Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys

Published in:
Materials and Design

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
This is the author’s version of a work that was accepted for publication in Materials & Design. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials & Design, Vol. 46, 04/2013

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Accepted Manuscript

Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys

G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang

PII: S0261-3069(12)00757-1
DOI: http://dx.doi.org/10.1016/j.matdes.2012.10.059
Reference: JMAD 4914

To appear in: Materials and Design

Received Date: 16 August 2012
Accepted Date: 31 October 2012

Please cite this article as: Wu, G.Q., Shi, C.L., Sha, W., Sha, A.X., Jiang, H.R., Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys, Materials and Design (2012), doi: http://dx.doi.org/10.1016/j.matdes.2012.10.059

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effect of microstructure on the fatigue properties of Ti-6Al-4V titanium alloys

G.Q. Wu1,*, C.L. Shi1, W. Sha2, A.X. Sha3, H.R. Jiang1

1School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China

2School of Planning, Architecture and Civil Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK

3Beijing Institute of Aeronautical Materials, Beijing 100095, China

*Corresponding Author:
Tel: +86 1082313240; Fax: +86 1082313240
E-Mail: guoqingwu@buaa.edu.cn (G.Q. Wu)

Abstract
Through an analysis on microstructure and high cycle fatigue (HCF) properties of Ti-6Al-4V alloys which were selected from literature, the effects of microstructure types and microstructure parameters on HCF properties were investigated systematically. The results show that the HCF properties are strongly determined by microstructure types for Ti-6Al-4V. Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure. Additionally, microstructure parameters such as the primary α (α_p) content and the α_p grain size in bimodal microstructures, the α lamellar width in lamellar microstructure and the α grain size in equiaxed microstructures, can influence the HCF properties.

Keywords: titanium alloy; microstructure; fatigue; quantitative analysis
1. Introduction

Due to their excellent properties (high specific strength, high fatigue strength, good corrosion resistance, etc.), titanium components (particularly Ti-6Al-4V) are often used for manufacturing critical systems such as airfoils, undercarriage components, and airframes [1-4] instead of heavy steel components. During these applications titanium structures are often exposed to fatigue loading [1]. Fatigue fracture is an important failure mode for these structures [5].

Depending on the alloy class, the parameters possibly having an influence on the fatigue life of titanium alloys include grain size (phase dimension and morphology), age hardening condition, degree of work hardening, elastic constants, and crystallographic texture [1]. Depending on the thermomechanical treatment or heat treatment of the (α + β) titanium alloy, such as Ti-6Al-4V, the microstructure and mechanical properties can vary in a wide range [3, 6]. Such influences have been documented in numerous reports in the literature [4, 7-11]. However, due to experimentation limitations, experimental results are not always reproducible, and thus it is difficult to compare among fatigue properties obtained from different tests, even for a same microstructure. There has not been enough data to correlate fatigue properties based on differing microstructures. Based on the comparison of microstructure types of Ti-6Al-4V alloys, Hines and Nalla [12, 13] pointed out that lamellar microstructure had higher HCF strength than bimodal microstructure. However, Zuo et al. [10] and Niinomi et al. [14] obtained the opposite result. Ivanova et al. [15] and Peters and Lütjering [16, 17] proved that bimodal microstructure had higher HCF strength than the equiaxed microstructure, and Peters et al. [17] showed that lamellar microstructure also had higher HCF strength than the equiaxed microstructure. However, it was also reported [2] that equiaxed microstructure had the highest HCF strength, and according to Ivanova and
Adachi [18, 19], lamellar microstructure had a similar HCF strength to bimodal microstructure. The reasons for this contradiction have not been well explained. Additionally, the fatigue strength would be dependent on microstructural parameters of each Ti-6Al-4V alloy, such as the α_p content and α_p grain size in bimodal microstructure [15, 18, 20], the α grain size in the equiaxed microstructure [2, 18, 21], and the lamellar α width in lamellar microstructure [10, 12, 13].

So, there is differing information in the literature concerning the relative strengths of Ti-6Al-4V alloys based on microstructure type. These authors did not necessarily use the same bimodal, lamellar, and equiaxed microstructures. These differences can make sense if we incorporate the parameters that are listed.

