay Cell Proliferation Assays (Thermo Fisher Scientific), according to the manufacturer’s instructions. Apoptosis was measured by collecting cells in FACS binding buffer (47 ml of HANKS buffered saline, 500 µL of Herpes solution and 2.5 mL of 100 mM CaCl$_2$), staining with Annexin V PE (BD Pharmagen™, BD Biosciences, CA, US and 1 mM 7-Aminoactiomycin D (Thermo Fisher Scientific) and analysis by Flow Cytometry using a BD LSRFortessa X20.

Metabolomics

To measure 6-PG abundance (Figure 3C), LNCaP cells were seeded at a density of 5×10^5 cells per well into Nunclon D multi-dishes with poly-lysine coating (Thermo Fisher Scientific), with or without transfection with siPGD (Silencer Select s10394). At time of collection, cells were washed twice with 0.9% w/v NaCl, scraped in MeOH:H$_2$O (1:1). Chloroform was added prior to vortexing, centrifuging and collection of the aqueous layer. The aqueous layer was dried in a Savant SpeedVac (Thermo Fisher Scientific) without heat. Dried samples were resuspended in 60 µL LC-MS H$_2$O, centrifuged at 15,000 x g at 4°C for 10 min, and supernatant transferred into HPLC vials for LCMS analysis. Samples were kept at 4°C on the autosampler tray. Glycolytic and pentose-phosphate pathway metabolites were measured using 1260 Infinity (Agilent)-QTRAP5500 (AB Sciex) LC-MS/MS system. Analyte separation was achieved using a Synergi 2.5 um Hydro-RP 100A LC Column (100 x 2mm) (Phenomenex) at ambient temperature. The pair of buffers used were 95:5 (v/v) water:acetonitrile containing 10 mM tributylamine and 15 mM acetic acid (Buffer A) and 100% acetonitrile (Buffer B) flowed at 200 µL/min; injection volume was 5 µL. Scheduled MRM acquisition was performed in negative mode (350 °C, -4500 V). Raw data was extracted using MSConvert (57) and in-house MATLAB scripts.
Metabolic flux analysis

LNCaP cells were seeded at a density of 7.5×10^5 cells per well into Nunclon D multi-dishes with poly-lysine coating (Thermo Fisher Scientific), with or without transfection of siRNAs (siAR, Silencer Select s1539; siPGD, Silencer Select s10394; siSREBF1, ON-TARGETplus 6720). For the 13C-labelled glucose time-course experiment, cells were cultured for 46 h before adding fresh media for a further 2 h and then spiking in $^{1,2-13}$C$_2$ glucose at a final concentration of 11 mM (1:1 with natural glucose). Incorporation of the labelled glucose was allowed to proceed for 0, 10, 60, 120, 240, 480 or 900 seconds. This spike-in strategy (as opposed to media exchange) enabled a rapid time-course with minimal disruption to glycolytic fluxes. Experiments were stopped by quenching the cells with ice-cold methanol:H$_2$O (1:1) and placing plates at -20°C (prior to cell scraping). After completion of the time-course, cell slurries in methanol:H$_2$O were collected by scraping and transferred into microfuge tubes. Samples were identically processed and assayed as described for metabolomics samples, with the exception that MRMs were configured to quantify mass isotopologues of glycolytic and PPP intermediates. Fluxes through the oxidative and non-oxidative branches of PP pathway were estimated using the accumulation/dilution rate of m_1 and m_2 isotopologues of Ru5P. Assuming steady-state metabolism, the dilution rate (D) of Ru5P was calculated using the CSTR (continuous stirred tank reactor) equation $m(t) = m_{\text{maximum}} \cdot (1 - e^{-D \cdot t}) + m_{\text{initial}}$, with m representing Ru5P mass isotopologues m_1 and m_2 datapoints generated from the time-course experiment. D was estimated using a least-squares Monte-Carlo fitting script in MATLAB. Since a Monte-Carlo procedure was used to simulate dilution rates, empirical P values were calculated using the equation: $p=(r+1)/(n+1)$ (58), where r is the number of instances the null hypothesis (H_0: $D - D_{\text{siCON}} \geq 0$) is true and n is the number of simulated replicates ($n = 1000$).

Reactive oxygen species (ROS) assays
Cellular ROS levels were measured using CellROX™ Orange Flow Cytometry Assay Kits (Life Technologies). Briefly, 24 h post-seeding (5 × 10^5 cells per well, 6-well plate), the cells were treated with or without antioxidant (0.5 mM Trolox) and left to incubate for the indicated time (siRNA, 48 h; S3, 72 h). Cells were stained with CellROX Orange and SYTOX Red Stain and analysed by Flow Cytometry (10-30,000 cells/sample) using a BD LSRFortessa X20.

