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Real-time Optimised Path Planning and Energy
Consumption for Data Collection in UAV-aided

Intelligent Wireless Sensing
Dang Van Huynh, Tan Do-Duy, Long D. Nguyen, Minh-Tuan Le, Nguyen-Son Vo, and Trung Q. Duong

Abstract—In this paper, we consider a new UAV-aided intelli-
gent wireless sensing scheme where the UAVs are deployed for
smart sensing and collecting data from Internet-of-Things (IoT)
devices. In particular, we propose optimal UAVs’ path planing
approaches for minimising the completion time and total energy
consumption of the UAVs’ deployment for data collection. Two
optimal schemes, namely optimal energy consumption by peer-to-
peer UAV-IoT sensing networks and optimal energy consumption
by clustering UAV-IoT sensing networks, are considered. The low-
complexity procedures of our advanced optimisation techniques
are suitably applied to disaster relief networks when the solving
time must be strictly adhered to. Our real-time optimisation
algorithms result in low computational complexity with fast
deployment and low processing time for solving the problem
of tracking and gathering sensor data, i.e., in very short time
(milliseconds). Through simulations results we demonstrate that
our proposed approaches in UAV-aided intelligent IoT wireless
sensing are suitable for time-critical mission applications such
as emergency communications, public safety, and disaster relief
networks.

Index Terms—Internet of Things (IoT), practical optimization,
unmanned ariel vehicles (UAV), real-time optimisation, wireless
communication, wireless sensing.

I. INTRODUCTION

In the context of the Internet-of-Things (IoT), data collec-
tion is one of the most important functionalities. Traditional
approaches for data collection have used static sensors and IoT
gateways to forward the collected data to a central database
such as a server in the cloud. However, in situations where
the targets to monitor are placed in remote or difficult-to-
reach areas or in disaster scenarios, these traditional wireless
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sensing solutions would exhibit their disadvantages. Recently,
unmanned aerial vehicles (UAVs) have been considered as an
advanced approach for smart sensing and data collection.

One of UAVs’ benefits is their altitude when they operate,
which brings about the dominance of line-of-sight (LoS) con-
nections in UAV communication [1]. This makes UAV-aided
communications more promising in terms of performance
and cost efficiency, thus suitable for the deployment of IoT
applications [2], [3]. For instance, UAVs can expand network
coverage and improve service quality for more IoT devices by
dynamically being deployed in the area. In IoT applications,
UAV-aided wireless sensing can deal with the high demands of
flexibility, scalability, and reliability required of data gathering
techniques. Hence, there are many UAV use cases such as
in environmental remediation, agricultural monitoring systems
[4], automated inspection [5], or performance of dangerous
tasks in disaster relief [6]–[8]. In these instances, UAVs can
be deployed to track and communicate with ground IoT de-
vices, including wireless sensor nodes or actuators. They also
communicate with the central control system which estimates
their paths for intelligent wireless sensing and allocates their
resources for the mission. In real-time applications, the UAVs
will be able to collect and transmit sensor data back to the
central system within strict time deadlines [7], [9].

For data collection applications, there is an increased atten-
tion in recent research proposing UAV-based solutions with
different objectives such as optimal path planning, scheduling
[10]–[14]. In [10], a polynomial-time algorithm based on the
concept of graph labelling has been proposed to solve the
problem of UAV scheduling for data collection with bat-
tery recharging. Another UAV path planning for information
collection and transmission method has been discussed in
[11]. Specifically, rapid collection and reliable transmission
of emerging information have been considered for jointly op-
timising UAVs’ 3-D position and transmit power of the UAVs.
In [12], joint UAVs’ path planning and travel optimisation for
energy efficient data gathering has been also addressed. In fact,
UAVs path planning has been optimised for data collection
from sensors to ensure efficient collection of all data under
constrained energy consumption. In [13], the UAV trajectory
planning for data collection in time-constrained devices has
been investigated by proposing branch, reduce and bound
approach. In [14], another UAVs’ path planning optimisation
problem has been addressed by deep reinforcement learning
in stead of solving a conventional optimisation problem.

