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ABSTRACT
Background: Higher flavonoid intakes are hypothesized to confer protection against type 2 diabetes mellitus.

Objectives: We aimed to 1) investigate associations between flavonoid intakes and diabetes, 2) examine the mediating

impact of body fat, and 3) identify subpopulations that may receive the greatest benefit from higher flavonoid intakes in

participants of the Danish Diet, Cancer, and Health Study followed up for 23 y.

Methods: Cross-sectional associations between baseline flavonoid intake, estimated using FFQs and the Phenol

Explorer database, and body fat, estimated by bioelectrical impedance, were assessed using multivariable-adjusted

linear regression models. Nonlinear associations between flavonoid intake and incident diabetes were examined using

restricted cubic splines with multivariable-adjusted Cox proportional hazards models.

Results: Among 54,787 participants (median age: 56 y; IQR: 52–60 y; 47.3% men), 6700 individuals were diagnosed

with diabetes. Participants in the highest total flavonoid intake quintile (median, 1202 mg/d) had a 1.52 kg lower body fat

(95% CI: –1.74, –1.30 kg) and a 19% lower risk of diabetes (HR: 0.81; 95% CI: 0.75, 0.87) after multivariable adjustments

and compared with participants in the lowest intake quintile (median: 174 mg/d). Body fat mediated 57% (95% CI: 42,

83%) of the association between flavonoid intake and incident diabetes. Of the flavonoid subclasses, moderate to high

intakes of flavonols, flavanol monomers, flavanol oligo + polymers, and anthocyanins were significantly associated with

a lower risk of diabetes. Although associations were not modified by sex, smoking status, BMI, or physical activity

(Pinteraction > 0.05 for all), findings on an absolute scale suggest that those at a higher risk (those with obesity) may

benefit the most from a higher flavonoid intake.

Conclusions: The findings reported in this study suggest that a diet abundant in flavonoid-rich foods may help

ameliorate diabetes risk, in part through a reduction in body fat. J Nutr 2021;00:1–10.

Keywords: flavonoids, diabetes, body fat, prospective cohort study, obesity

Introduction

Diabetes, a leading cause of disability worldwide (1), results
in >2 million deaths every year due to the neurological
and vascular complications associated with this condition (2).
Strategies to lessen the global health and economic burden
of diabetes should focus on diabetes prevention through the
promotion of healthy behaviors and evidence-based diets at the
population level (3). Higher intakes of fruits and vegetables
tend to be associated with a lower incidence of type 2 diabetes

mellitus (4), with particular fruits showing stronger associations
than others, not attributable to their glycemic index/load (5).
Flavonoids, a class of polyphenols found ubiquitously in fruits,
vegetables, and other plant-derived foods and beverages, have
been proposed as potential moderators of diabetes risk (6).
In vitro and animal studies highlight potential mechanisms
by which flavonoids and their metabolites can modify obesity
and type 2 diabetes risk through inhibition of adipogenesis,
insulin signaling/secretion, and the modulation of inflammatory

C© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. This is an Open Access article distributed under the terms
of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution,
and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Manuscript received April 6, 2021. Initial review completed May 11, 2021. Revision accepted July 22, 2021.
First published online 0, 2021; doi: https://doi.org/10.1093/jn/nxab269. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/advance-article/doi/10.1093/jn/nxab269/6329055 by Q

ueen's U
niversity of Belfast user on 07 Septem

ber 2021

http://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


pathways (7–9). Based on their chemical structure, flavonoids
are categorized into subclasses, with certain subclasses being
common to specific foods. Structural variance between sub-
classes results in differences in bioavailability and biological
activity (10).

In a meta-analysis of 7 prospective cohort studies, persons
with the highest intakes of flavonoids had an 11% lower
risk of type 2 diabetes mellitus (RR: 0.89; 95% CI: 0.82–
0.96) compared with persons with the lowest intakes (11). Of
the flavonoid subclasses, significant inverse associations were
observed for flavonols, flavanols, and anthocyanins. Whether
these inverse associations differ in subgroups at a higher risk of
diabetes remains unknown.

Mitigating weight gain during middle age has a critical public
health impact, with the risk of developing diabetes being up
to 70% greater in those who gain ≥4.5 kg between the ages
of 40 and 60 y (12). The reported inverse association between
flavonoid intake and both body fat (13) and weight gain during
24 y of follow-up (14) may account for, at least in part, the
association between flavonoid intake and incident diabetes.
Because body fat may be a better determinant of diabetes
development than BMI (in kg/m2) and waist circumference (15),
estimation of the mediating effect of the association between
flavonoids and body fat on diabetes risk is warranted in a large
observational cohort.

Therefore, the primary aim of this study was to investigate
the association of total flavonoid and flavonoid subclass intakes
with body fat and incident diabetes in the Danish Diet, Cancer,
and Health cohort. Secondary aims were to investigate the
mediating effect of body fat and to identify subpopulations that
may benefit the most from higher flavonoid intakes.

