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Abstract

The rapid deployment of renewable-based generation to meet the net-zero carbon targets
has affected the wholesale energy paradigm. In the island of Ireland, the Single Electricity
Market (SEM) aims to deliver high levels of supply security, reliability, and transparency
through multiple markets with different trading time frames and clearing procedures. This
paper proposes a powerful methodology to maximize the revenues from the participa-
tion in the SEM. A forecasting model of four successive stages based on neural networks
is proposed to predict the demand and system marginal prices of the SEM ex-ante mar-
kets. An energy arbitrage optimization framework is proposed for battery energy storage
systems (BESS) to maximize the arbitrage profits. The methodology efficacy is validated
by achieving 91.1% selling accuracy, 97.9% buying accuracy, and 85.1% energy arbitrage
net accuracy of the ideal case where the SEM data is perfectly-known for three consecu-
tive months. Furthermore, the BESS degradation is evaluated and a cost-benefit analysis is
introduced to evaluate the economic feasibility of BESS participating in the SEM ex-ante
markets. The results reveal that the participation of BESS in the SEM solely is not prof-
itable, however, under stacked revenues arrangement, the proposed methodology can be
applied to boost the BESS revenues.

1 INTRODUCTION

In order to meet the net-zero carbon targets, the integration of
renewable energy generation is essential to decarbonize the elec-
tricity sector. In the island of Ireland, the deployment of low
carbon generation is accelerating such that the wind penetra-
tion reached 35% in 2020 [1], with an ambition to reach 70%
of the total electricity generation from renewable resources by
2030 [2]. The reliance on renewable generation requires care-
ful planning and management due to the operational challenges
associated with these resources [3]. BESS energy storage sys-
tem (BESS) has been integrated recently to provide the sys-
tem with different static and dynamic services in fast response
which makes their integration beneficial in the energy evo-
lution [3]. The installation of BESS is considered a promis-
ing option for the secure accommodation of more renewable
energy.
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Due to the integration of different distributed energy
resources, the energy markets have to adapt by accommodating
these resources efficiently and providing a high level of competi-
tion to assure supply security with reasonable energy prices. The
electricity market of the island of Ireland was started in 2007
as a single wholesale market, combining two trading areas with
different currencies: The Republic of Ireland (€) and Northern
Ireland (£), named as single electricity market (SEM), and man-
aged by the single electricity market operator (SEMO) [4]. The
SEM allowed generators and suppliers to submit bids for a cer-
tain volume with a price during a specific period. In the SEM,
the system marginal price (SMP) is used, which is determined
based on the bids and demand using the Market Scheduling and
Pricing algorithm. In order to cope with the energy evolution,
the SEM has been evolved through the Integrated Single Elec-
tricity Market (I-SEM) project on the 1 October 2018. The new
SEM provides more flexibility to market participants across the
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island of Ireland by introducing ex-ante markets (day-ahead and
intraday) and balancing markets, which are cleared before the
actual delivery.

Most energy market traders are interested in predicting
the energy market on a period ahead basis to take the right
actions that maximize the trading revenues. Hence, forecast-
ing models for energy markets are needed. However, energy
markets are location-dependent as each energy market has
its own auctions and procedures. Thus, specific forecasting
models should be introduced for each energy market. Yet,
common techniques can be used such as machine learning
models.

BESS has the opportunity to boost revenues in energy mar-
kets through maximizing energy arbitrage profits. However,
optimization frameworks are essential that considers the BESS
operational constraints as well as the energy market rules. In the
literature, different studies have addressed forecasting models
for energy markets and/or BESS energy arbitrage frameworks.
In [5], a forecasting model is introduced based on an artificial
neural network (ANN) to predict the SMP of the South Korean
day-ahead market. Historical data of 15 years was used to train
the ANN model in addition to a set of predictors represent sim-
ilar days information. However, this study focused only on the
day-ahead SMP. Another ANN model is introduced in [6] to
provide short-term prediction up to 72 h for the SMP of the old
Irish SEM using historical market data in addition to other pre-
dictors including weather factors and calendar indices. Though
the SEM has been evolved in late 2018 and hence, the model
presented in [6] might not be valid with the new SEM rules and
auctions.

In [7], another short-term forecasting model is introduced to
predict the market demand of the Irish SEM day-ahead mar-
ket. Two methods were tested: ANN, and Holt-Winters’s expo-
nential smoothing method (HWETS). The ANN was trained
using one-year demand historical data in addition to weather and
calendar predictors. While the HWETS used only eight weeks
of observations to train the model. Both methods show good
results, however, the ANN outperformed the HWETS method.
Yet, this study focused only on forecasting the day-ahead market
demand and did not consider forecasting the market SMP. The
Spanish energy market price was forecasted using regression-
tree models in [8], the model was trained using 11 years of his-
torical data in addition to calendric and other generation pre-
dictors. The study provided a comparison between regression
tree models and the autoregressive integrated moving average
method, and the results proved the outperformance of regres-
sion tree models.

The BESS participation in energy markets was addressed in
[9], where an approach is proposed using ANN and long short
term memory to forecast the day-ahead market demand and
SMP in addition to determining the optimal BESS operation
using a deep reinforcement learning technique to maximize the
energy arbitrage revenue by considering the BESS degradation
in determining the optimal BESS discharging/charging. In [10],
a multistage approach is introduced to determine the optimal
BESS schedule in the day-ahead, intraday, and reserve markets

of the Iberian energy market. However, market forecasting was
not considered. The BESS energy arbitrage profits from the
Irish SEM and enhanced services of the DS3 programme have
been addressed in [11], where the expected profits were quanti-
fied from trading in the day-ahead market.

In [12–14], the sizing and operation of BESS to provide con-
gestion management, reactive power support, and minimizing
renewable curtailments in the distribution network of Northern
Ireland were addressed. The application of BESS to provide fre-
quency and inertia services in the Irish power system was inves-
tigated in [15, 16]. However, the previous studies did not con-
sider the profitability nor the economic feasibility of deploying
BESS under these services. In [17], the use of BESS to enhance
the distribution network operation was introduced through a
two-stage methodology to determine the look-ahead and real-
time setpoints of multiple BESS to flatten the grid power curve.
Additionally, study [17] explored the expected profits and the
economic feasibility under the sole participation in the available
services in the island of Ireland.

Trading in the energy markets require a robust forecasting
model, several forecasting methods can be utilized as reported
in the literature. Forecasting methods can be categorized into
classical and machine learning. Classical methods such as expo-
nential smoothing and autoregressive moving average mod-
els. While machine learning models include ANN and regres-
sion models. Both methods have proved to provide reasonable
forecasting accuracy for different applications [18]. However,
machine learning models can provide a long-term forecast with
good accuracy compared to the classical methods which are cru-
cial for planning applications such as energy markets. In addi-
tion, machine learning models have proved to outperform clas-
sical methods in predicting energy demand and prices as shown
in [7, 8, 17]. Yet, machine learning methods require careful selec-
tion of the model predictors.

These predictors can include the market historical data,
weather factors such as air temperature, wind speed, and wind
direction in addition to calendar indices that include the trading
interval/hour of the day, day of the month, day of the year, day
of the week, and special days. More predictors can be used; how-
ever, the complexity of the model increases which also increases
the training time. Furthermore, machine learning models such
as ANN require careful selection for the model parameters
(weights and biases), and the conventional training methods
may fall into local optima [19]. Thus, to unlock the high per-
formance of ANN, optimization-based approaches have been
introduced such as [19–21]. However, the optimization should
avoid overfitting the training data.

The weather predictors demonstrated to increase the fore-
casting model accuracy as shown in [6, 7]. However, these pre-
dictors can impose another challenge as they require another
metrological forecasting model to be predicted. Hence, the
resultant forecasting shall contain high errors as it accumu-
lates forecasting errors of the weather predictors, especially for
long-term forecasting. Additionally, the weather in geographical
locations such as the island of Ireland is volatile and hence,
robust weather forecasting methods should be used which adds
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a burden to the energy market forecasting. Hence, it is advis-
able to avoid using weather predictors unless it is necessary. To
summarize, the main challenges associated with the new SEM
forecasting can be listed as follows:

1. It combines two different regions: The Republic of Ireland
and Northern Ireland. This imposes a challenge in forecast-
ing the demand and SMP, as for example, the holidays may
differ between these two areas which can greatly affect the
forecasting.