Despite their huge potential in many practical applications,
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the limited functions in low-cost UAVs poses a challenge
to the growth of the market for UAVs. There are still open
research issues in terms of practical implementation to fully
realise the UAV’s potential. For instance, the fast deployment
and efficient operation, which aims to provide and maintain
high capability and capacity in UAV communications, are
very important yet challenging. Specifically, the number of
UAVs to be despatched are dependent on the number of IoT
devices assigned to them, network topologies, communication
protocols, UAVs’ onboard energy capacity, and path planning
models. Moreover, UAVs’ deployment strategies represent
many challenges in nonlinear systems, non-convex optimi-
sation problems, and constrained clustering model in UAV
networks [6], [15]–[19]. Among them, K-means clustering
offers a low-complexity yet quick cluster selection model.
However, it is not straightforward to utilise this method and
directly apply it to UAV’s scenarios with many constraints. In
this work, we propose and compare two different approaches,
based on (i) peer-to-peer (P2P) networking and (ii) constrained
K-means clustering method (CUN) to allocate IoT devices to
UAV collectors and deal with the UAVs’ path planning and
UAV’s energy consumption optimisation problems.

Traditionally, the commercial low-cost UAV devices have
limited energy capacity, which restricts their wider applica-
tions. Current low-cost UAVs do not have enough onboard
energy storage for a long flight, i.e., they can normally operate
up to an hour in one charge. For UAV communication, due
to the dynamically changing environments, the UAV needs to
frequently adapt to re-organised networks. It implies that we
need to take into account the fast time-varying environment
to design the UAV path planning. This process will cost more
energy to prolong the stability of the UAV networks. It is a
huge challenge for system designers to develop the optimal
UAV’s deployment with small completion time and optimal
energy consumption. As a result, this research issue has
attracted great attention from the industry and academia. Very
recently, the UAV-aided disaster communications integrated
with wireless sensor networks have been proposed in [1].
In particular, we aimed at minimising the UAVs’ total flight
time to complete data collection from sensor nodes [1]. It
is important to implement real-time path planner for UAVs
in the context of mission-critical services. The faster the
planner executes, the more time is saved in completing UAVs’
missions.

In this paper, we take a step further to extend our work in
[1] for UAV-aided intelligent wireless sensing by proposing
a real-time optimised UAVs’ completion time and energy
consumption for data collection. More specifically, we deploy
a UAV network comprising of multiple UAVs which follow
optimised paths for for intelligent wireless sensing and gath-
ering monitored data in mission-critical applications such as
disaster relief networks. To tackle the time-critical issue, we
propose optimisation algorithms of low complexity that signif-
icantly reduce the execution time. Here, we exploit real-time
optimisation [8], [20] to support the UAV communications
when fast optimal deployment is vitally important. The main
contributions of this paper can be summarised as follows:
• We introduce a novel framework for optimising UAVs’

path planning in order to minimise the completion time
and total energy consumption of UAVs’ deployment
procedure in data collection missions. This optimisation
model takes into account the constraints of real-world
UAVs’ deployment.

• We propose two approaches to solving the prob-
lem, namely, convex optimisation algorithms of low-
complexity, and the K-means clustering strategy. These
approaches find the optimal completion time and total
energy consumption under various practical constraints
such as the UAVs’coverage region, flying time, and QoS
requirements.

• Finally, the numerical results of a wide range of sim-
ulations are also provided to prove the reliability of
the proposed optimisation framework. These simulation
results are helpful for the deployment of UAV-aided
intelligent wireless sensing in the future.

The remainder of the paper is organised as follows. In section
II, we present the system model and problem formulation.
The first approach to solving the problem, namely Peer-to-
Peer UAV-IoT networks (P2P), is described in Section III.
Next, we introduce the K-means clustering scheme called
clustering of UAV-IoT devices (CUN) to find the optimal
values of total completion time and energy consumption of
the UAVs’ deployment in Section IV. In Section V, we provide
the simulation results to illustrate the impact of the proposed
schemes. Finally, conclusions are given in Section VI.