Ex vivo culture of human prostate tumours

Prostate cancer tissue was obtained with informed written consent through the Australian Prostate Cancer BioResource from men undergoing radical prostatectomy at St Andrew’s Hospital (Adelaide, Australia). Ethical approval for the use of human prostate tumours was obtained from the Ethics Committees of the University of Adelaide (Adelaide, Australia; approval H-2012-016) and St Andrew’s Hospital (Adelaide, Australia). All experiments were performed in accordance with the guidelines of the National Health and Medical Research Council (Australia). The 8 mm core of tissue was dissected and prepared for ex vivo culturing as described previously (59). Tissues were treated with AR antagonist 10 µM enzalutamide or 40 µM S3 for 72 h. At the time of collection, the tissues were preserved in RNAlater (Invitrogen; Thermo Fisher Scientific) or formalin-fixed then paraffin embedded.

Evaluation of AR ubiquitylation

LNCaP cells (1.5×10^6 cells per 6 cm plate) were treated with indicated concentrations of S3 ± 10 µM MG132, or 10 µM MG132 alone, for 24 h. Cells were lysed in RIPA lysis buffer. After centrifugation for 10 min at 16,000g, supernatants were incubated with 0.2 µg anti-AR antibody (Santa Cruz Biotechnology, sc-7305; RRID:AB_626671) for 16 h at 4°C with constant rotation, followed by incubation with 20 µl protein G Sepharose beads (Thermo Fisher) for a further period.
of 2 h at 4°C with constant rotation. Beads were washed twice with RIPA lysis buffer and then resuspended in 2× Laemmli sample buffer before samples were assessed by Western blotting.

Immunohistochemistry (IHC)

Prostate cancer explant tissue sections were evaluated for target antigens 6PGD, Ki67 and pS6 (Ser235/236) by IHC as described previously (59). The antibodies used are shown in Supplementary File 2. An automated staining protocol (U OptiView DAB IHC v6 (v1.00.0136)) using the Ventana BenchMark ULTRA IHC/ISH Staining Module (F Hoffmann-La Roche Ltd, Switzerland) was used for the detection of AR. Quantitative image analysis for AR and pS6 (Ser235/236) was completed using FIJI software (ImageJ) (http://fiji.sc/Fiji version 1.52p). Briefly, images (obtained from NDP viewer version 2.7.52; Hamamatsu Photonics K.K, Hamamatsu City, Japan) were imported and converted into three panels using the **Colour Deconvolution** plug-in and vector hematoxylin and DAB staining (HDAB) commands. The **Adjust Threshold** plug-in was used on the DAB-only images to measure % Area (Positivity) and Reciprocal Intensity (R.I). The final DAB intensity values were calculated by subtracting R.I from Maximal Intensity (255) and multiplying by % Area (Positivity). Values from 20-70 images per treatment were measured and R.I was kept constant for each patient.

Statistical analysis

Data are displayed as the mean; error bars are standard error. Differences between groups were determined using GraphPad Prism with t tests or one-way ANOVA (with Tukey or Dunnett post hoc tests), as indicated in the figure legends. A \(P \) value \(\leq 0.05 \) was considered statistically significant.

SUPPLEMENTARY FILES:

Supplementary File 1. Primers used for quantitative Reverse Transcription PCR (qRT-PCR).
Supplementary File 2. Antibodies (primary and secondary) used for Western blotting and immunohistochemistry (IHC).

ACKNOWLEDGEMENTS

We acknowledge expert assistance from Deanna Miller, Kayla Bremert, Madison Helm, Samira Khabbazi, Scott Townley, Zeyad Nassar, Elizabeth Nguyen, Shadrack M. Mutuku, Courtney Moore, Mark Van der Hoek, Randall Grose, Bianca Varney and Michelle van Geldermalsen. RNA-seq was performed at the South Australian Health and Medical Research Institute (SAHMRI) Genomics Facility. Flow cytometry analysis was performed at SAHMRI in the ACRF Cellular Imaging and Cytometry Core Facility, which is generously supported by the Australian Cancer Research Foundation, Detmold Hoopman Group and Australian Government through the Zero Childhood Cancer Program. Metabolomics was facilitated by access to Sydney Mass Spectrometry, a core research facility at the University of Sydney. LNCaP-V16D and LNCaP-MR49F cells were a kind gift from Dr. Amina Zoubeidi (Vancouver Prostate Centre, Vancouver, Canada). The authors are grateful to the study participants, as well as the urologists, nurses and histopathologists who assisted in the recruitment and collection of patient information and pathology reports through the Australian Prostate Cancer BioResource.

This work was supported by a grant from Cancer Australia (ID 1138766 to LMB, DJL, MMC, IGM). The research programs of LMB and LAS are supported by the Movember Foundation and the Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award. LMB and LAS are supported by Principal Cancer Research Fellowships awarded by Cancer Council’s Beat Cancer project on behalf of its donors, the State Government through the Department of Health.
and the Australian Government through the Medical Research Future Fund (PRF1117 and PRF2919).

COMPETING INTERESTS

The authors declare no competing interests.

REFERENCES