Methods
Study population
Participants of the Danish Diet, Cancer, and Health study, all between
the ages of 50 and 64 y, were recruited from Copenhagen and Aarhus,
Denmark, between 1993 and 1997. All Danish residents are assigned a
unique number, allowing cross-linking of participants to the following
nationwide registries: the Civil Registration System; the Integrated
Database for Labor Market Research Database; the Danish National
Prescription Registry, which holds information on all filled prescriptions
from Danish pharmacies since 1994, with each drug classified by the
anatomical therapeutic chemical (ATC) code (16); and The Danish
National Patient Register, which contains information on all hospital
admissions in Denmark since 1978. This includes 1 primary diagnosis
and ≥1 secondary diagnoses defined by the International Classification
of Diseases (ICD): the 8th revision (ICD-8) until 1993 and the 10th
revision (ICD-10) from 1994 (17).

NPB is funded by a National Health and Medical Research Council Early Career
Fellowship (grant APP1159914), Australia. The salary of JMH is supported by
a National Health and Medical Research Council of Australia Senior Research
Fellowship, Australia (grant APP1116937). The salary of JRL is supported by a
National Heart Foundation of Australia Future Leader Fellowship (ID 102817).
Author disclosures: The authors report no conflicts of interest.
Disclaimer: Where authors are identified as personnel of the International
Agency for Research on Cancer/World Health Organization, the authors alone
are responsible for the views expressed in this article and they do not
necessarily represent the decisions, policy, or views of the International Agency
for Research on Cancer/World Health Organization.
Supplemental Figures 1–4 and Supplemental Tables 1–3 are available from the
“Supplementary data” link in the online posting of the article and from the same
link in the online table of contents at https://academic.oup.com/jn/.
Address correspondence to NPB (e-mail: n.bondonno@ecu.edu.au).
Abbreviations used: ATC, anatomical therapeutic chemical code; ICD, Interna-
tional Classification of Diseases; MET, metabolic equivalent.

Of the 57,053 participants initially recruited into the study, 56,468
completed an FFQ and had no diagnosis of cancer prior to study
enrolment. Participants were excluded if they had improbable energy
intakes (<500 kcal/d or >5000 kcal/d; n = 198), missing data or
extreme values for any covariates (n = 243), or prevalent diabetes at
baseline (n = 1240); prevalent diabetes was defined as self-reported
diabetes, ICD-10 diagnosis of diabetes (E10, E11), or use of insulin
and other glucose-lowering medications (ATC; A10A, A10B) at or prior
to baseline. This left 54,787 participants remaining for analysis in the
current study (Supplemental Figure 1).

This study was approved by the Danish Data Protection Agency
(Ref. 2012–58–0004 I-Suite nr: 6357, VD-2018–117).

Exposures
Exposures were baseline intakes of total flavonoids, flavonoid sub-
classes, individual flavonoid compounds with mean intakes >5 mg/d,
and flavonoid-rich foods. Calculations of flavonoid intake are described
in detail elsewhere (18). Briefly, participants completed a validated,
192-item FFQ at study entry (19); estimates of the flavonoid content
of each food and beverage item in the FFQ were obtained from
the Phenol-Explorer database (20). Because the average intakes of
isoflavones, dihydrochalcones, dihydroflavonols, and chalcones were
very low in this cohort (<5 mg/d), these flavonoid subclasses were not
assessed discretely. Total flavonoid intake was calculated by summing
the estimated intakes for each of the 219 flavonoid aglycones.

Study outcomes

Body fat.
Body fat (kg) at baseline was estimated using bioelectrical impedance
(BIA 101-F device; Akern/RJL) as described previously (21). The
method used has been validated in a Danish population, aged 35–
65 y, against measurements of total body potassium and total body
water (22) and has been shown to have good agreement with body
composition determined by DXA in middle-aged participants from the
Leiden Longevity Study (23).

Incident diabetes.
The outcome of the study consisted of either a primary or a secondary
diagnosis of diabetes (ICD-10; E10, E11) for both inpatient and
outpatient visits during follow-up. To capture events in people treated in
a primary care setting, we included those who filled a prescription for
insulin or noninsulin medication for diabetes treatment (ATC; A10A,
A10B). This definition is based on that developed by the Danish Health
Data Authority for identifying patients with diabetes and has a positive
predictive value of 96.9% (95% CI: 89.5, 99.2%) (24).

Covariates
Participants completed questionnaires upon study enrolment, providing
information on sex, age, education, smoking habits, alcohol consump-
tion, daily activity, use of hormone replacement therapy, and diet.
Anthropometry was measured at the study centers at baseline. Average
annual income over 5 y was used to represent socioeconomic status and
was defined as household income after taxation and interest, using the
value of the Danish currency in 2015. The presence of hypertension was
defined by a combination of self-reported hypertension and the use of
≥2 antihypertensive medications at baseline (24).