II. UAV-IOT SYSTEM MODEL AND PROBLEM
FORMULATION

A. System model

In this paper, we propose to use UAVs to track and collect
information from IoT devices. In particular, M UAVs are avail-
able for the mission, their tasks are to gather data from K � 1
static ground IoT devices, K being denoted by the set of
K = {1, ...,K}. As illustrated in Fig. 1, a ground station (con-
trol centre) will optimise the path planning for the M UAVs,
M = {1, ...,M}, and control their deployment accordingly.
The IoT devices are positioned within a rectangle target area,
A(`, d), where ` and d are respectively its length and width.
The location of an IoT device k, qk = [xk, yk, 0]T , k ∈ K,
is determined by using the Global Positioning System (GPS).
All the UAVs and IoT devices are single-antenna equipped.

Let us assume that the UAVs operate over a duration of T >
0 in second (s). At a time instant t, 0 ≤ t ≤ T , the 3D location
of a UAV m is denoted as qm(t) = [xm(t), ym(t), hm(t)]T ∈
R3,m ∈ M. Without loss of generality, we further assume
that the time length T can be divided into N equal time-
slots denoted by the set N = {1, ..., N}. Each slot has
the elemental time length as η = T/N , which is suffi-
ciently small, during which the location of the UAV is stable
[21]. Consequently, the UAV’s trajectory can be expressed as
qm[n] = [xm[n], ym[n], hm[n]]T , n ∈ N .

As data collectors, the UAVs should start from their parking
dock located at qG,m = [xG,m, yG,m, hG,m]T , i.e., qm[1] =
qG,m, follow their planned paths, collect data from the IoT
devices on their way and finish their mission at their parking
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dock qm[Nm] = qG,m where Nm is the last time-slot of the
operation of a UAV m. The trajectory of a UAV is assumed to
be within the considered area A while it tracks the IoT devices
and gathers sensor data. The data packets collected from the
IoT devices will be transferred to the central station at the end
of the UAV’s trajectory.

Fig. 1: System model of the UAVs’ path planning for data
collection in two approaches: Peer-to-peer networking and K-
means clustering

B. Channel model

We consider that the air-to-ground wireless channels be-
tween the airborne UAVs and ground IoT devices are dom-
inated by LoS links [22]. At the nth time-slot of the mth
UAV, Rmk[n] and gmk[n] are respectively the distance from
the mth UAV to the kth IoT device, and the channel power
gain of their link, as provided in [1]. The small-scale fading
channels can be neglected because of the LoS-dominated UAV
communications. Let δm,n be the mth UAV’s flying time
between two consecutive time-slots, and V denote its average
speed, then we have:

δm,n(q) =
‖qm[n+ 1]− qm[n]‖

V
, n = 1, ..., N. (1)

We define a circular disc with radius Dcov as the coverage
region in which the quality-of-service (QoS) requirement is
met as a result of the domination of LoS links. The relation
between the radius Dm,cov and the altitude of the UAV m can
be expressed as

hm[n] = Dm,cov tan(θ),∀n,m, (2)

in which the elevation angle θ is set at 20.34◦ for suburban
environment [23]. A UAV can only connect to and gather
data from the IoT devices within its coverage range, i.e., the
Euclidean distance between the UAV and IoT device must be
smaller than the coverage radius Dm,cov . This constraint is
represented as

Dmk[n] ≤ Dm,cov ,∀n. (3)

For a constant transmit power (Pk) at the kth IoT device,
the uplink data rate at the mth UAV is given as

Cmk[n] = Blog2(1 + gmk[n]Pk/σ
2
m), (4)

where B is the bandwidth and σ2
m is the Gaussian noise power

at the UAV m.