2. As the new SEM began in late 2018, historical data is only
available for two years.

3. Contains high volatility due to the significant weather fluctu-
ations in the island of Ireland in addition to the high genera-
tion from renewables, especially from the wind. Hence wind
speed should be considered in the forecasting model, espe-
cially in forecasting the SMP as the market SMP is hugely
affected by wind generation. While weather predictors are
often avoided to mitigate the additional uncertainties, in the
SEM, the wind speed cannot be discarded. Furthermore, the
wind speed differs significantly across the island of Ireland,
hence, it is difficult to select particular wind speed measure-
ments to be used according to the available weather stations.

4. It consists of four ex-ante auctions; hence, specific fore-
casting models should be developed for each auction which
increases the model complexity.

5. Most of the SEM auctions closes one day before the trading
day, and hence, day-ahead forecasting cannot be used, and
the forecasting should be conducted on a two-days ahead
basis to be able to trade in the SEM, which will affect the
forecasting accuracy.

This paper aims to propose a robust forecasting model for
the SEM ex-ante auctions in addition to introducing an energy
arbitrage maximization framework for the BESS participating
in the SEM besides investigating the BESS economic feasibility.
This work is motivated by the following gaps:

1. To the authors’ knowledge, forecasting models of the Irish
SEM have not been introduced in the literature. Study [7]
considered only predicting the market day-ahead demand,
however, the data used for training was for the old SEM and
the study focused only on the day-ahead market demand.

2. Studies that optimize the ANN weights and biases utilize the
same training set which may lead to overfitting the model on
the training data [21].

3. For BESS registered in SEM but not active in energy arbi-
trage at present due to system limitations. Maximizing the
BESS energy arbitrage profits from participating in the SEM
ex-ante markets has not been investigated previously except
in the authors’ previous work [22], where a four layers opti-
mization approach based on linear programming was intro-
duced to maximize the energy arbitrage profits from partici-
pating in day-ahead and intraday markets. However, the fore-
casting was applied using a generic tool on a day-ahead basis.
Additionally, the BESS charging optimization was not con-
sidered.

This paper extends and complements the authors’ previous
work [22] and aims to address the research problems identi-
fied from the previous studies through the following contribu-
tions:

1. Providing data analysis for the SEM using the available his-
torical data that is believed to be beneficial to SEM partici-
pants.

2. Introducing a four-stage successive forecasting model to pre-
dict the SEM day-ahead market demand and SMP in addi-
tion to the intraday auctions SMP using ANN. Optimization
algorithms are introduced to determine the optimal number
of ANN hidden layers and neurons in addition to optimizing
the weights and biases. A novel formulation is introduced to
avoid overfitting the data and achieve a high level of general-
ization. On the other hand, the classical forecasting method
using the HWETS method has been used to provide a com-
parative analysis. Furthermore, this paper demonstrates that
in some cases, combining both classical and machine learn-
ing models can improve forecasting accuracy.

3. Proposing an energy arbitrage maximization framework for
the BESS participating in the SEM that aims to determine
the optimal BESS discharging/charging schedule across the
SEM ex-ante markets that maximizes the revenues. The pro-
posed framework is less complex compared to the one intro-
duced in [22], which makes it easier to be applied for a dif-
ferent type of generation resources.

4. Providing three months of forecasting on a two-days ahead
basis with reasonable accuracy and quantifying the expected
BESS net arbitrage revenues with 85.1% accuracy of the per-
fect foresight case.

5. Quantifying the BESS degradation under the energy arbi-
trage using a well-established semi-empirical degradation
model for the Li-ion BESS.

6. Evaluating the economic feasibility of BESS participating
solely in the SEM energy arbitrage through cost-benefit anal-
ysis.

The rest of the paper is organized as follows: Section 2 intro-
duces the SEM structure and data analysis, Section 3 explains
the proposed methodology, Section 4 describes the proposed
forecasting model, Section 5 presents the energy arbitrage max-
imization framework, Section 6 provides the simulation results,
Section 7 quantifies the BESS degradation, Section 8 includes
the cost-benefit analysis, the discussion is given in Section 9,
and finally the conclusion is in Section 10.

2 SINGLE ELECTRICITY MARKET
(SEM)

In the current SEM, the SMP is determined using a cross-border
hybrid electricity market integration algorithm (Euphemia) [23].
The simple orders in the day-ahead and intraday markets
should consist of price-quantity pairs, with units in £/MWh
and MWh respectively. Each price-quantity pair specifies a price
and quantity of electricity in a specified trading period. During
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TABLE 1 SEM ex-ante markets arrangements

Market

Order book opening

time Order book closure time Trading periods Auction duration

Day-ahead (DAM) 19 days before the trading
day at 11:00 PM

One day before the trading day at
11:00 AM

11:00 PM–11:00 PM 1-hour period 24 hours 24 time-points

Intraday1 (IDA1) 19 days before the trading
day at 11:00 PM

One day before the trading day at
5:30 PM

11:00 PM–11:00 PM 30 minutes
period

24 hours 48 time-points

Intraday2 (IDA2) 19 days before the trading
day at 11:00 PM

Trading day at 8:00 AM 11:00 AM–11:00 PM 30 minutes
period

12 hours 24 time-points

Intraday3 (IDA3) 19 days before the trading
day at 11:00 PM

Trading day at 2:00 PM 5:00 PM–11:00 PM 30 minutes
period

6 hours 12 time-points

the day-ahead market (DAM), the trading period is 1 h, hence
for selling, the exchange member should submit the MWh
quantity at specific hours with a price. In the Intraday markets,
the trading period is 30 min. So, the exchange member should
submit the MWh quantity for a specific 30-min interval with
a price. Additionally, the electricity suppliers enter the market
to buy electricity by submitting their price-quantity pairs. After
the auction gate closes, all orders are aggregated each delivery
hour in the SEM and the Euphemia algorithm determines the
SMP. The intraday market consists of three daily auctions. For
the first intraday auction (IDA1) and second intraday auction
(IDA2), the market is coupled with Great Britain (GB) bidding
area via Moyle and EWIC interconnectors. The third intraday
auction (IDA3) is a local auction and is not coupled with
the GB bidding area. Usually, the available volume/demand
for bidding in the IDA3 is very small, especially for North-
ern Ireland. Details on the SEM day-ahead and Intraday
markets are given in Table 1 and are available in the SEMO
rules [24].

2.1 SEM ex-ante markets data analysis

As the SEM is new, the available historical data for DAM and
IDAs are for the period between 1 October 2018 to the present.
Two full years (2019/2020) of market data are available, how-
ever, one of these years (2020) is considered as an unusual year
for the energy market as people’s routines changed due to the
Covid-19 and multiple lockdowns across the year. To analyse the
differences between 2019 and 2020, the DAM data for these two
years were obtained from [4, 25], the average market demand
and SMP for the four seasons of the two years are illustrated in
Figure 1.

As shown in Figure 1, the average winter/summer demand in
2020 is higher than in 2019. However, the average market prices
in 2020 for the winter/summer is lower than in 2019. In 2019,
the average SMP was £49/MWh, however, in 2020 this price
dropped to £32/MWh. This can be related to the available gen-
eration as the market SMP is generally affected by the generation
bidding which can be linked to several factors. Firstly, wind gen-
eration dominates energy production on the island of Ireland
and the total wind generation in 2020 increased by 12.7% com-
pared to 2019 [1]. Secondly, the pandemic has affected demand

in 2020 due to lockdowns and restrictions, especially in the
industrial sector. Thirdly, the fuel prices have dropped signifi-
cantly in 2020, for instance, the gas and oil prices in the UK were
dropped by an average of 15.5% and 16.2% respectively com-
pared to 2019 [26]. Finally, the SEM is maturing such that after
one year of experience, the market experienced for the first time
many days with negative average prices, started on the 5 April
2020 [4, 25]. Furthermore, it can be noticed from Figure 1 that
despite the differences associated with the magnitude, the shape
of demand or SMP is fairly typical for 2019 and 2020 through-
out the seasons. In addition, the DAM SMP is dependent on the
shape of DAM demand.