However, the influence of the microstructural parameters on fatigue property is difficult to investigate systematically, because the fatigue test costs a lot of human and material resources. A more comprehensive evaluation of the influence of the individual microstructure parameters on fatigue properties is difficult, because all data presented in a paper are from one research groups. This also limits the ability to evaluate additional effects due to variations in specimen preparation, test procedure, micro-alloy composition differences, heat treatment, rolling or forging procedure affecting texture, etc. [22].

Through an analysis on microstructures and HCF strengths of the Ti-6Al-4V alloys based on the literature dated from 1972 to present, effects of microstructure types and microstructure parameters on HCF properties were investigated systematically. The influences of the microstructure types (bimodal, lamellar, equiaxed) on the HCF properties were investigated. Additionally, the effects of the
microstructure parameters (α_p content and α_p grain size, lamellar width) on the HCF properties were investigated.

2. Method

In this paper, 75 sets of data in 21 references [10, 12-15, 17-21, 23-33] were collected with information about the HCF strength data and microstructure parameters of Ti-6Al-4V alloys according microstructure types (Fig. 1 and Tables 1-3). No testing was done by the authors but the work relied entirely on the literature data. All fatigue tests were performed in room-temperature air under axial loading conditions with a sine wave on smooth-bar, unnotched hourglass specimens.

[Fig. 1(a); Fig. 1(b); Fig. 1(c)]

Fig. 1. Three typical microstructures.

Most of the microstructural parameters (α_p content, α_p grain size and lamellar width) can be obtained from literature, but the ones that are not given clearly are analyzed by the Nano Measurer1.2 software according to the SEM images in the references. All these measured parameters are labelled as * in Tables 1-3. α grain size was measured by linear intercept method [34], and α lamellar width was measured by the way described in [35]. Fatigue strength data were obtained from the stress-life (S-N) curves in the literature.

3. Results

According to the different fatigue life (10⁵, 10⁶ and 10⁷ cycles), the fatigue strengths of Ti-6Al-4V alloys with three typical microstructures (bimodal, lamellar and equiaxed) are presented in Fig. 2. The exponential curve fitting is used to show the trend and comparison of the data. Other types of curve could
have been used, but they are expected to show similar trend and comparison. Due to the large scatter of
the data, a comparison using the mean and standard deviation of the HCF strength based on the three
types of microstructures would not be meaningful, as there will be huge standard deviation values,
making it apparent that the means overlap. It can be demonstrated that the HCF strength of the three
typical microstructures is dispersive and overlapped, but as a whole, the bimodal data appear above, then
lamellar and the equiaxed ones distribute at the bottom. It can be seen from the S-N curves that the
fatigue life increases as the loading decreases. Generally the HCF strength of different microstructures
decreases in the order of bimodal, lamellar and equiaxed microstructure.

[Fig. 2]

Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures.

3.1 Bimodal microstructure

The effect of α_p volume fraction (V_{α}) and α_p size of Ti-6Al-4V alloy with bimodal microstructures on
the HCF properties are shown in Fig. 3 and Fig. 4, respectively. Fig. 3(a-c) shows the analysis results of
HCF strength at 10^5, 10^6 and 10^7 cycles, respectively. It can be seen that the fatigue strength is highest
when V_{α} is in the range of 30% to 50%. For the convenience of comparison, Fig. 3(d) divides the data
into three groups according to the α_p volume fraction. e.g., $V_a < 30\%$, $V_a = 30$-50$\%$ and $V_a > 50\%$. From
the average data (Fig. 3(d)), the group of $V_a = 30$-50$\%$ has the highest HCF strength. It can be seen that
the HCF strength of Ti-6Al-4V alloys with bimodal microstructures will increase at first and then
decrease with the increasing α_p volume fraction. By visually looking at the individual cases, it would
appear that most data is similar, with some outliers in the 30-50$\%$ region. Fig. 3(d) was obtained by
averaging. It summarises available data, but should not be used for quantitative prediction. When
presenting individual cases, we deliberately do not differentiate sources of data, so as to treat all sources equally. For example, there seems to exist really high data at $V_\alpha = 40\%$, but we do not go into details of examining whether they are all from one alloy or reference.

[Fig. 3(a); Fig. 3(b); Fig. 3(c); Fig. 3(d)]

Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different α_p volume fractions: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.