C. Data collection model

We assume that the IoT devices forward their data packets,
with the size of D̄k by using a standard data rate C̄k to the
UAVs. A UAV and IoT devices are connected via an IoT
network protocol, i.e., Bluetooth low energy (BLE) or Low
power wide area networks (LPWANs) [24]. From (3) and (4),
we can rewrite the QoS requirement as

Cmk[n] ≥ C̄k,∀n, k,m. (5)

By using eq. (2) in [1], after some manipulations, from (5) we
have

hm[n] ≤

√
β0Pk

σ2
m(2C̄k/B − 1)(tan−2(θ) + 1)

,∀n, k,m. (6)

In order to analyse the UAVs’ mission completion time, we
consider that it is comprised of three types of execution time.
Firstly, the time needed for completing data collection from the
K IoT devices consists of the connecting time (Lcon) and the
data transferring time (Ldata). Secondly, (Ltran) is the time
needed for the M UAVs to cover their planned path over the K
IoT devices - this does not include connecting and transferring
time. These time series are defined as

Lcon =
∑
k∈K

Lk,con,

Ldata =
∑
k∈K

D̄k

C̄k
,

Ltran(q) =
∑

m∈M

N∑
n=1

δm,n(q), (7)

where Lk,con representing the connecting time between a UAV
and the kth IoT device, is randomly distributed in a given time
interval; and q = {q1, ..., qM}.

Thus, the total completion time of the M UAVs in the
mission is expressed as

Ltot = Lcon + Ldata + Ltran(q). (8)

From that, the minimum number of time-slots the UAVs
need to finish collecting the sensor data from the K IoT
devices can be calculated as

N̄min =

⌈
Lcon + Ldata + Ltran

η

⌉
, (9)

where d.e is a calculation for rounding a decimal value to an
approximate integer.

Consequently, the number of UAVs needed to cover all the
IoT devices can be obtained as

M ≥ M̄min =

⌈
N̄min

N

⌉
. (10)
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To reflect the limitation of the UAVs’ operating time in
practice, the total allowable completion time in this model
must satisfy the following inequality:

Ltot ≤MTmax, (11)

where Tmax is the maximum operating time of a UAV. For
large-scale scenarios, the value of Ltot can be significantly
higher than the period time Tmax.

To support the overall task completion time of multiple
UAVs, the UAV-IoT devices clustering will be investigated in
this work. The main benefits of proposing UAV-IoT devices
clustering are to reduce the number of UAVs to be used for
collecting sensor data and the completion time over a turn of
sensor exchange data under a parallel collection scheme by M
UAVs. To this end, we consider M UAVs for use as M clusters
to cover K IoT devices. Thus, the cluster m (UAV m) can
serve a finite number Km of IoT devices, Km = {1, ...,Km}.
The values of Km are different amongst the M clusters and
depend on the clustering approaches.

Equation (8) can be rewritten to show the completion time
of a UAV m that is used in the mission, as follows:

Lm,tot = Lm,con(Km) + Lm,data(Km) + Lm,tran(qm),
(12)

where

Lm,con(Km) =
∑

k∈Km

Lk,con, Lm,data(Km) =
∑

k∈Km

D̄k

C̄k
,

Lm,tran(qm) =

Nm∑
n=1

δm,n(q).

The completion time constraint of the mth UAV is also
expressed as

Lm,tot ≤ Tmax. (13)

On the other hand, to overcome the strict limitation of en-
ergy consumption in UAV communications, an energy model
with respect to the required time frame, and an optimisation
problem for minimising the total energy consumption of the
UAVs will be proposed in the next subsections.

D. Energy model

Given a constant UAV’s operating power, the energy con-
sumed by the mth UAV can be estimated as

Em(q,Km) = Pm,opeLm,tot

+ Pm,com

(
Lm,con(Km) + Lm,data(Km)

)
,
(14)

where Pm,ope is the UAV’s operating power, and Pm,com is the
energy for UAV communication including establishing connec-
tions with Km IoT devices and data transmission activities.
This model is used to represent the energy consumed by the
UAV to fly through its planned path and to complete data
collection from the Km IoT devices that are allocated to it.

Based on the time frames as specified in (8) and (12), the
total energy consumption (Etot(qm)) (in Joules) of all the
UAVs is given as

Etot(q,K,M) =
∑
m∈M

Em(q,Km), (15)

where K = {K1, ...,KM}. According to a comprehensive
energy model for UAV kits, the energy consumption of flying
operation at the UAVs and communication protocols for IoT
network will be separated by using different batteries. In this
work, the power of UAV communications in the IoT network
is assumed that it is higher than the power of UAV flying
operation. Therefore, it is significant to minimise the total
operating power of UAVs in the data collection mission. In
this paper, we minimise the total energy consumption of UAV
operation by optimising the total operating time of all UAVs.