Another point of analysis is the periods of high and low
SMP which are important for market bidders. For the SEM
historical data 2019/2020, the four hours in each day with
the highest SMP were obtained for the DAM, IDA1, and
IDA2. Additionally, the four hours in each day with the low-
est SMP were obtained for the DAM. The results were then
combined as a form of occurrence percentage and illustrated in
Figure 2.

As shown in Figure 2, the period with the lowest DAM SMP
falls between 01:00 AM to 07:00 AM with a total percentage
of occurrence of 78% and an average SMP of £22.4/MWh.
While the period with the highest SMP for the DAM, IDA1,
and IDA2 falls in the period between 6:00 PM to 10:00 PM with
a total percentage of occurrence of 70% and an average SMP of
£59.5/MWh. These periods are important as they can be used
in a heuristic framework to maximize the total revenue obtained
from the energy arbitrage. To compare the SMP shape of differ-
ent markets across the year, Figure 3 illustrates the average SMP
per market for each season determined using the SEM histori-
cal data of 2019/2020. As shown in Figure 3, the average SMP
shape per season is kind of similar for the three markets with
very minor differences which means that the SMP of IDA1 is
dependent on DAM SMP and similarly the IDA2 SMP is depen-
dent on IDA1 SMP.

3 PROPOSED METHODOLOGY

The aim of this paper is to introduce a reliable forecasting
model for the SEM ex-ante markets using ANN with the aid of
SEM historical data and other predictors. Different predictors
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Winter Spring Summer AutumnFIGURE 1 Average DAM volume and SMP for
each season in 2019 and 2020

(a)

(b)

(c)

FIGURE 2 Occurrence of highest/lowest SMP periods throughout
2019/2020: (a) Highest/lowest SMP period for the DAM, (b) highest SMP
period for the IDA1, and (c) highest SMP period for the IDA2

were tested to obtain the simplest yet most effective combina-
tion of predictors. The outputs of this forecasting model are
then being used to maximize the total revenue using a devel-
oped energy arbitrage maximization framework. This frame-
work aims to determine the optimal BESS schedule to maximize
the revenues from trading in the SEM ex-ante markets. After-
wards, the expected revenues are quantified, and a cost-benefit
analysis is provided. The proposed methodology is illustrated in
Figure 4.

4 SEM FORECASTING MODEL

In order to optimize the bidding in the SEM, a forecasting
model should be available. In [22], a generic forecasting tool
was used and showed that the revenues can be boosted with a
high accuracy forecasting model. However, the forecasting tool
used in [22] cannot be used efficiently in practice for long period
ahead. Hence, a customizable forecasting algorithm should be
introduced that considers a different set of predictors to pro-
vide more accurate results. Forecasting models of energy mar-
kets relies mainly on the available historical data in addition
to a set of other predictors (e.g., weather and calendar) used
to train a machine learning model. The problem with using
weather data is that these data also require forecasting which
accumulates the uncertainties. In addition, the market historical
data is very important as it is the core of the training process
and greatly affects the resultant forecasting model, hence, long
historical market data is crucial in building a reliable forecast-
ing model. The new SEM started on 1 October 2018, hence,
only two full years (2019/2020) of market data are available
which is very challenging in achieving a reliable forecasting
model.

In this paper, a four-stage successive forecasting model is
proposed using ANN, illustrated in Figure 5. The first stage
aims to determine the DAM demand/volume, the second stage
is introduced to predict the DAM SMP, the third stage predicts
the IDA1 SMP, and the fourth stage aims to predict the IDA2
SMP. As illustrated in Figure 5, the proposed model is succes-
sive such that each stage is dependent on the results obtained
from the previous stage. This is because the SEM ex-ante mar-
kets are dependent on each other as shown in Figure 3, hence,
the result obtained from each stage is used as a predictor for the
next stage. The predictors used for each stage of the forecasting
model are detailed in Table 2.
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FIGURE 3 Average SMP obtained from 2019/2020 SEM data for the DAM, IDA1, and IDA2 for different seasons

As given in Table 2, only three predictors are used to rep-
resent the calendar: the hour of the day is used to capture the
change of market with respect to each hour of the day, the day
of the year is used to capture the market variation due to change
in season, and the day of the week is used to capture the change
in market demand and SMP throughout the week. Other predic-
tors were tested such as the week of the year, day of the month,
the month of the year, and special days (i.e., holidays). How-
ever, the results were not improved and hence, they were dis-
carded. The calendar predictor of special days might be useful
in some models to capture the change in demand/SMP dur-
ing holidays, however, long historical data should be available
as the holidays represent only 2.5% of the year. In addition,
as the SEM combines two different areas, the public holidays
may differ between Northern Ireland and the Republic of Ire-
land, hence, this predictor was not considered. The other pre-
dictors are related to the SEM historical data or obtained from
the previous stages. The wind speed is used as a predictor for the
DAM SMP only as it cannot be discarded (comparison between
adding/removing wind speed predictor is given in Section 6.1
to show the impact of wind speed on the DAM SMP). How-
ever, for the other stages including the DAM demand, weather
predictors were not included to mitigate the error accumulation.
Note that, other predictors were tested for each stage, and the
predictors given in Table 2 are the best combinations with less
complexity.

4.1 Data pre-processing

The available SEM historical data is from October 2018 to the
present and can be obtained from [4, 25]. The adopted data used
to develop and evaluate the proposed forecasting model is spec-
ified as follows:

∙ A dataset of two complete years (1 January 2019 to 31
December 2020) is used to train and optimize the model,
which will be named as the prime dataset.

∙ A dataset of three months (1 January 2021 to 31 March 2021)
is used to assess and evaluate the model, which will be named
as the independent dataset.

The prime dataset is divided into two parts: (1) Training set
(70% of the prime dataset) used for the training, validation, and
testing, and (2) Optimization set (30% of the prime dataset)
used for optimizing the ANN hidden layers and neurons in
addition to the controlling parameters (weights and biases). The
training set is divided randomly as 60% training, 20% validation,
and 20% testing.

For the second stage of the proposed forecasting model, wind
speed is required. However, as the SEM covers all the island of
Ireland, hence, it is difficult to adopt wind speed measurements
from a single weather station as the speed varies significantly
across the island. Therefore, wind speed measurements were
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Data used to for training and optimization
• I-SEM historical data of demand and SMP from January 2019 to December 2020).
• Calendric predictors (Hour of day, day of year, and day of week).
• Historical data of wind speed from different locations.

Forecasting model
• Develop a forecasting model using shallow the cascaded-forward neural network.
• Determine the optimal number of hidden layers and neurons.
• Train the forecasting model and optimize the weights and biases.

Energy arbitrage maximization framework
• Develop an optimization-based energy arbitrage maximization framework for the

BESS that considers the I-SEM ex-ante auctions rules as well as the BESS
operational constraints.

BESS schedule + Expected revenues + Cost-benefit analysis
• Forecast the I-SEM data and utilize the proposed energy arbitrage maximization

framework to determine the optimal BESS schedule that maximizes the revenues.
• Quantify the excepted revenues, and preform cost-benefit analysis to investigate the

BESS economic feasibility under the participation in the I-SEM.

FIGURE 4 Proposed methodology structure

DAM demand/volume
model

DAM demand/volume
prediction

IDA1
SMP model

IDA1
SMP prediction

IDA2
SMP model

IDA2
SMP prediction

First
Stage

Second
Stage

Third
Stage

Fourth
Stage

DAM SMP
model

DAM demand/volume
prediction

FIGURE 5 Proposed SEM four-stage successive forecasting model

obtained for six different weather stations located across the
island of Ireland (Mullingar – Sherkin Island – Malin Head –
Mace Head – Johnstown – Roches Point) from [27]. The selec-
tion of these stations is correlated with the existence of wind
farms in these areas and to cover all the island [28]. A map of
the locations of these weather stations and wind farms on the
island of Ireland is shown in Figure 6.