Statistical analysis
Two types of analyses were performed, a cross-sectional analysis and
a time-to-event analysis. First, a cross-sectional analysis was performed
to investigate the association between total flavonoid intake and body
fat at baseline; a linear regression model was fit with total flavonoid
intake as a continuous predictor and body fat as the response. Second,
Cox proportional hazards models were used to investigate the relation
between flavonoid intake and diabetes. Participants were followed
from the date of enrolment until the date of diabetes diagnosis, death,
emigration, or end of follow-up (August 2017), whichever came first.
Quintiles were derived separately for each exposure variable. Restricted
cubic splines were used to investigate nonlinear relations between
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flavonoid intake (continuous) and diabetes, with HRs and 95% CIs
derived from Cox proportional hazards models. HR estimates were
reported for the median intake in each quintile, using the median intake
in quintile 1 as the reference point. We tested for nonlinearity using
a chi-square test comparing nested models. The HRs derived from
the cubic splines were graphed over a fine grid of x-axis values; for
visual simplicity, x-axis values were restricted to intakes within 3 SDs
of the mean for each exposure. Four models of adjustment were used
in all analyses: model 1a adjusted for age, sex; model 2b adjusted for
age, sex, smoking status (current, former, or never), physical activity
[metabolic equivalent (MET); total daily MET], pure alcohol intake
(g/d), social economic status (income), hormone replacement therapy
use (current, former, or never), and education (≤7 y, 8–10 y, or ≥11
y); model 2 adjusted for all covariates in model 1b plus body fat
(kg), hypertension status (yes/no), and cholesterol status (yes/no); and
model 3 adjusted for all covariates in model 2 plus energy intake
and intakes (g/d) of red meat, processed meat, PUFAs, MUFAs, SFAs,
fiber, soft drinks, coffee, and added sugar. Covariates were chosen
a priori to the best of our knowledge of potential confounders of
flavonoid intake and diabetes. Cox proportional hazards assumptions
were tested using log–log plots of the survival function compared with
time and assessed for parallel appearance. All deaths were censored
rather than treated as a competing risk. To identify subpopulations that
may benefit the most from higher flavonoid intakes, first, interaction
on the multiplicative scale was assessed by likelihood ratio tests of
Cox proportional hazards models with and without the interaction
terms. Second, analyses were stratified by risk factors for diabetes,
namely smoking status (never/former smoker compared with current
smoker), BMI (>30 compared with <30), physical activity (greater
than compared with less than the median MET score), and sex.
Because there is potential for residual confounding when stratifying by
smoking status, BMI, and MET score, the corresponding continuous
variables (smoking pack-years, BMI, and MET score) were included
in the model. In addition, due to the miniscule loss to follow-up in
this cohort (<0.3%), standard logistic regression models were used to
obtain the predicted 20-y absolute risk estimates of diabetes for each
subgroup. For these analyses, a binary outcome indicating a diagnosis
of diabetes during 20 y of follow-up was used. Unless indicated by
the stratification variable, these estimates are for the “average” cohort
participant at baseline—that is, a nonsmoking participant, aged 56 y,
who has completed 8–10 y of education, with a BMI of 25.5, a total
daily MET score of 56, a mean household income of 394,701–570,930
Danish krone/y, an alcohol intake of 13 g/d, and who is not taking
hormone replacement therapy. For flavonoid exposures for which clear
inverse associations with both body fat and incident diabetes were
observed, the extent to which the association between flavonoid intake
and diabetes was mediated by baseline body fat was quantified through
natural direct and indirect effects (25), which estimate how large an
association we would observe if flavonoid intake had no impact on body
fat (the natural direct effect) and if flavonoid intake only had an impact
upon diabetes through its impact on body fat (the natural indirect
effect), respectively. Estimation was done using a Cox proportional
hazards model in the Medflex package for R (26). CIs were obtained by
bootstrapping (1000 iterations). Body fat was included as a continuous
variable in the mediation analysis, whereas total flavonoid intake was
included as a categorical variable (quintiles). In supplementary analyses,
Pearson’s correlations were performed between flavanone intake and
the primary dietary sources of flavanones and the association between
body fat (per 1.52 kg), and incident diabetes was investigated using a
Cox proportional hazards model. All analyses were undertaken using
Stata/IC 14.2 (StataCorp) and R statistics (R Foundation for Statistical
Computing).

Results

This population of 54,787 Danish residents, with a median age
of 56 y (IQR: 52–60 y) at entry, had a median follow-up of
20.8 y (IQR: 17.3–21.6 y). During 1,010,191 person-years of
follow-up, 6700 individuals were diagnosed with diabetes.

Baseline characteristics

The median intake of flavonoids was 495 mg/d (IQR: 287–213
mg/d). Compared with participants with the lowest flavonoid
intakes, those with the highest intakes were more likely to
be women, be more physically active, have a higher degree
of education, have a higher income, and less likely to have
ever smoked or to be hypercholesterolemic. Furthermore,
they tended to have a healthier underlying dietary pattern,
consuming more fish, dietary fiber, fruits, vegetables, and tea and
consuming less red meat and processed meat (Table 1).