E. Problem formulation

Our objective is to minimise the total energy consumption
as presented in the equation (15), under the constraints on
flying time, coverage region, QoS requirement, and number
of UAVs. The problem formulation is described as

min
q,K,M

Etot(q,K,M) (16a)

s.t. (3), (6), (10), (11), (13), (16b)
qmin ≤ qm ≤ qmax , ∀m = 1, ...,M. (16c)

Equation (15) shows that the Etot increases as the Ltot

increases and as mentioned above, the total energy consump-
tion of UAVs in a particular mission significant relies on
the total flying time. Therefore, in this paper, we minimise
the energy consumption of all the UAVs by minimising the
total completion time. We assume that the central control
system is used to estimate the entire paths of UAVs and all
optimisation procedures are executed centrally in the control
system. We do not rely on a distributed control scheme because
it is more complicated to handle optimisation problem in
distributed scheme due to other issues such as data exchanges,
data synchronisation, scheduling, etc.,. Additionally, when we
implement the distributed control scheme on UAVs that means
the UAVs have to take additional computing tasks to opti-
mise their paths, which obviously increases the total energy
consumption as well as total completion time of UAVs. The
following sections present two proposed approaches to solve
(16), namely, optimal energy consumption by peer-to-peer
UAV-IoT networks (P2P), and optimal energy consumption
by clustering UAV-IoT networks (CUN).

III. OPTIMAL ENERGY CONSUMPTION BY PEER-TO-PEER
UAV-IOT NETWORKS (P2P)

In this approach, we separate the problem (16) into two
subproblems. Firstly, the number of UAVs needed is estimated
following the peer-to-peer (P2P) networking scheme between
UAVs and IoT devices. Then, a simple trajectory design is
implemented to minimise the total energy consumption.

Let us assume that the altitudes of all the UAVs are a
constant, i.e., hm = H̄, ∀m. We consider the total number
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of time-slots of the M UAVs as K + 2M to reflect K time-
slots to collect data from the K IoT devices, and an initial and
a final time-slot for each UAV. Further to this, let us define
the mth UAV’s location at its initial and final time-slot as
qm[0] = qm[Km + 1] = qG,m.

A. Estimating the number of UAVs

From (1), the UAVs’ total flight time in the P2P path
planning over K time-slots can be rewritten as

δp2p =

K−1∑
k=1

δp2p
m,k =

K−1∑
k=1

‖qm[k + 1]− qm[k]‖
V

, (17)

where qm[k] = qk.
We propose to use Algorithm 1 for estimating the UAV

number in this P2P approach of UAV-IoT device networking.
In the algorithm, Lp2p

m is the completion time of the mth UAV,

Algorithm 1 Estimating the UAV number (M̄p2p)

Input: The UAVs’ initial locations (qm[0]) and the IoT de-
vices’ location (qk).

1: Set Mp2p = �. Set m = 1, Km = � and Lp2p
m = 0.

2: for k = 1 to K do
3: if Lp2p

m + δstm + δfim ≤ Tmax

4: Calculate Lp2p
m = Lp2p

m + Lmax
k,con + D̄k/C̄k + δp2p

k,k .
5: Add Km = {k}.
6: end if
7: return Km and Mp2p = {m}.

Set m = m+ 1, Km = � and Lp2p
m = 0.

8: end for
Output: {Mp2p} and {Km = {1, ...,Km}},∀m.

while its initial (δstm) and final flying time (δfim ) are respectively
written as

δstm =
‖qm[0]− qk|k=1‖

V
, (18)

δfim =
‖qm[Km + 1]− qk|k=Km

‖
V

. (19)

Hence, the mth UAV’s completion time (Lp2p
tot ) is given as

Lp2p
tot =

∑
m∈Mp2p

Lp2p
m , (20)

where

Lp2p
m = δstm + δfim +

∑
k∈Km

(
Lmax
k,con +

D̄k

C̄k
+ δp2p

m,k

)
, (21)

such that

Lp2p
m ≤ Tmax. (22)

Thus, the total energy consumption corresponding to the
total completion time now can be expressed as:

Ep2p
tot (q,K,Mp2p) =

∑
m∈Mp2p

Ep2p
m (q,Km), (23)

where

Ep2p
m (q,Km) =

∑
m∈Mp2p

Pm,opeL
p2p
m

+
∑

m∈Mp2p

Pm,com

∑
k∈Km

(
Lk,con +

D̄k

C̄k

)
.