The measurements obtained from these weather stations
were tested as separate predictors and as a single predictor
represents the average wind speed. The measurements of the
following weather stations (Johnstown – Roches Point) nega-
tively affected the results, and hence they were discarded. The
measurements of the other four weather stations improved the
results, and the results between using these measurements as
separate predictors or as a single predictor of the average speed
were comparable. Hence, for the sake of simplicity, the adopted
wind speed measurement was calculated by taking the average
wind speed measurements of the following four weather sta-
tions (Mullingar – Sherkin Island – Malin Head – Mace Head).

TABLE 2 Predictors used for each stage of the forecasting model

Stage

Number of

predictors Description

First stage 5 1. Hour of day
2. Day of year
3. Day of week
4. DAM demand of same hour two days

ago
5. DAM demand of same hour week ago

Second stage 8 1. Hour of day
2. Day of year
3. Day of week
4. DAM SMP of same hour two days ago
5. DAM SMP of same hour week ago
6. Wind speed of same hour
7. DAM demand of same hour two days

ago
8. DAM demand forecasting obtained

from the first stage

Third stage 6 1. Hour of day
2. Day of year
3. Day of week
4. IDA1 SMP of same hour two days ago
5. IDA1 SMP of same hour week ago
6. DAM SMP forecasting obtained from

the second stage

Fourth stage 8 1. Hour of day
2. Day of year
3. Day of week
4. IDA2 SMP of same hour two days ago
5. IDA2 SMP of same hour week ago
6. IDA1 SMP of same hour two days ago
7. IDA1 SMP of same hour week ago
8. IDA1 SMP forecasting obtained from

the third stage
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FIGURE 6 Map showing the locations of weather stations and wind farms on the island of Ireland (reproduced with the aid of the interactive map of Wind
Energy Ireland [28])

The measurements recorded by these weather stations were
obtained from [27].

4.2 ANN setup

The ANN is well known in demand and market forecasting and
has been used widely in this area [29]. ANN consists of an input
layer, hidden layers, and output layer. The hidden layers con-
sist of a number of neurons to connect and map the inputs
with the outputs. ANN with a single hidden layer is called shal-
low, while ANN with more than one hidden layer is called deep
[30]. The connections strength between the inputs and outputs
through the neurons of the hidden layers are represented by

weights. An activation function is used to trigger the output of
the neurons based on the weighted sum of the inputs. Biases are
existed to shift and adjust the activation function by adding a
constant. The values of the weights and biases are determined
and updated by the training function. Additionally, the data pro-
cessed by ANN need to be normalized to speed up the learning
process and to improve the output accuracy [31]. The following
specifications define the adopted ANN setup for the proposed
forecasting model:

1. ANN type: The adopted ANN type is the cascaded-forward
neural network (CFNN). CFNN is a type of ANN simi-
lar to the traditional feed-forward neural networks, however,
the CFNN has a direct connection from the input layer and
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every previous layer to the following layer which allows the
network to capture the nonlinearity between the inputs and
outputs [32].

2. Data normalization: The data is normalized by scaling the
data to have a mean of 0 and a standard deviation of 1.

3. Activation functions: The tan-sigmoid function is used as a
hidden layer activation function as it has been widely used in
this application [33], and a linear transfer function is used for
the output layer activation function [34].

4. Training function: The Bayesian regularization backpropa-
gation is used to train the ANN and determine the initial
optimal values of weights and biases for better generalization
[35].

The number of hidden layers and hidden neurons is deter-
mined using an optimization algorithm detailed in the next sec-
tion.

4.3 ANN optimization

The number of hidden layers and neurons are usually deter-
mined empirically. There is currently no proven theoretical rule
in determining the optimal hidden layers and neurons for a spe-
cific application. For the hidden layers, usually, one single layer
is sufficient in representing any type of problem [36]. How-
ever, some applications require two hidden layers. More than
two hidden layers increase the complexity of the model as well
as the training time and might be not necessary. For the neu-
rons in each hidden layer, there are many empirical rules that
can be used such as the geometric pyramid rule presented in [37]
which states that the number of neurons for a single hidden layer
equals to

√
p × r where p is the number of predictors/inputs

and r is the outputs. It is important to carefully determine the
number of neurons to avoid overfitting the model as with many
neurons, the model will memorize the training dataset well but
will suffer from a lack of generalization and this may reduce the
prediction accuracy of the independent dataset [36, 37].

In this paper, an optimization algorithm is introduced to
determine the optimal number of hidden layers and neurons
using black-box optimization. The decision variables of this
optimization algorithm represent the number of hidden lay-
ers and the number of neurons in each hidden layer which are
treated as integer variables with lower bounds of 1 and limitless
upper bounds. The objective of this optimization algorithm is
to minimize the root mean squared error (RMSE) between the
forecasted and the actual data as well as maximizing the Pearson
correlation coefficient (R), expressed in Equation (1) as:

min

(
RMSE

R

)
(1)

RMSE =

√√√√ 1
N

N∑
i=1

(
y

p

i − ya
i

)2
(2)

Get the output (predication)
and evaluate the objective

function Eq. (1)

Enter the inputs (predictors)
and the output (target/response)

from the training set

ANN setup:
• ANN type
• Activation functions
• Data normalization
• Training function

Initialize integer decision
variables for the hidden layers

and neurons

Train the ANN

Enter the inputs (predictors)
from the optimization set

Convergence ?
Update
decision
variables

Get the optimal number of
hidden layers and neurons

Yes

No

FIGURE 7 Proposed optimization algorithm for the ANN hidden layers
and neurons

R =
1

N − 1

N∑
i=1

(
ya
i − 𝜇a

𝜎a

)(
y

p

i − 𝜇p

𝜎p

)
(3)

where N is the number of points in the dataset, y
p

i is the pre-
dicted value, ya

i is the actual value, 𝜇a and 𝜎a are the mean and
standard deviation of the actual values, and similarly 𝜇p and 𝜎p

are for the predicted values. This optimization is solved using
the Surrogate optimization solver due to its capability in solving
black-box optimization with integer variables.

In order to prevent overfitting the training set, a separate
dataset (optimization set) is used to evaluate the objective func-
tion to obtain the optimal number of hidden layers and neurons
that maximize the model generalization. The proposed opti-
mization algorithm flowchart is illustrated in Figure 7.

After determining the optimal hidden layers and neurons
(𝔫) using the previous optimization algorithm, the weights and
biases are also optimized. Generally, the Bayesian regulariza-
tion backpropagation is used to determine the optimal combi-
nations of weights and biases that minimizes the error based on
the training set, however, sometimes it falls into local optima.
Therefore, to increase the model generalization, another opti-
mization algorithm is introduced to optimize the weights and
biases with the aid of training and optimization sets. After the
model has been trained, the vector that contains the weights and
biases can be obtained with a length of l . For ANN with a single
hidden layer, this length can be given as:

l = n
(

p+ 2
)
+ p+ 1 (4)

The proposed optimization algorithm aims to find the opti-
mal values of weights and biases using decision variables with
a length of l that minimizes the following bi-objective function
that is formulated using the weighted sum method (w1 = w2):

min

(
w1

RMSE1

R1
+ w2

RMSE2

R2

)
(5)

sub ject to R1,R2 > 0 (6)
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Set these values into the ANN
model

Initialize decision variables
represent the weights and

biases

ANN setup:
• ANN type
• Activation functions
• Data normalization
• Training function
• Hidden layers and neurons

Evaluate the
objective function Eq. (5)

Enter the inputs (predictors)
and the output (target/response)

from the training set

Train the ANN

Enter the inputs (predictors)
from the optimization set and

get predications

Convergence ?

Update
decision
variables

Set the optimal weights and
biases and save the ANN model

Yes

No

Get predications using
the training set

FIGURE 8 Proposed optimization algorithm for the ANN weights and biases

RMSE1 and R1 are calculated from the predictions against
the training set, while RMSE2 and R2 are calculated from the
predictions against the optimization set. Constraint in Equa-
tion (6) is treated as a soft constraint using static penalty func-
tion to avoid the optimization algorithm from going into nega-
tive correlation such that correlation coefficients must be main-
tained positive. The proposed optimization algorithm aims to
adjust the weights and biases by minimizing the RMSE and max-
imizing the correlation coefficients between the predictions and
actual values for the training and optimization sets to achieve
high generalization. Some studies optimize the weights or biases
for the training set only such as in [21] which may lead to over-
fitting. Hence, a separate set such as the optimization set used
in this paper is beneficial to prevent overfitting the training data.
The proposed optimization algorithm is a boundless black-box
optimization problem and solved using the NLopt solver [38].
The process of optimizing the weights and biases is illustrated
in Figure 8.