The HCF strength of Ti-6Al-4V alloys with bimodal microstructures as a function of the α_p size is shown in Fig. 4. Fig. 4(a-c) shows the analysis results of HCF strength at 10^5, 10^6 and 10^7 cycles, respectively. It can be seen that all data have some dispersion, but in general the fatigue strength decreases with the increasing of α_p size from 2.8 μm to 20 μm. For the convenience of comparison, Fig. 4(d) divides the data into three groups according to the α_p size, e.g., $D_{\alpha} < 5$ μm, $D_{\alpha} = 5-10$ μm and $D_{\alpha} > 10$ μm. It can be seen from Fig. 4(d) that the HCF strength of Ti-6Al-4V alloys with bimodal microstructures declines apparently with the increasing of α_p size from 2.8 to 20 μm. It should be noted that Fig. 4(d) was obtained by averaging. There are individual cases apparently against the trend shown in Fig. 4(d). One should resist the temptation of making a quick conclusion by visually looking at individual cases, which was why averaging is used here. Note also that the range division, i.e., $D_{\alpha} < 5$ μm, $D_{\alpha} = 5-10$ μm and $D_{\alpha} > 10$ μm, is somewhat arbitrary, and there is actually no data for $D_{\alpha} = 5$ μm exactly. Different results may be obtained by dividing the range differently.

[Fig. 4(a); Fig. 4(b); Fig. 4(c); Fig. 4(d)]

Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different α_p size: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.
3.2 Equiaxed microstructure

Fig. 5 gives the correlation between HCF strength and α grain size of Ti-6Al-4V alloys with equiaxed microstructure. Fig. 5(a-c) shows the analysis results of HCF strength at 10^5, 10^6 and 10^7 cycles, respectively. It can be seen that, both the HCF strength at 10^5 (Fig. 5(a)) and 10^6 (Fig. 5(b)) cycles decrease when the average α grain size increases. However, there are some sets of extremely high HCF strength data around 10μm grain size, as illustrated in Fig. 5(c). The literature containing this data only tested the HCF strength at 10^7 cycles. For the convenience of comparison, these six extremely high data in Fig. 5(c) are eliminated and the data are divided into 2 groups according to 6μm grain size, as shown in Fig. 5(d). It can be seen that, the average HCF strength of the group with α grain size less than 6μm (including 6 μm) is larger than that of the other ones.

[Fig. 5(a); Fig. 5(b); Fig. 5(c); Fig. 5(d)]

Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different α grain size: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.

3.3 Lamellar microstructure

Fig. 6 gives the connection between the HCF strength and α lamellar width of Ti-6Al-4V alloys with lamellar microstructure. The linear curve fitting is used to show the trend of the data. Other types of curve could have been used, but they are expected to show a similar trend. From both the limited results and fitting lines (not good fits to the data) of HCF strength at 10^5, 10^6 and 10^7 cycles, respectively, the HCF strength declines with the increasing of α lamellar width. It should be noted that these fitting lines are not good fits to the data, but are used to show trends.

[Fig. 6(a); Fig. 6(b); Fig. 6(c)]
Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different α lamellar width: (a) 10^5 cycles, (b) 10^6 cycles and (c) 10^7 cycles.

4 Discussion

From all the results above, the HCF strength of the Ti-6Al-4V alloy with three typical microstructures may overlap among themselves in some ranges because of the limited material manufacturing industry [36]. However, generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure [37]. Though the conclusion of the bimodal microstructures having best high cycle fatigue is in contradiction with some literature, there are also ample explanation on the effect of bimodal structure on the crack growth [38], and statements that the bimodal structure generally ensures good fatigue endurance of the Ti–6Al–4V alloy [39] and a bimodal grain structure seems beneficial [40]. These references should be consulted for discussions on the mechanisms. Experimentally, bimodal Ti-6Al-4V alloys with best high fatigue properties has been found in many publications used to develop the analysis in this paper, as well as in publications not used, for example [39]. Therefore, it will be much more beneficial to choose bimodal microstructure if the work pieces need strict fatigue properties. Manufacturers can optimize the HCF strength of bimodal microstructures by controlling the α_p volume fraction and α_p size, respectively. From the present analysis results, it is beneficial to choose the microstructure with α_p volume fraction ranging from 30%-50% and α_p size as small as possible. For equiaxed or lamellar microstructures, the HCF strength can be controlled by α grain size or α lamellar width [37,41]. However, due to the limited data, there is no definite conclusion. Therefore this work will continue until definite conclusions are drawn from the increasing database in the future.
5. Conclusion

Through an analysis on the microstructures and HCF strengths of Ti-6Al-4V alloys which dated from 1972 to date, the effects of microstructure types and microstructure parameters on the HCF strength were investigated systematically. Based on this analysis, the following conclusions can be drawn:

(1) The microstructure types of Ti-6Al-4V alloy have significant influence on the HCF strength. Generally the HCF strengths of different microstructures decrease in the order of bimodal, lamellar and equiaxed microstructure.