B. Proposed optimisation problem and solving approach

The subproblem of minimising the total energy consumption
(16) without the constraints of the UAV number is given as

min
M,qm

Ep2p
tot (q,K,Mp2p) (24a)

s.t. (3), (6), (16c), (22), (24b)

Lp2p
tot ≤ M̄p2pTmax. (24c)

Unlike the original nonconvex problem (16), the subproblem
(24) is a convex problem of low-complexity, whose objective
function and constraints are convex. As a result, this subprob-
lem can be handled by using optimisation solvers, such as
CVX [25].

IV. OPTIMAL ENERGY CONSUMPTION BY CLUSTERING
UAV-IOT NETWORKS (CUN)

In this approach, we separate the problem (16) into two
subproblems. Firstly, the IoT clustering method with QoS
constraint (5) will be proposed for partitioning the IoT devices
into clusters by constrained K-means clustering procedure.
Then, a fast trajectory design is implemented to calculate the
number of UAVs needed and minimise the completion time of
this scheme.

A. Constrained K-means clustering model

By following the coverage communication between M̄clus

UAVs and K IoTs devices are divided into multiple groups
Kj = {1, ...,Kj},Kj ≥ 1, j = 1, ..., J , M̄clus ≤ J such that∑J

j=1Kj = K and K = {K1, ...,KJ}. Thus, one or more
group will transfer their data to the UAV that satisfies the
constraints (5) and (11).

We propose an efficient procedure based on constrained K-
means clustering to group the IoT devices, as in Algorithm 2.

From (1), the new expression for the flying time of a UAV
between two adjacent clusters can be written as follows:

δclus =

J−1∑
j=1

δclusm,j =

J−1∑
j=1

‖qj [j + 1]− qj [j]‖
V

, (25)

where qj [j] = θj is the location of the jth cluster’s centroid.
Meanwhile, the initial and final flying time of the UAV over
one cluster are respectively expressed as

δstj =
‖qG,m − qk|k=1,k∈Kj‖

V
, (26)

δfij =
‖qG,m − qk|k=Kj

‖
V

. (27)

In addition, the maximum operating time of the UAV has
an impact on the number of IoT devices it can serve in each
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Algorithm 2 Constrained K-means clustering of IoT devices

Input: The IoT devices’ location (qk). The locations of the
cluster centroid are initialised as {θj = qk}, J = K. The
maximum number of iterations is set to Nmax.
Set Jreal = � and K = {1, ...,K}.

1: Repeat
2: Update index of clusters:
3: Compute the distance dist(qk,θj), ∀j, k.
4: Set j = 0.
5: while j ≤ J do
6: Set j = j + 1, k̂ = 1.
7: for k = k̂ to K do
8: if dist(qk̂,θj) ≤ Dj,cov , assign the IoT device
k̂ to cluster j. Set Kj = {k}.

9: else break;
10: end if
11: end for
12: Set Jreal = {j}
13: end while
14: Update the number of IoT devices in each cluster:
15: Calculate the completion time (Lclus

j ) in each cluster.
16: If (28) is satisfied, go to next step.
17: If (28) is violated, return with re-initialising the

centroid (θj) or increase the number of clusters (J).
18: Update centroids:
19: Update the location of each cluster’s centroid location

as
20: θj = 1

Kj

∑
k∈Kj

qk
21: Until There is no change in cluster members, or the

iteration number reaches Nmax.
Output: {Jreal}, {θj} and {Kj = {1, ...,Kj}},∀j.

cluster. Thus, to control the number of IoT devices in each
cluster, the total UAVs’ flying time over their assigned IoT
devices must satisfy the following inequality

Lclus
j + δstj + δfij ≤ Tmax, (28)

where

Lclus
j =

∑
k∈Kj

(
Lmax
k,con +

D̄k

C̄k

)
.