4.4 Holt-Winter’s exponential smoothing
method (HWETS)

HWETS method is one of the popular classical methods for
time-series forecasting [39]. In this paper, this method has been
used to provide a comparison against the proposed ANN fore-
casting model and to evaluate the effectiveness of a hybrid
model that combines both methods. The HWETS smoothing
parameters are optimized using the training set to achieve high
performance.

It is worth mentioning that other machine learning models
were tested for the proposed four-stage successive forecast-
ing model including Gaussian process regression, ensemble tree
regression, and support vector machines. The results were com-
parable; however, the training time of ANN is very convenient
compared to the other machine learning models, which allows
for testing different sets of predictors to select the most effi-

cient model with less complexity. All the previous work was
developed on MATLAB environment, the surrogate optimiza-
tion solver was utilized using the global optimization toolbox,
the NLopt was used via the OPTI toolbox [40], and the ANN
was developed using the deep learning toolbox.

5 ENERGY ARBITRAGE
MAXIMIZATION FRAMEWORK

In this paper, a framework is proposed that aim to maximize
the BESS revenues obtained from the energy arbitrage partici-
pation in the SEM ex-ante markets. In [22], a similar approach
was introduced for the SEM, where the ex-ante markets were
treated as separate optimization layers, in each of these layers a
linear programming problem was solved that aims to maximize
the profits from BESS discharging, while the optimal participa-
tion factor for each market was settled by an outer layer using
global optimization. This work extends [22], by dealing with
the ex-ante markets into a single problem which reduces the
computation time in addition to considering reducing the BESS
charging costs to maximize the energy arbitrage gains. The pro-
posed framework aims to determine the optimal BESS discharg-
ing schedule through the SEM ex-ante markets that maximize
selling profits as well as determining the optimal BESS charg-
ing schedule through the DAM that minimizes the buying costs.
The required inputs associated with the BESS/inverter specifi-
cation and the market data are tabulated in Table 3.

The market data (SMP and volume) are unknown until the
market closes and the SEMO announce them; hence, their val-
ues are obtained from the forecasting model introduced in Sec-
tion 4. The objective function of this framework aims to maxi-
mize the trading profits formulated in Equation (7) as:

max
⎛⎜⎜⎝
∑

m∈M

(∑
t∈Td

𝜌t

(
Pdi

t 𝜏
))

m

−

(∑
t∈Tc

𝜌t

(
Pch

t 𝜏
))

m=1

⎞⎟⎟⎠ (7)
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TABLE 3 BESS energy arbitrage maximization framework inputs

Input Symbol Description

BESS capacity Ecap BESS nameplate capacity [MWh]

Rated power Pmax BESS maximum output/input [MW]

BESS system efficiency 𝜂b The output/input efficiency of the BESS system [%]

Depth of discharge DoD Maximum discharging capacity percentage [%]

State of charge limits SoC Maximum and minimum SoC limits [%]

Trading period duration 𝜏 Duration of a single period (1 for DAM, 0.5 for IDA)

SMP 𝜌 SMP [£/MWh]

Volume Vol Market available volume [MW]

where m represents the market (1 for DAM, 2 for IDA1, 3 for
IDA2 and 4 for IDA3), M is the number of markets, Pdi

t is the
discharge power (MW) at time t , Td is the discharging period,
Pch

t is the charging power (MW) at time t , and Tc is the charging
period. The previous optimization problem in Equation (7) is
subject to the following constraints.

BESS system efficiency: Ratio of output-to-input power for
the BESS throughout the charge and discharge.

Pdi
t = 𝜂bPdis

t (8)

Pch
t =

Pchr
t

𝜂b
(9)

𝜂b =
√
𝜂rte𝜂pcs (10)

where Pdis
t is the BESS power output and Pdi

t is the inverter
power output which used to calculate the bidding capacity and
selling price,Pchr

t is the required BESS charging power and Pch
t

is the input power to the charger which is used to calculate the
buying costs. 𝜂rteis the BESS round-trip efficiency and 𝜂pcs is the
power conversion system (PCS) efficiency.

a. BESS rating: The output/input power of the BESS must not
exceed its predefined limit at any time.

0 ≤ Pt ≤ Pmax; ∀t ∈ T ; Pt ∈
{

Pdis
t , Pchr

t

}
(11)

b. Depth of discharge (DoD): The maximum discharged
capacity should not exceed the specified value determined by
the DoD percentage value to protect the BESS from exces-
sive discharge and to increase its lifespan, the BESS usable
capacity (Eus ) can be calculated considering the DoD in
Equation (12) as:

Eus = DoD × Ecap (12)

c. State of charge (SoC): SoC is the percentage measurement
that indicates the available capacity of the nameplate capacity
still in the BESS. The SoC must be maintained within the pre-

defined limits.

SoC min
≤ SoCt ≤ SoC max; ∀t ∈ T (13)

SoCt = SoCt−1 +
Pch

t 𝜂b𝜏

Ecap
−

Pdi
t 𝜏

Ecap𝜂b

; ∀t ∈ T (14)

DoD = SoC max − SoC min (15)

d. Market volume: At any time-point, the bidding capacity must
not exceed the available market volume for bidding.

Pdi
m,t ≤ Vol m

t (16)

e. Market power: At any time-point, the discharged power in
all markets must not exceed the BESS power rating.∑

m∈M

Pdi
m,t ≤ Pmax; ∀t ∈ T (17)

The optimization solver initializes a set of variables x repre-
sents the discharging/charging according to the dispatch hori-
zon (T ) of each market such that x ∈ {Pdis

t , Pchr
t }. In order

to avoid initializing discharging/charging variables at the same
time-point without adding a hard constraint, the dispatch hori-
zons are specified ahead such that from 01:00 AM to 08:00 AM
are set for charging and the rest of the day is specified for
discharging. These periods were determined with the aid of
SEM data analysis in Section 2.1. To unify the trading periods,
all the markets are modified with a half-hourly trading period
(𝜏 = 0.5). For the full-day dispatch horizon, the number of vari-
ables is 104 for the discharging (34 for the DAM, 34 for the
IDA1, 24 for the IDA2, and 12 for the IDA3) and 14 for the
charging. These variables are constrained by the upper bound
of the BESS rating Equation (11). While Equations (8), (9) are
satisfied within the objective function Equation (7), and Equa-
tions (13)–(17) are formulated as hard constraints.

The previous settings are the default settings for the pro-
posed BESS energy arbitrage maximization framework. More-
over, few modifications are introduced to accommodate the
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market participation factors that were introduced in [22]. The
concept of the market participation factors is to divide the BESS
discharging capacity among the ex-ante markets according to a
pre-defined factor for each market. The modified framework
adopts these factors by considering the following constraints:∑

t∈Td

(
Pd

t 𝜏
)

m
= 𝛼mEus; ∀m ∈ M (18)

where 𝛼m represent the market participation factors such that:

0 ≤ 𝛼m ≤ 100% (19)

∑
m∈M

𝛼m = 100% (20)

The proposed BESS energy arbitrage maximization frame-
work formulation can be easily solved using different off-the-
shelf solvers. In this paper, the WORHP solver [41] has been
adopted due to its effectiveness in providing optimal solu-
tions in a short execution time. The WORHP adopts sequen-
tial quadratic programming and interior point method to solve
convex and nonconvex problems efficiently.

6 SIMULATION RESULTS

6.1 Forecasting model results

The proposed forecasting model is evaluated using the prime
and independent datasets explained in Section 4.1. The results
from the ANN optimization algorithm indicates that a single
hidden layer is sufficient for all the proposed stages, and the
number of neurons is specified as 5 neurons for the first stage
and 4 neurons for each of the other three stages. The forecast-
ing results are evaluated using the RMSE, R-value, and mean
absolute error (MAE). The results are given in Table 4.