Association between flavonoid intake and baseline
body fat

Total flavonoid intake was inversely associated with body fat in
a linear dose–response manner (P for trend < 0.001) across the
range of intakes in this cohort. After multivariable adjustments
and compared with participants in quintile 1, participants in
quintiles 2–5 had a 0.39 kg (95% CI: –0.60, –0.17 kg), 0.62
kg (95% CI: –0.84, –0.41 kg), 0.90 kg (95% CI: –1.11, –
0.68 kg), and 1.52 kg (95% CI: –1.74, –1.30 kg) lower body
fat, respectively (model 1b; Supplemental Table 1). In order
to aid interpretation of this, in supplementary modeling, a
1.52-kg higher body fat translated to a 12% higher risk of
diabetes (HR: 1.12; 95% CI: 1.11, 1.12). For the individual
flavonoid subclasses, inverse associations with baseline body fat
were observed for the flavonols, flavanol monomers, flavanol
oligo + polymers, and anthocyanins (Supplemental Table 1).

Association between flavonoid intake and incident
diabetes

The association between total flavonoid intake and incident
diabetes was nonlinear (P for nonlinearity = 0.013); the inverse
association was steeper at lower intakes, and the gradient
started to decrease at ∼400 mg/d (Figure 1). Compared with
participants in quintile 1, participants in quintile 5 had a 19%
lower risk of diabetes (HR: 0.81; 95% CI: 0.75, 0.87) after
multivariable adjustments (model 1b; Table 2).

For flavonoid subclasses, comparing high with low intakes
(quintile 5 compared with quintile 1), the risk of diabetes was
19% lower for flavonols (HR: 0.81; 95% CI: 0.75, 0.87),
16% lower for flavanol monomers (HR: 0.86; 95% CI: 0.78,
0.90), and 23% lower for flavanol oligo + polymers (HR: 0.77;
95% CI: 0.72, 0.83) after multivariable adjustments (model
1b; Table 2). Conversely, the risk of diabetes appeared to be
positively associated with flavanone intakes, and the association
with anthocyanin and flavone intakes was U-shaped (Figure 1).
After adjusting for potential dietary confounders, flavanol
oligo + polymers were significantly inversely associated with
diabetes, flavanones were positively associated with diabetes,
and the association between anthocyanin and flavone intake
and diabetes was U-shaped (model 3; Table 2).

Mediation analysis

The mediation analysis showed that after multivariable adjust-
ments (model 1b), baseline body fat explained 57% (95% CI:
42, 83%) of the total association between total flavonoid intake
and incident diabetes (Supplemental Table 2). For individual
flavonoid subclasses, for which clear inverse associations
between both baseline body fat and incident diabetes were
observed (i.e., flavonols, flavanol monomers, and flavanol
oligo + polymers), baseline body fat explained 52% (95% CI:
35, 81%), 66% (95% CI: 45, 89%), and 35% (95% CI: 26,
48%), respectively (Supplemental Table 2).

Flavonoids and incident diabetes 3
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FIGURE 1 HRs based on cubic splines to describe the association between flavonoid subclass intakes (mg/d) and incident diabetes among
participants of the Danish Diet, Cancer, and Health cohort (n = 54,787). HRs (y axis on logarithmic scale) are based on Cox proportional hazards
models adjusted for age, sex, smoking status, physical activity, alcohol intake, education, hormone replacement therapy, and socioeconomic
status (income) and are comparing the specific level of flavonoid intake (horizontal axis) to the median intake for participants in the lowest intake
quintile. P values for nonlinearity were obtained using a chi-square test to compare nested models.

Associations between major flavonoid compound
intakes and incident diabetes

Inverse associations between all individual flavonoid com-
pounds with mean intakes >5 mg/d [except for the flavanol
monomers, for which we present only the results for epicatechin
due to the very high correlation (>0.89) between flavonol
monomers] and incident diabetes are presented in Supplemental
Table 3 and Supplemental Figure 2. Kaempferol, quercetin, epi-
catechin, procyanidin dimer, procyanidin trimer, and malvidin
intakes were significantly inversely associated with incident
diabetes, although for the latter 2 associations plateaued at
moderate intakes. Conversely, hesperidin intakes were positively
associated with diabetes, and associations between diabetes and

apigenin, delphinidin, and cyanidin intakes were somewhat U-
shaped (Supplemental Figure 2).