(2) The primary α content and grain size in bimodal microstructure of Ti-6Al-4V alloy has significant influence on the HCF strength. The HCF strength increases at first, then declines with the increasing of the α_p volume fraction; and the HCF strength decreases with the increasing of the α_p size.

(3) The α grain size in equiaxed microstructure or α lamellar width in lamellar microstructure has significant influence on the HCF strength. The HCF strength declines with the increasing of either α grain size or α lamellar width.

Acknowledgements

This paper is financially supported by the Cheung Kong Scholars and Innovative Research Team Program in University from Ministry of Education (Grant No. IRT0805) and the Beijing Nova Program (2007B016).
References

Table and figure captions

Table 1. Database of bimodal microstructure parameters and HCF data of Ti-6Al-4V alloys

Table 2. Database of equiaxed microstructure parameters and HCF data of Ti-6Al-4V alloys

Table 3. Database of lamellar microstructure parameters and HCF data of Ti-6Al-4V alloys

Fig. 1. Three typical microstructures: (a) bimodal [10], (b) equiaxed [24], (c) lamellar [12]

Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures.

Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different \(\alpha_p \) volume fractions: (a) \(10^5 \) cycles, (b) \(10^6 \) cycles, (c) \(10^7 \) cycles and (d) analysis in groups.

Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different \(\alpha_p \) size: (a) \(10^5 \) cycles, (b) \(10^6 \) cycles, (c) \(10^7 \) cycles and (d) analysis in groups.

Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different \(\alpha \) grain size: (a) \(10^5 \) cycles, (b) \(10^6 \) cycles, (c) \(10^7 \) cycles and (d) analysis in groups.

Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different \(\alpha \) lamellar width: (a) \(10^5 \) cycles, (b) \(10^6 \) cycles and (c) \(10^7 \) cycles.
<table>
<thead>
<tr>
<th>No.</th>
<th>Ref.</th>
<th>Bimodal/μm</th>
<th>Frequency/Hz</th>
<th>Stress ratio (R)</th>
<th>HCF strength/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V_a</td>
<td>D_a</td>
<td>-1</td>
<td>10^5</td>
</tr>
<tr>
<td>1</td>
<td>Bellows et al. [25]</td>
<td>60</td>
<td>13*</td>
<td>60</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>950</td>
</tr>
<tr>
<td>2</td>
<td>Hines and Lütjering [12]</td>
<td>35</td>
<td>7.5*</td>
<td>90</td>
<td>545</td>
</tr>
<tr>
<td>3</td>
<td>Ivanova et al. [15]</td>
<td>60.5</td>
<td>8</td>
<td>30</td>
<td>830</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.8</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3×10⁴)</td>
</tr>
<tr>
<td>4</td>
<td>Nalla et al. [13]</td>
<td>64</td>
<td>20</td>
<td>25</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>850</td>
</tr>
<tr>
<td>5</td>
<td>Peters and Lütjering [17]</td>
<td>60</td>
<td>20</td>
<td>90</td>
<td>480</td>
</tr>
<tr>
<td>6</td>
<td>Zuo et al. [10]</td>
<td>55</td>
<td>10</td>
<td>20000</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>Oguma and Nakamura [20]</td>
<td>-</td>
<td>4</td>
<td>120</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>10</td>
<td></td>
<td>860</td>
</tr>
<tr>
<td>8</td>
<td>Nagai et al. [26]</td>
<td>-</td>
<td>4</td>
<td>20</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>4†</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>2.8</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>9</td>
<td>Broichhausen and Kann [27]</td>
<td>-</td>
<td>-</td>
<td>-1</td>
<td>588</td>
</tr>
<tr>
<td>10</td>
<td>Peters et al. [21]</td>
<td>-</td>
<td>6</td>
<td>80</td>
<td>710</td>
</tr>
<tr>
<td>11</td>
<td>Hines et al. [28]</td>
<td>-</td>
<td>9.7*</td>
<td>90</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>0.1</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>0.5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Ivanova et al. [18]</td>
<td>60.5</td>
<td>8</td>
<td>30</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.8</td>
<td>8.5</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.7</td>
<td>5.5</td>
<td></td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60.5</td>
<td>8</td>
<td>0.1</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.8</td>
<td>8.5</td>
<td></td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.7</td>
<td>5.5</td>
<td></td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>Authors [Ref]</td>
<td>Frequency</td>
<td>Specimen</td>
<td>Stress</td>
<td>Fatigue</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>13</td>
<td>Rudinger and Fischer [29]</td>
<td>40†</td>
<td>10</td>
<td>90</td>
<td>-1</td>
</tr>
</tbody>
</table>

* Measured by the authors.