As shown in Table 4, for the first stage, the proposed
ANN model achieved a very high positive correlation for
both datasets. Additionally, the HWETS achieved good results,
however, the ANN outperformed the HWETS by 20% on
average. By combining both models into a hybrid model
(ANN+HWETS) by taking the results obtained from the
HWETS as an additional predictor for the ANN, the results
were improved by 5% on average compared to the results
obtained from the ANN solely. For the second stage, the
ANN achieved a high positive correlation and outperformed
the HWETS by 30% and the results from the hybrid model were
improved slightly for the independent dataset, however, the pre-
dictions against the prime dataset were not improved. For the
third stage, the ANN achieved a high positive correlation with
28% improvements compared to the HWETS. However, the
results obtained from the hybrid model were only improved
for the prime dataset. Similarly, the ANN outperformed the
HWETS by 26% for the fourth stage and the hybrid model
results were slightly improved for only the prime dataset.

It can be concluded that the classical method such as
HWETS can be used to predict the time-series data with a low
level of volatility such as demand prediction. However, it fails to
achieve reasonable results for the data that contains a high level
of volatility such as the SMP. Hence, for a hybrid model, the
HWETS can be used to enhance the ANN results for demand
prediction (i.e., with the first stage). Furthermore, it can be
noticed from the results that the proposed ANN optimization
algorithms prevented overfitting the training set and managed
to achieve a high level of generalization for the ANN model as
the differences between the results of the prime dataset (that
include the training set) and the independent dataset are not sig-
nificant, hence the proposed ANN model has a high level of
reliability.

Moreover, the accuracy of the proposed forecasting model
decreases with stages such that the fourth stage has the worst
error metrics. This is because the proposed model is succes-
sive and hence, each stage accumulates errors from the previ-
ous stage. The motivation behind using this successive struc-
ture is that in practice, the SEM ex-ante markets are depen-
dent on each other and the relation between them cannot be
neglected. It should be noted that the available SEM data con-
sisted of only two years of historical data and long historical
data is needed to produce a more accurate model. Addition-
ally, the proposed model aims to forecast the SEM on a two-
days ahead basis which adds another challenge as the day-ahead
results are unknown. Furthermore, the proposed ANN model
relies mainly on the historical predictors which are easily acces-
sible, the only predictor that may require another forecasting
model is the wind speed which can be obtained using a metro-
logical model with high accuracy, especially for short-term fore-
casting [42]. Nevertheless, these models are out of the scope of
this paper and the wind speed measurements are assumed to be
known.

The wind speed is important as it affects the DAM SMP due
to the high participation of wind energy in the island of Ireland
and consequently affects the other model stages. Without the
wind speed, the predictions of DAM SMP are worsened by 20%
as shown in Table 5, which will also worsen the results of the
third and the fourth stages.

To visualize the results obtained from the proposed fore-
casting model, one week of the independent dataset (from 23
January 2021 to 29 January 2021) was simulated and the fore-
casted results against the real data are shown in Figure 9. As
shown in Figure 9a, the demand was forecasted with very good
accuracy with a mean absolute percentage error (MAPE) of
3.3% and MAE of 0.156 GW. Additionally, the SMP of differ-
ent markets was forecasted with reasonable accuracy as shown
in Figure 9b–d with MAE of £9.5/MWh for the DAM SMP,
£10.5/MWh for the IDA1 SMP, and £15/MWh for the IDA2
SMP. Despite the errors in SMP predictions, the SMP profile
shapes are predicted with very good accuracy. This is impor-
tant as with the aid of the SMP profile shape, the most lucra-
tive periods for trading in the day can be determined and hence
can be used in maximizing the revenues for generation bidders
through participation in the SEM. On the other hand, the peri-
ods with low SMP can be also identified which can assist the
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TABLE 5 Results for the second stage without the wind speed

Second stage (DAM SMP)

Error metric

Prime

dataset

Independent

dataset

R-value 0.7 0.69

RMSE [£/MWh] 15.93 26.72

MAE [£/MWh] 10.33 16.25

suppliers in buying electricity with low SMP as well as assisting
BESS owners in charging with low SMP. It should be mentioned
that the IDA3 can be added to the proposed forecasting model
by adding a fifth stage similar to the fourth stage of the IDA2.
However, it has not been considered in this paper as the bid-
ding in this auction is not guaranteed as the available volume for
bidding is too small.

6.2 BESS energy arbitrage

In this paper, the energy arbitrage revenues are calculated for
a BESS of 4 MWh / 1 MW, DoD of 80% (SoCmin of 20%
and SoCmax of 100) so that the BESS usable capacity (Eus) is
3.2 MWh, PCS efficiency of 95% and BESS roundtrip-efficiency
of 95%. As showed in [22], the participation in IDA3 is not
guaranteed as the volume/demand available for bidding in this

market is very small, hence in this paper, the IDA3 is not con-
sidered and the proposed methodology is only implemented for
the DAM, IDA1, and IDA2. In addition, it is assumed that the
BESS completes one cycle per day for the SEM participation
only.

6.3 SEM 2019/2020 data results

The first part of the results is to use the energy arbitrage max-
imization framework to calculate the total revenues that can be
obtained using the SEM historical data of two years 2019/2020.
The results summary is shown in Figure 10. The BESS achieved
a total gain of £138,800 from discharging/selling in the SEM
ex-ante markets, with an average value of £69,400/year. The
discharging gains in 2019 are higher than the gains in 2020 by
12.5%. The charging costs are averaged as £32,178/year. Note
that in 2019, the charging costs were higher than the costs in
2020 by 36.4%. This is because in 2020, in many days the BESS
was getting paid to charge due to negative SMP. This can be cor-
related with increasing the renewable generation in the Island
of Ireland, especially from the wind such that the events with
system non-synchronous penetration (SNSP) at 50% or higher
in 2020 increased by 40% compared to 2019 [1] as well as the
other factors explained in Section 2.1. The energy arbitrage
net is averaged as £37,222/year. Note that the previous results
were obtained assuming perfect knowledge of the SEM data,

Thursday
28/01/2021

Tuesday
26/01/2021

Wednesday
27/01/2021

Sunday
24/01/2021

Monday
25/01/2021

Friday
29/01/2021

(a)

(b)

(c)

(d)

Saturday
23/01/2021

FIGURE 9 Results obtained for six different days
in 2021 using the proposed four stages successive
forecasting methodology: (a) DAM demand, (b) DAM
SMP, (c) IDA1 SMP, and (d) IDA2 SMP
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FIGURE 10 BESS energy arbitrage results obtained from trading in the
SEM through 2019/2020

TABLE 6 Average of 2019/2020 market participation factors

DAM [%] IDA1 [%] IDA2 [%]

Annual 29.4 37.2 33.4

Winter 34 30.2 35.8

Spring 23.1 40.2 36.7

Summer 32.3 40.6 27.1

Autumn 27.5 38.7 33.8

however, in practice, these amounts might change which will be
addressed later in the paper.

Furthermore, the daily market participation factors were cal-
culated as percentages of the usable capacity by determining
the BESS capacity used in each market. The daily results were
obtained from the simulations of 2019/2020 and were used to
determine the annual average factors as well as the average fac-
tors per season as shown in Figure 11 and given in Table 6.

As shown in Figure 11, the highest participation factor was
for the DAM in 2019. While in 2020, the highest participation
factor was for the IDA1. This means that the IDA1 SMP in 2020
was higher than in 2019 and hence, it is more profitable to sell
electricity in the IDA1 compared to the DAM, but it was more
profitable to trade in the DAM compared to the IDA1 in 2019.
In addition, the participation factor of IDA2 is also higher com-
pared to the participation factor of DAM in 2020. This means
that the trading in the intraday markets is more profitable than
the trading in the day-ahead market in 2020 as the real-time
uncertainties are higher and the generation positions were sub-
ject to more changes compared to 2019. Additionally, the year
2020 had unusual events due to the lockdowns and government
restrictions which may affect also the uncertainties associated
with real-time demand. Thus, more historical data of the SEM
is required to form a complete picture of the optimal participa-
tion factors for different years. The market participation factors
are important for BESS bidders as they can be used to reduce
the errors associated with a forecasting model with low accuracy
or with naïve forecasting as well as being used individually as a
form of heuristic BESS scheduling.