B. Proposed solving approach
Let us assume that the location of the UAVs is unchanged

while they communicate and collect sensor data from the
clusters of IoT devices. We further define a binary variable
am = [am,j ]

J
j=1 as

am,j =

{
1, UAV serves group j
0, otherwise.

(29)

In Algorithm 3, we propose a simple method to identify the
UAV number and estimate the completion time following the
assignment procedure as in (29).

The total flight time for the UAVs to complete data collec-
tion is expressed as

Lclus
tot =

∑
m∈Mclus

Lclus
m , (30)

Algorithm 3 Estimating the UAV number (M̄clus)

Input: The UAVs’ initial locations (qm[0]) and the database
of IoT devices clustering ({θj}, {Kj}, Jreal). Set am = 0

1: Set Mclus = �. Set m = 1, Jm = � and Lclus
m = 0.

2: for j = 1 to Jreal do
3: if Lclus

m + +δstm + δfim ≤ Tmax

4: Calculate Lclus
m = Lclus

m + Lclus
j + δclusj .

5: Set am,j = 1 and add Jm = {j}.
6: end if
7: return Jm and Mclus = {m}.

Set m = m+ 1, Jm = � and Lclus
m = 0.

8: end for
Output: {Mclus} and {Jm = {1, ..., Jm}},∀m.

where

Lclus
m = δstm + δfim +

∑
j∈Jm

δclusm,j +
∑
k∈Kj

(
Lk,con +

D̄k

C̄k

)
,

(31)

δstm =
‖qG,m−qj |j=1,j∈Jm‖

V and δfim =
‖qG,m−qj |j=Jm‖

V such
that

Lclus
m ≤ Tmax. (32)

Therefore, the total energy consumption from (15) in this
approach can be expressed as:

Eclus
tot (q,Mclus) =

∑
m∈Mclus

Eoper +
∑
m∈M

Ecomm

(33)

=
∑

m∈Mclus

Pm,ope.
∑

m∈Mclus

Lclus
m

+
∑

m∈Mclus

Pm,com.
∑
k∈Kj

(
Lk,con +

D̄k

C̄k

)
.

Unlike the P2P networking, this approach results in a non-
complex optimisation problem that can be solved fast and
efficiently by using Algorithm 2-3.

V. SIMULATION RESULTS

A. Simulation setup

To evaluate the performance of our proposed approaches,
we used a Windows-based Laptop, 10th Generation Intel®
Core™ i7-10610U with 16GB memory, as the computational
platform. The simulations are run on Matlab software, which
is a well-known simulator and wildly used in engineering.

For simulations parameters, without loss of generality, we
followed the set-up as in [1]. In particular, the connection
between the UAVs and IoT devices followed the BLE protocol
at the 2.4 GHz frequency, bandwidth B = 1 MHz, standard
data rate (C̄k = 200kbps), and connectivity range of maximum
100m. The IoT’s data packet and constant transmit power were
assumed at D̄k = 1 Mbits and 100mW, respectively. For the
network topology, we considered a rectangle network area of
A(`, d) = (2000, 200). The control station and parking docks
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were assumed to be located at (100, 1000, 0). The number
of IoT devices was set to K = {100, 200, 500, 800, 1000}
for performance evaluation. The average flight speed and
maximum operating time of a UAV were V = 10m/s and
Tmax = 20 minutes, respectively. The UAVs’ altitude was
fixed at Hm = [20, 100]m. The noise power was −90dB.
Each IoT device’s connection time (Lk,con) was randomly
distributed in the interval [0.5, 5]s. The power consumption
of a UAV for flying and communication were respectively set
to P oper

m = 300W and P comm
m = 5W.