Frequency is 1000 Hz.

† Fatigue specimens with different textures.
Table 2. Database of equiaxed microstructure parameters and HCF data of Ti-6Al-4V alloys

<table>
<thead>
<tr>
<th>No.</th>
<th>Ref.</th>
<th>α grain size/μm</th>
<th>Frequency/Hz</th>
<th>Stress ratio (R)</th>
<th>HCF strength/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10⁵</td>
</tr>
<tr>
<td>1</td>
<td>Hines and Lütjering [12]</td>
<td>2.5*</td>
<td>90</td>
<td>-1</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>Nalla et al. [13]</td>
<td>1.5*</td>
<td>25</td>
<td>0.1</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>860</td>
</tr>
<tr>
<td>3</td>
<td>Zuo et al. [10]</td>
<td>1.5*</td>
<td>20000</td>
<td>-1</td>
<td>533</td>
</tr>
<tr>
<td>4</td>
<td>Ivanova et al. [18]</td>
<td>0.92</td>
<td>30</td>
<td>-1</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>782</td>
</tr>
<tr>
<td>5</td>
<td>Rudinger and Fischer [29]</td>
<td>-</td>
<td>130</td>
<td>0</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>690</td>
</tr>
<tr>
<td>6</td>
<td>Adachi et al. [19]</td>
<td>0.5</td>
<td>90</td>
<td>-1</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Niinomi et al. [14]</td>
<td>1.5*</td>
<td>10</td>
<td>0.1</td>
<td>750</td>
</tr>
</tbody>
</table>

*Measured by the authors.
<table>
<thead>
<tr>
<th>No.</th>
<th>Ref.</th>
<th>Lamellar width/μm</th>
<th>Frequency/Hz</th>
<th>Stress ratio/R</th>
<th>HCF strength/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10^5</td>
</tr>
<tr>
<td>1</td>
<td>Peters et al. [23]</td>
<td>1.5†</td>
<td>80</td>
<td>-1</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>620</td>
</tr>
<tr>
<td>2</td>
<td>Morrissey et al. [24]</td>
<td>5.7*</td>
<td>70</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1800</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Ivanova et al. [15]</td>
<td>6.8</td>
<td>30</td>
<td>0.1</td>
<td>830 (3.5×10^5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>830 (2.4×10^5)</td>
</tr>
<tr>
<td>4</td>
<td>Peters et al. [21]</td>
<td>2</td>
<td>80</td>
<td>-1</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>5</td>
<td>Ivanova et al. [18]</td>
<td>6.8</td>
<td>30</td>
<td>-1</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>421</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>689</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>673</td>
</tr>
</tbody>
</table>

*Measured by the authors.
†Fatigue specimens with different textures.
Fig. 1. Three typical microstructures.

(a) Bimodal [10]

(b) Equiaxed [24]

(c) Lamellar [12]
Fig. 2. HCF properties of Ti-6Al-4V alloy with three typical microstructures.

Fig. 3. HCF strength of Ti-6Al-4V alloys with bimodal microstructure at different α_p volume fractions: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.
Fig. 4. HCF strength of Ti-6Al-4V alloy with bimodal microstructure at different α_p size: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.
Fig. 5. HCF strength of Ti-6Al-4V alloy with equiaxed microstructure at different α grain size: (a) 10^5 cycles, (b) 10^6 cycles, (c) 10^7 cycles and (d) analysis in groups.
Fig. 6. HCF strength of Ti-6Al-4V alloy with lamellar microstructure at different α lamellar width: (a) 10^5 cycles, (b) 10^6 cycles and (c) 10^7 cycles.
Highlights

• The effects of microstructure on fatigue properties were studied
• Fatigue strength decreases in the order of bimodal, lamellar, and equiaxed microstructure
• A method of choosing microstructure for fatigue property was established
• Fatigue properties are functions of microstructural parameters