6.4 SEM 2021 data results

In this part, the SEM data of 2021 for three months (from 1
January 2021 to 31 March 2021) is being used to evaluate the
effectiveness of the proposed forecasting model as well as the
energy arbitrage maximization framework. Five cases are simu-
lated described as follows:

1. Case A: With perfect knowledge of SEM data. This case sim-
ulates the maximum revenue that can be obtained assuming
a perfect forecast.

2. Case B: Forecasted data using the proposed forecasting
model. This case simulates the revenue that can be obtained
using the proposed forecasting model.

3. Case C: Forecasted data using the proposed forecasting
model and participation in the DAM only. This case quan-
tifies the revenues from the participation in the DAM only.

4. Case D: Using previous year market data (i.e., naïve forecast-
ing). This case simulates the revenues that can be obtained
without using a forecasting model by using the same SEM
data of the previous year.

5. Case E: Using previous year market data in addition to the
annual average market participation factors given in Table 6,
and heuristic scheduling periods from Figure 2. This case
simulates the impact of market participation factors and pre-
defined scheduling periods on enhancing the results of naïve
forecasting.

The results summary for the previous five cases is illustrated
in Figure 12. As shown in Figure 12, the proposed methodol-
ogy achieved good values in terms of selling/buying compared
to the ideal case (Case A). Compared to Case A, the MAPE
of Case B is 8.9% for selling, 2.1% for buying, and 14.9% for
energy arbitrage net. By trading only in the DAM (Case C), the
MAPE was increased to 10.7% for selling and 18.5% for the
energy arbitrage net. By using previous year data (i.e., naïve fore-
casting) in Case D, the MAPE is 22% for selling, 4% for buying,
and 37.3% for the energy arbitrage net. While by applying pre-
defined scheduling periods (From 02:00 AM to 07:00 AM for
charging/buying and from 04:00 PM to 10:00 PM for discharg-
ing/selling) in addition to using the average annual market par-
ticipation factor (from Table 6) in Case E, the error metrics were
improved compared to Case D to 14% for selling, and 25% for
the energy arbitrage net.

The results show that for these three months, participation
in DAM only will reduce the total energy arbitrage revenues
by 3.6%. Additionally, the forecasting model proved to provide
good accuracy as shown from the results of Case B. Note that,
the ideal case (Case A) is unrealistic as the SEM data cannot
be fully predicted. Hence, the obtained results are very reason-
able with respect to the available historical data used to train the
forecasting model. These results will improve as the amount of
available historical SEM data increases. Furthermore, the results
show that without using a forecasting model (i.e., naïve fore-
casting using previous year data) in Case D, 62.7% energy arbi-
trage net of the ideal case has been achieved. This is consid-
ered a poor result compared to the results of Case B (85.1%).
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FIGURE 12 BESS energy arbitrage for three months in 2021 under five
different cases

However, as this result was obtained without the complexity
of using a forecasting model, it could conversely be considered
a satisfactory result. The problem with using naïve forecasting
is that the trading may not be profitable in some days and so
should be avoided. For instance, the energy arbitrage was nega-
tive for six days in the three months for Case D. Hence, a robust
forecasting model is essential to maximize the revenues and pro-
vide a good planning horizon. Furthermore, by specifying par-
ticular capacity for each market using the annual market partici-
pation factors obtained in Table 6 in addition to setting schedul-
ing periods obtained from analysing the SEM historical data in
Figure 2, the energy arbitrage results of the naïve forecasting
have been improved by 33% in Case E.

7 BESS DEGRADATION

The BESS degradation is an important factor that should be
considered in scheduling the BESS. In order to quantify the loss

in BESS capacity due to the energy arbitrage participation in
the SEM ex-ante markets, the semi-empirical Li-ion cycling age-
ing model in [43] has been adopted. In this paper, it is assumed
that the BESS technology is Li-ion. The ageing model has been
used to quantify the BESS ageing life indicator (L) to be used
in determining the BESS state of health (SoH ) at the end of
lifetime using Equations (21) and (22):

L = 1 −
(

pSEI e−rSEI fcyc +
(
1 − pSEI

)
e− fcyc

)
(21)

SoH = 1 − L (22)

where fcyc is the linearized cycling degradation function, pSEI

and rSEI are coefficients related to the solid-electrolyte Inter-
phase, more details related to the calculation of fcyc and the SEI
coefficients are available in [43].

The BESS SoC profile was obtained from simulating the
BESS operation in the SEM through two years from Section 6.2
(a). The rainflow counting algorithm [44] has been used to anal-
yse the SoC profile and extract the data required for the degra-
dation model. The BESS ageing life indicator (L)is calculated at
the end of two-year operation and scaled for 10 years of opera-
tion which is the warrantied lifespan of Li-Ion BESS [45]. The
cycling ageing throughout the two years is illustrated in Fig-
ure 13.

The results from the ageing model show that the BESS capac-
ity degrades by 3.14%/year with 365 full cycles through partic-
ipation in the SEM. This loss in capacity factor represents the
BESS ageing life indicator (L). By scaling for 10 years of oper-
ation, the BESS is assumed to reach an SoH value of 68.6%.
This value represents the SoH (residual capacity) at the end of
10 years of operation which is adequate as the BESS is consid-
ered to reach the end of life when the residual capacity reaches
60–80% [43].
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FIGURE 13 BESS cycling degradation throughout two years of
operation in the SEM

TABLE 7 CBA parameters

BESS CEX [£] 1,008,000 (£250/kWh)

BESS OEX [£/year] 13,500

Interest rate [%] 5

Annual loss in capacity [%] 3.14

Energy arbitrage [£/year] 31,639

8 COST-BENEFIT ANALYSIS

In this paper, cost-benefit analysis (CBA) is conducted to eval-
uate the economic feasibility of BESS participation in the SEM
ex-ante markets. The CBA is performed by calculating the total
savings (TS), net present value (NPV), annual return on invest-
ment (AROI) and the discounted payback period based on the
annual energy arbitrage net (Earba) for BESS lifetime (LT ) as:

NPV = TS −CEX (23)

AROI =
NPV

LT ×CEX
(24)

TS =

LT∑
n=1

Earba (1 − Ln ) − OEX

(1 + ir )n−1
(25)

whereCEX represents the capital expenditures, OEX is the
annual operation expenditures, ir is the interest rate, and Ln rep-
resents the annual loss in BESS capacity due to degradation. The
discounted payback period is calculated at zero NPV.

The CBA parameters are tabulated in Table 7. The BESS
CEX was obtained from a recent report by the National Renew-
able Energy Laboratory [46] for the 2022 mid scenario which
represents the Li-ion BESS total system including the PCS and
other component costs. The OEX was determined based on
the network charges (4500 £/MW/year) [22] in addition to the
operation and maintenance costs (£9000/year) obtained from

the IRENA report [47]. An interest rate of 5% is considered
to reflect the mid-point value of the department for Business,
Energy and Industrial Strategy interest rates [48]. The BESS
annual loss in capacity (Ln) was obtained from the ageing model
in Section 7. In Section 6.2 (a), the annual energy arbitrage
net was determined as £37,222. However, these values were
obtained assuming a perfect forecast. By considering an error
of 14.9% obtained in Section 6.2 (b), the realistic annual energy
arbitrage net can be then determined as £31,639/year, approxi-
mately £87/day.

The CBA results show that the BESS sole participation in
the SEM ex-ante markets is not profitable as the BESS can-
not pay back the investment costs as the total savings at the
end of 10 years is £114,051 with an NPV of −£893,950 and
AROI of −8.9%. Even with low projections of BESS costs,
the BESS trading in the SEM solely is not advised. With cur-
rent CBA parameters, the annual payments required for BESS
to break even in a lifetime of 10 years is £158,200/year, approxi-
mately £434/day, which is fivefold the current SEM energy arbi-
trage net. Currently, the main purpose of BESS integration is
to provide different ancillary services to the transmission and
distribution systems, and the existence of BESS is rationalized
mainly based on these services. However, under a stacked rev-
enue arrangement, the BESS can simultaneously participate in
the SEM energy arbitrage in which the proposed framework can
be used to boost revenues.