Associations between total flavonoid intake and
incident diabetes stratified by risk factors for
diabetes

The association between total flavonoid intake and incident dia-
betes was present in all subgroups investigated (Pinteraction > 0.05
for all; Figure 2). However, because the prevalence of diabetes
was higher in those with a BMI ≥30, the difference (total
flavonoid intake quintile 5 – total flavonoid intake quintile 1) in
the 20-y estimated risk of diabetes was greater in this subgroup
(Table 3).
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TABLE 2 HRs of incident diabetes by quintiles of flavonoid intake1

Flavonoid intake quintiles

Quintile 1 (n = 10,958) Quintile 2 (n = 10,957) Quintile 3 (n = 10,957) Quintile 4 (n = 10,957) Quintile 5 (n = 10,958)

Total flavonoids
No. events 1734 1380 1337 1205 1044
Intake,2 mg/d 174 (6–251) 321 (251–395) 495 (395–602) 727 (602–909) 1202 (909–3552)
HR (95% CI)

Model 1a Ref 0.83 (0.80, 0.87) 0.74 (0.69, 0.78) 0.69 (0.65, 0.73) 0.63 (0.59, 0.68)
Model 1b Ref 0.92 (0.88, 0.96) 0.87 (0.82, 0.92) 0.85 (0.80, 0.90) 0.81 (0.75, 0.87)
Model 2 Ref 0.92 (0.88, 0.96) 0.89 (0.84, 0.94) 0.89 (0.84, 0.95) 0.88 (0.82, 0.94)
Model 3 Ref 0.92 (0.88, 0.96) 0.88 (0.83, 0.94) 0.88 (0.82, 0.94) 0.84 (0.78, 0.92)

Flavonols
No. events 1684 1510 1263 1212 1031
Intake,2 mg/d 15 (0–20) 26 (20–32) 38 (32–50) 66 (50–83) 116 (83–251)
HR (95% CI)

Model 1a Ref 0.84 (0.81, 0.88) 0.75 (0.70, 0.79) 0.68 (0.64, 0.72) 0.62 (0.58, 0.66)
Model 1b Ref 0.93 (0.89, 0.97) 0.89 (0.83, 0.94) 0.86 (0.80, 0.91) 0.81 (0.75, 0.87)
Model 2 Ref 0.91 (0.88, 0.95) 0.87 (0.82, 0.93) 0.89 (0.84, 0.95) 0.87 (0.81, 0.94)
Model 3 Ref 0.92 (0.88, 0.97) 0.88 (0.82, 0.94) 0.88 (0.82, 0.95) 0.84 (0.77, 0.91)

Flavanol monomers
No. events 1676 1419 1369 1191 1045
Intake,2 mg/d 14 (0–21) 30 (21–45) 66 (45–115) 261 (115–281) 473 (281–916)
HR (95% CI)

Model 1a Ref 0.91 (0.89, 0.94) 0.79 (0.74, 0.84) 0.70 (0.65, 0.74) 0.66 (0.62, 0.71)
Model 1b Ref 0.97 (0.94, 1.00) 0.92 (0.86, 0.99) 0.87 (0.81, 0.93) 0.84 (0.78, 0.90)
Model 2 Ref 0.96 (0.93, 0.99) 0.91 (0.85, 0.97) 0.94 (0.88, 1.01) 0.92 (0.86, 0.99)
Model 3 Ref 1.00 (0.97, 1.03) 0.99 (0.92, 1.06) 0.95 (0.89, 1.02) 0.93 (0.87, 1.00)

Flavanol oligo + polymers
No. events 1750 1391 1328 1189 1042
Intake,2 mg/d 92 (0–136) 179 (136–217) 255 (217–303) 359 (303–434) 537 (434–2254)
HR (95% CI)

Model 1a Ref 0.80 (0.77, 0.84) 0.71 (0.68, 0.75) 0.66 (0.62, 0.70) 0.62 (0.58, 0.66)
Model 1b Ref 0.89 (0.85, 0.94) 0.84 (0.79, 0.89) 0.81 (0.76, 0.86) 0.77 (0.72, 0.83)
Model 2 Ref 0.91 (0.87, 0.95) 0.86 (0.82, 0.91) 0.84 (0.79, 0.89) 0.82 (0.77, 0.88)
Model 3 Ref 0.93 (0.88, 0.98) 0.90 (0.85, 0.95) 0.89 (0.83, 0.95) 0.90 (0.83, 0.97)

Anthocyanins
No. events 1632 1298 1171 1220 1379
Intake,2 mg/d 5 (0–10) 13 (10–17) 20 (17–24) 36 (24–53) 70 (53–397)
HR (95% CI)

Model 1a Ref 0.76 (0.72, 0.79) 0.67 (0.63, 0.72) 0.70 (0.66, 0.74) 0.78 (0.73, 0.83)
Model 1b Ref 0.85 (0.81, 0.89) 0.80 (0.75, 0.85) 0.84 (0.79, 0.89) 0.92 (0.85, 0.99)
Model 2 Ref 0.88 (0.84, 0.92) 0.84 (0.79, 0.90) 0.88 (0.83, 0.94) 0.94 (0.87, 1.01)
Model 3 Ref 0.87 (0.83, 0.91) 0.83 (0.78, 0.89) 0.88 (0.83, 0.94) 0.97 (0.90, 1.04)