B. Simulation results

1) Completion time minimisation: Fig. 2 plots the min-
imised completion time in the two proposed approaches
against the coverage region (Dcov) in four different scenarios
of the number of IoT devices. In general, the P2P path plan-
ning scheme provides lower completion times than the CUN
approach. While both schemes provide similar completion
time at a small Dcov , P2P scheme outperforms its counterpart
by a large margin as the coverage region expands. However, at
the same number of IoT devices, this margin tends to decrease
with increasing the coverage region.
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Fig. 2: The completion time versus the coverage region Dcov

in P2P and CUN schemes.

2) Total energy consumption minimisation versus coverage
region (Dcov): In terms of total energy consumption, it looks
similar to the total completion time because the completion
time plays a key role in UAVs’ energy consumption. The
results of energy consumption comparisons are presented as
in Fig. 3.

The figures illustrate that the P2P with the optimisation
approach saves more energy than the CUN method in most
cases, especially in small coverage region (radius from 20m
to 60m). As can be observed from Fig. 3, when the coverage
region of UAVs increases, they spend less time for data
collection mission so that their total energy consumption
gradually decreases. Interestingly, the difference between two

approaches are smaller at the smallest coverage region (20m)
and the largest coverage region compared to other coverage
region values.
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Fig. 3: The total energy consumption versus the coverage
region Dcov in P2P and CUN schemes.

3) Total energy consumption versus density levels sensor
distribution (K): Fig. 4 was generated to analyse the perfor-
mance of each approach in UAV planning among various Dcov

range at different density levels of sensor distribution.
The figures show that the total energy consumption in

both approaches increases when the number of IoT devices
increases. Additionally, as the coverage region becomes larger,
the UAVs’ energy consumption pattern gradually shifts to-
wards supporting data collection. The results also show that
the P2P solution is more effective at the large number of
IoT devices because its total energy consumption gradually
decreases when the coverage region becomes wider, while
CUN experiences some fluctuations (e.g., the last green bar).
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Fig. 4: The total energy consumption versus the coverage
region in P2P and CUN schemes, at different density levels
of sensor distribution.

4) The processing time: The processing time of P2P and
CUN approaches is illustrated as in Fig.5. As can be observed
from this figure, the UAV-assisted system can save a lot of
solving time by employing the CUN approach. For example,
at K = 500, CUN approach s more than 200 times faster
than the P2P approach. The results also present that in the
small number of IoT devices scenarios, the P2P approach
experiences a stable execution time among different Dcov
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values while the processing time of the CUN method reduces
as Dcov increases.
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Fig. 5: The total processing time versus the coverage region
in P2P and CUN schemes, at different density level of sensor
distribution.

5) The number of UAVs: The QoS requirements of the
system in terms of completing tracking the coverage region
(Dcov) and collecting data, are also investigated. To this end,
we estimated the number of UAVs used in P2P scheme and
the number of clusters in CUN. When the number of IoT
devices is as low as 50 or 250, both schemes require the same
minimum number of UAVs (1 and 4) to fulfil the mission.
However, in large-scale scenarios such as 500, 750, and 1000
IoT devices, the number of UAVs used in the CUN approach
is considerably smaller than that in the P2P method. Fig.6
depicts this comparison.
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Fig. 6: The smallest number of UAVs used in the proposed
methods at different K values.

In summary, P2P scheme outperforms CUN in terms of
the total completion time, total energy consumption when the
cover region increases or device density goes up. Conversely,
CUN schemes have the advantage of faster processing time
(i.e., in milliseconds) and use less UAVs. Hence, there is a
trade-off between the two approaches with respect to time
(processing time and completion time) and resources (energy
consumption, UAV number) within a given set of requirements
(QoS in terms of coverage area and device density level),

which will merit further study for real-time applications, e.g.,
time-critical missions.

VI. CONCLUSIONS

In this paper, we proposed to employ UAV-aided commu-
nications for intelligently tracking and gathering sensed data
from IoT devices. We have proposed the practical embedded
optimisation methods to support the time-critical applications.
When the number of time slots, the number of UAVs, and the
number of IoT devices are large, the non-convex optimisation
problem become very complicated. We have demonstrated that
our optimisation algorithms can be useful in large-scale scenar-
ios. The proposed schemes with low-computational complexity
to optimise the completion time and energy consumption can
solve such complex optimisation problems in real-time.
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