9 DISCUSSION

The ongoing energy evolution accelerates the deployment of
low carbon technologies and generation which impose techni-
cal challenges to the network operators. The existence of SEM
is motivated by this energy evolution and to provide detailed
real-time monitoring to the energy paradigm as well as assist in
reducing the market prices by increasing the levels of compe-
tition to deliver high levels of supply security and transparency.
Forecasting SEM demand and SMP is crucial for traders to max-
imize profits by selecting the optimal trading periods and capac-
ity. The proposed four-stage successive forecasting model pro-
vided reasonable accuracy in predicting the SEM demand and
the SMP shape. However, more historical data is required to
provide a more reliable model.

It is noteworthy that the SEM DAM has decoupled from
interconnection with GB and the wider EU market since 1 Jan-
uary 2021 due to Brexit and became local as the IDA3. This
should affect the DAM SMP, which increases the forecasting
uncertainties as the proposed forecasting model was trained and
optimized using market data before the Brexit (from 1 January
2019 to 31 December 2020). However, the results achieved in
Section 6.1 for the independent dataset (from 1 January 2021
to 31 March 2021) show very reasonable forecasting accuracy
which proves the efficacy of the proposed forecasting model in
capturing the uncertainties. Furthermore, in practice, the pro-
posed forecasting model should be trained and optimized regu-
larly by updating the historical data on a rolling basis to increase
its accuracy by capturing the change in demand and SMP, thus
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the variations caused from the decoupling, or any other uncer-
tainties should be captured sequentially.

The results show that generation bidders should distribute
their orders across the ex-ante markets as the SMP values for
some days are more attractive in intraday markets than the
day-ahead market. The proposed energy arbitrage maximization
framework has the capability to determine the optimal trading
periods with capacity across the ex-ante markets with the aid of
a forecasting model. The results show that despite the uncer-
tainties associated with the forecasting, the proposed energy
arbitrage maximization framework with the proposed forecast-
ing model have shown the capability to achieve 91.1% selling
accuracy, 97.9% buying accuracy, and 85.1% energy arbitrage
net accuracy of the ideal case where the SEM data is perfectly
known. Furthermore, the proposed energy arbitrage maximiza-
tion framework can be easily adjusted to consider other types of
distributed energy resources, thus widening its application.

It is anticipated that the SEM analyses provided in this paper
are beneficial for the SEM traders. For instance, the periods with
the highest/lowest SMP identified from 2019/2020 in Figure 2
can assist the decision-maker in selecting heuristically the best
scheduling periods. On the other hand, the optimal market par-
ticipation factors can assist BESS owners in determining the
bidding capacity for each market which can be used to mitigate
the forecasting uncertainties of poor forecasting as shown in the
results section (Section 6).

The paper was extended to consider the BESS degradation
through the participation in the SEM using the proposed energy
arbitrage maximization framework and the results show that
the annual loss in BESS capacity is adequate for 10 years oper-
ation. Furthermore, the BESS profitability was considered by
conducting a cost-benefit analysis and the results show that the
sole participation of BESS in the SEM is not profitable. How-
ever, under a stacked arrangement or as a part of aggregation,
the proposed methodology can be used to maximize the profits
from the SEM.

From the participation in the SEM only, annual selling profits
and buying costs of £20,278/MWh and £9232/MWh, respec-
tively can be achieved for a BESS with 100% system efficiency.
BESS owners should stack revenues to maximize profitability
and rationalize BESS existence through participation in multiple
services. For instance, in the island of Ireland, besides the SEM,
the BESS can participate in the enhanced services provided by
the Irish transmission system operator (TSO) through the DS3
programme [49], as well as providing flexibility and other ser-
vices to the distribution system operator (DSO) through the
FLEX or FESS projects [50, 51]. Under these schemes, the
expected BESS revenues were quantified previously in [11, 17].

The main challenge of stacking BESS revenues is the over-
lapping in services as a contracted BESS with TSO/DSO ser-
vices may not be available to participate in other services unless
the BESS is oversized, or there are some pre-defined contracted
scheduling periods that may change according to the month and
the need of TSO/DSO. In this case, the BESS might be avail-
able to distribute its available capacity whenever it is not con-
tracted with the TSO/DSO. However, more research is required
to investigate the validity of this assumption as well as exploring

the conflicts and synergies of the simultaneous participation in
the island of Ireland which is considered as future work.

10 CONCLUSION

This paper proposed a powerful methodology to maximize
the revenues from participating in the SEM ex-ante markets.
A forecasting model of four successive stages has been pro-
posed to predict the day-ahead and intraday auctions of the
SEM. The proposed forecasting model was developed using
CFNN, while optimization algorithms were introduced to opti-
mize the CFNN performance by determining the optimal num-
ber of hidden layers and neurons as well as the optimal val-
ues of weights and biases that minimizes the forecasting errors
through a novel formulation that prevents overfitting the train-
ing data and achieves a high level of generalization. For this type
of application, the paper demonstrated that machine learning
models such as ANN outperformed the classical method of
HWETS method. In addition, a hybrid model of both meth-
ods has proven to increase the model accuracy for low volatile
variables such as demand forecasting.

Furthermore, an energy arbitrage framework was introduced
for BESS owners to maximize the energy arbitrage gains from
participating in the SEM ex-ante markets. To mitigate the fore-
casting uncertainties in the case of using naïve forecasting or a
forecasting model with poor accuracy, the SEM historical data
was analysed and the periods with highest/lowest SMP values
were identified as well as the optimal market participation fac-
tors. Finally, for BESS operating in the SEM, the BESS degrada-
tion was quantified, and a cost-benefit analysis was conducted.

The results proved the effectiveness of the proposed method-
ology in achieving 91.1% selling accuracy, 97.9% buying accu-
racy, and 85.1% energy arbitrage net accuracy of the perfect
forecast case. Compared to using naïve forecasting, the pro-
posed methodology achieved an improvement of 26% for the
energy arbitrage net. It is important to highlight that although
the proposed forecasting model is specified for the SEM, the
forecasting model structure can be insightful for other energy
markets. Additionally, the proposed energy arbitrage maximiza-
tion framework was formulated for the BESS. However, the
proposed framework could be applied using the same objective
function for other types of distributed energy resources with
simple modifications to consider their operational constraints.

The limitation of this work concentrates mainly on enhancing
the SMP forecasting accuracy of SEM ex-ante markets. Future
work should focus on enhancing the accuracy of SMP predic-
tions. However, as there is currently limited available SEM his-
torical data for training a robust forecasting model, other tech-
niques can be tested such as data augmentation to extend the
training data.
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NOMENCLATURE

𝜼rte,𝜼pcs, 𝜼b The efficiency of BESS, PCS, and all system [%]

Ecap BESS nameplate capacity [MWh]
Eus BESS usable capacity [MWh]

Pmax BESS rated power [MW]
Pch

t BESS charging power at time t [MW]
Pdi

t BESS discharging power at time t [MW]
T d ,T c Discharging/charging periods

V ol m
t Market m volume at time t [MW]

f cyc Linearized cycling degradation function
pSEI, rSEI Solid-electrolyte interphase formation portion

and rate ratio coefficients
w Multi-objective function weights

𝜶m Market m participation factor [%]
𝝆t SMP at time t [£/MWh]

Acronyms Parameters, indices, and variables
ANN Artificial neural network
AROI Annual return on investment
BESS Battery energy storage system
CBA Cost-benefit analysis
CEX Capital expenditures

CFNN Cascaded-forward neural network
DAM Day-ahead market

HWETS Holt-Winters’s exponential smoothing method
IDA1 First intraday auction
IDA2 Second intraday auction
IDA3 Third intraday auction

I-SEM Integrated single electricity market
MAE Mean absolute error
NPV Net present value
OEX Operational expenditures
PCS Power conversion system

RMSE Root mean squared error
SEM Single electricity market

SEMO Single electricity market operator
SMP System marginal price

TS Total savings
DoD Depth of discharge [%]

Earba Annual energy arbitrage net [£]
L BESS ageing life indicator

LT BESS lifetime [Years]
SoC State of charge [%]

SoH State of health [%]

T Dispatch horizon
ir Interest rate
l Length of the vector of ANN weights and biases

m,M Index of the market, set of markets
p Number of ANN predictors/inputs
t Index of time
𝔫 Number of neurons in the ANN
𝝉 Trading period duration
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