Flavanones
No. events 1372 1239 1356 1348 1385
Intake,2 mg/d 4 (0–6) 9 (6–13) 18 (13–26) 32 (26–49) 70 (49–564)
HR (95% CI)

Model 1a Ref 0.96 (0.92, 1.01) 0.94 (0.88, 1.01) 0.96 (0.90, 1.02) 1.02 (0.95, 1.09)
Model 1b Ref 1.03 (0.98, 1.07) 1.06 (0.99, 1.13) 1.10 (1.03, 1.17) 1.15 (1.08, 1.23)
Model 2 Ref 1.00 (0.96, 1.05) 1.02 (0.95, 1.09) 1.05 (0.99, 1.12) 1.11 (1.04, 1.19)
Model 3 Ref 1.04 (0.99, 1.08) 1.07 (1.00, 1.15) 1.10 (1.03, 1.18) 1.13 (1.05, 1.22)

Flavones
No. events 1446 1278 1299 1271 1406
Intake,2 mg/d 2 (0–3) 4 (3–5) 5 (5–6) 7 (6–9) 11 (9–51)
HR (95% CI)

Model 1a Ref 0.85 (0.81, 0.89) 0.81 (0.76, 0.86) 0.84 (0.79, 0.89) 0.92 (0.86, 0.98)
Model 1b Ref 0.92 (0.88, 0.97) 0.91 (0.86, 0.97) 0.96 (0.90, 1.02) 1.04 (0.98, 1.12)
Model 2 Ref 0.93 (0.88, 0.97) 0.91 (0.86, 0.97) 0.95 (0.89, 1.01) 1.01 (0.95, 1.08)
Model 3 Ref 0.95 (0.90, 1.00) 0.96 (0.90, 1.02) 1.02 (0.95, 1.09) 1.12 (1.04, 1.21)

1HRs (95% CI) for incident diabetes during 23 y of follow-up, obtained from restricted cubic splines based on Cox proportional hazards models.
Model 1a adjusted for age and sex; model 1b adjusted for age, sex, smoking status, physical activity, alcohol intake, education, hormone
replacement therapy, and socioeconomic status (income); model 2 adjusted for all covariates in model 1b plus body fat, hypertension status, and
cholesterol status; and model 3 adjusted for all covariates in model 2 plus energy intake and intakes (g/d) of red meat, processed meat, PUFAs,
MUFAs, SFAs, fiber, soft drinks, coffee, and added sugar.
2Median; range in parentheses (all such values).
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FIGURE 2 Multivariable-adjusted association between total flavonoid intake and incident diabetes stratified by baseline smoking status, BMI,
sex, and physical activity. HRs (y axis on logarithmic scale) are based on Cox proportional hazard models and are comparing the specific level of
flavonoid intake (horizontal axis) to the median intake for participants in the lowest intake quintile (174 mg/d). All analyses were standardized for
age, sex, smoking status, physical activity, alcohol intake, education, hormone replacement therapy, and socioeconomic status (income). MET,
metabolic equivalent.

Investigation into the positive association between
flavanone intake and diabetes

In this cohort, flavanone intake was most strongly correlated
with intakes of oranges (r = 0.35), orange juice (r = 0.89),
grapefruit (r = 0.12), and soft drinks (r = 0.38; an assumption

was made that lemonade consists of ∼6% lemon juice). Intakes
of oranges, orange juice, and grapefruit were not significantly
associated with incident diabetes, whereas intakes of soft drinks
were significantly positively associated with incident diabetes
(Supplemental Figure 3). There was no association between

TABLE 3 20-y predicted risk of diabetes1

Total flavonoid intake

Quintile 1 risk (95% CI) Quintile 5 risk (95% CI) Risk difference (%)

Men
Nonsmoker 10.55 (9.64, 11.53) 9.24 (8.36, 10.20) 1.31
Former smoker 11.84 (10.87, 12.89) 10.39 (9.44, 11.42) 1.45
Current smoker 15.03 (13.93, 16.20) 13.25 (12.07, 14.52) 1.78
BMI, kg/m2

<30 11.17 (10.23, 12.19) 9.38 (8.51, 10.34) 1.79
≥30 35.24 (32.91, 37.63) 30.94 (28.56, 33.43) 4.30

MET score
<56.5 10.72 (9.79, 11.72) 9.39 (8.48, 10.37) 1.33
≥56.5 10.30 (9.40, 11.27) 9.02 (8.16, 9.96) 1.28

Women
Nonsmoker 7.36 (6.70, 8.08) 6.42 (5.82, 7.07) 0.94
Former smoker 8.30 (7.53, 9.14) 7.24 (6.55, 8.00) 1.06
Current smoker 10.65 (9.77, 11.60) 9.33 (8.47, 10.26) 1.32
BMI, kg/m2

<30 7.53 (6.86, 8.25) 6.28 (5.71, 6.91) 1.25
≥30 26.04 (24.10, 28.08) 22.47 (20.66, 24.40) 3.57

MET score
<56.5 7.48 (6.80, 8.23) 6.52 (5.91, 7.20) 0.96
≥56.5 7.18 (6.53, 7.90) 6.26 (5.68, 6.90) 0.92

1The 20-y predicted risk (percentage) of diabetes calculated from logistic regression models. Unless indicated by the stratification
variable, these estimates are for a nonsmoking participant, aged 56 y, who has completed 8–10 y of education, with a BMI of 25.5,
a total daily MET score of 56, with a mean household income of 394,701–570,930 DKK/y, an alcohol intake of 13 g/d, and who is not
taking hormone replacement therapy. DKK, Danish krone; MET, metabolic equivalent.
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flavanone intake and incident diabetes in participants who
consumed soft drinks <1 per month (n = 25 773; Supplemental
Figure 4).

Discussion

In this prospective cohort of 54,787 Danish men and women,
a flavonoid-rich diet was inversely associated with incident
diabetes; after adjusting for potential lifestyle and dietary
confounders, this association plateaued at moderate flavonoid
intakes (∼400 to 600 mg/d). This association did not appear to
be modified by smoking status, BMI, physical activity level, or
sex; however, findings on an absolute scale suggest that those
at a higher risk of diabetes (those with obesity) may benefit the
most from a higher flavonoid consumption. Of the flavonoid
subclasses, moderate to high intakes of flavonols, flavanol
monomers, flavanol oligo + polymers, and anthocyanins were
associated with a lower risk of diabetes. Cross-sectionally,
total flavonoid intake was inversely associated with body fat,
explaining approximately half of the association between total
flavonoid intake and incident diabetes.

Limitations inherent to observational studies apply to the
current study in that we are not able to infer causality or
rule out residual confounding. Furthermore, we acknowledge
common FFQ limitations, particularly that not all dietary
sources of flavonoids, especially berries other than strawberries,
were included in the questionnaire. Although flavonoid intake
may have changed during the 23 y of follow-up, the resulting
measurement error would likely result in a bias of observed
associations toward the null. We acknowledge that although
bioelectrical impedance has good agreement with measures of
body fat, it is not the gold standard measure for estimating
body fat, particularly in obese/morbidly obese and underweight
individuals (27), and we only had a single measure at baseline
and as such could not investigate changes in body fat or
rule out residual confounding. Furthermore, the cross-sectional
and mediation analyses should be interpreted with caution
because temporality of the flavonoid–body fat association is
not known. Unfortunately, we were unable to distinguish
between type 1 and type 2 diabetes or capture diabetes treated
nonpharmacologically in a primary care setting; due to the age
of the cohort (between 50 and 64 y at baseline), we assume that
the majority of incident cases were type 2 diabetes. Despite these
limitations, the current study has many strengths, including
a large sample size with 23 y of follow-up, allowing for the
accumulation of a large number of incident cases of diabetes
and thus affording sufficient power to examine associations in
subgroups of interest; a negligible loss to follow-up, permitting
the calculation of absolute risk differences; and the availability
of key participant characteristics, enabling appropriate model
adjustment to reduce residual confounding.

Evidence from both prospective cohort studies and ran-
domized controlled trials points to dietary patterns high in
fruits and vegetables, wholegrains, nuts, and legumes, low
in both red and processed meats, sugar-sweetened beverages,
and refined grains, and with a moderate alcohol intake, for
the prevention and management of type 2 diabetes (28).
The association between flavonoid-rich dietary patterns and
incident type 2 diabetes has been investigated in several large
prospective cohort studies, a meta-analysis of which reports a
curvilinear relation between total flavonoid intake and incident
type 2 diabetes, with a significantly lower risk at intakes
≥550 mg/d (11). In the current study, the gradient of the

inverse association between total flavonoid intake and incident
diabetes decreased beyond moderate intakes (quintile 3: 395–
602 mg/d), indicating the existence of a threshold, beyond
which higher intakes may afford little added benefit. Of the
individual flavonoid subclasses, a lower risk of diabetes has
been observed for anthocyanins (29, 30) [RR of 0.89 (95%
CI: 0.82, 0.95) in meta-analysis (11)], flavanols (29, 31) [RR
of 0.86 (95% CI: 0.78, 0.95) in meta-analysis (11)], flavonols
(31, 32) [RR of 0.86 (95% CI: 0.80, 0.94) in meta-analysis
(11)], flavanones (29, 33) [RR of 1.02 (95% CI: 0.94, 1.10)
in meta-analysis (11)], and flavones (29) [RR of 0.96 (95%
CI: 0.85, 1.08) in meta-analysis (11)]. Although the reported
relative risks from the meta-analysis are similar to those
described in the current study for flavonols, flavanols, and
anthocyanins, we observed that higher intakes of flavanones
were associated with a higher risk of incident diabetes. From
our results, we conclude that this positive association was driven
by the assumption that lemonade contains lemon juice (34)
and is therefore a contributor to flavanone intake. Intakes of
other major sources of flavanones, namely oranges, orange
juice, and grapefruit, were not significantly associated with
incident diabetes. Important to note is that a major source of
anthocyanins in this cohort was fruit squash/cordial, which has
a high sugar content. The co-occurrence of dietary components
that may increase type 2 diabetes risk within flavonoid-
rich foods and beverages, such as sugar in the previous
instances, may explain the U-shaped associations observed for
the anthocyanin and flavone subclasses and compounds within
those subclasses. Interestingly, although malvidin belongs to
the anthocyanin subclass, we observed an inverse association
between malvidin intake and diabetes. In this cohort, it is likely
that the primary dietary source of malvidin was red wine. A
moderate intake of red wine is associated with a lower risk
of type 2 diabetes in numerous cohort studies, and red wine
has been shown to improve insulin sensitivity, an effect not
attributable to its alcohol content, in randomized controlled
trials (35). In the current study, apples and tea were likely major
contributors to total flavonoid intake (31). In a meta-analysis
of 16 cohort studies, higher tea intakes were associated with a
lower risk of type 2 diabetes (36). The current study exemplifies
the need to interpret associations between dietary sources of
flavonoids and health outcomes, in observational studies, in the
context of the whole food matrix. It may be that the differing
associations for flavonoid subclass intakes and diabetes between
studies are due to differing dietary patterns and key sources of
flavonoids in the different populations.

Risk factors for type 2 diabetes include smoking (37) and
obesity (38). Although associations between total flavonoid
intakes and diabetes were present in all subpopulations
investigated, the difference (flavonoid intake quintile 5 – quintile
1) in the 20-y estimated absolute risk of diabetes was greatest for
those with a BMI ≥30 (men: 4.30%; women: 3.57%), likely due
to the higher prevalence of diabetes in this “at-risk” subgroup.
Thus, if the association between higher flavonoid intakes and
lower diabetes risk is truly causal, ensuring adequate intakes
of flavonoid-rich foods in obese individuals will translate to a
greater reduction in cases of type 2 diabetes at a population
level.

Unlike smoking, obesity may be influenced by flavonoid
intake (9) and, therefore, may be an intermediate on the
causal pathway between flavonoid intake and diabetes. In
randomized controlled trials, short-term ingestion of green tea
extract (39), powdered black tea (40), and cocoa or dark
chocolate (≥30 g/d) (41), all rich in flavonoids, has been shown
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to reduce body weight and improve body fat distribution.
In a study of 2734 healthy female twins from the TwinsUK
registry, higher habitual intakes of anthocyanins, flavanols,
flavonols, and proanthocyanidins were associated with lower
fat mass, independent of genetic and environmental factors (13).
Furthermore, in a pooled analysis of 3 large prospective cohorts,
a higher habitual intake of flavonoids (with the exception
of flavones and flavanones) was associated with less weight
gain during follow-up, with the strongest inverse associations
observed for intakes of anthocyanins and flavanol polymers
(14). In the current study, persons with the highest total
flavonoid intakes had a 1.52-kg lower body fat at baseline;
body fat explained 57% of the total association between total
flavonoid intake and incident diabetes. In this cohort, a 1.52-kg
lower body fat translated to a 12% lower risk of diabetes. These
findings suggest that a protective effect of flavonoids against
diabetes may be mediated, in part, by the effect of flavonoids
on the metabolism of fat in the body.

There are numerous purported mechanisms by which
flavonoids and their metabolites reduce obesity and type
2 diabetes incidence, including enhancing insulin secretion
and reducing insulin resistance, potentially by decreasing
apoptosis and promoting proliferation of pancreatic β-cells,
and reducing inflammation and oxidative stress in muscle (8,
9). A meta-analysis of randomized controlled trials concluded
that green tea consumption significantly reduces fasting glucose
and hemoglobin A1c concentrations (42), whereas flavonoid-
rich chocolate or cocoa consumption significantly reduces
insulin resistance and fasting insulin (43). However, the exact
mechanisms remain to be elucidated (44); findings from
preclinical studies are often not replicated in human studies
(45) likely due to limited studies on flavonoid metabolites to
date. Evidence for the antidiabetic effects of a diet rich in
flavonoids is growing. Despite this, there has been minimal
translation of this research into either policy or practice. This
is likely due, at least in part, to an incomplete understanding
of the mechanisms and pathways linking flavonoid intake to
health benefits (46). Complete characterization is challenging
because bioavailability and bioactivity differ between flavonoid
compounds, and both phase 2 and gut-derived flavonoid
metabolites likely also exert biologically relevant effects (47).

Conclusions

In this Danish prospective cohort study, we observed that higher
flavonoid intakes were cross-sectionally associated with lower
estimates of body fat and longitudinally associated with a lower
risk of diabetes, particularly for the flavonol, flavanol monomer,
and flavanol oligo + polymer subclasses. Our results suggest
that promoting a diet abundant in healthy flavonoid-rich foods
may ameliorate diabetes risk, in part through a reduction in
body fat.
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