
Resource-aware Estimation and Control for Edge Robotics: a Set-
based Approach

Spatharakis, D., Avgeris, M., Athanasopoulos, N., Dechouniotis, D., & Papavassiliou, S. (2022). Resource-aware
Estimation and Control for Edge Robotics: a Set-based Approach. IEEE Internet of Things Journal. Advance
online publication. https://doi.org/10.1109/JIOT.2022.3141266

Published in:
 IEEE Internet of Things Journal

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2022 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:30. Apr. 2024

https://doi.org/10.1109/JIOT.2022.3141266
https://pure.qub.ac.uk/en/publications/a8a18a55-48a1-4d70-a5fc-ca2d26063e86

1

Resource-aware Estimation and Control for Edge
Robotics: a Set-based Approach

Dimitrios Spatharakis∗, Marios Avgeris∗, Nikolaos Athanasopoulos†, Dimitrios Dechouniotis∗

Symeon Papavassiliou∗
∗ School of Electrical and Computer Engineering, National Technical University of Athens, Greece

†School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Northern
Ireland, UK

{dspatharakis, mavgeris, ddechou}@netmode.ntua.gr, n.athanasopoulos@qub.ac.uk, papavass@mail.ntua.gr

Abstract—The evolution of the Industrial Internet of Things
(IIoT) and Edge Computing enables resource-constrained mobile
robots to offload the computationally intensive localization
algorithms. Naturally, utilizing the remote resources of an
edge server to offload these tasks, encounters the challenge of
a joint co-design in communication, control, estimation and
computing infrastructure. We introdce a set-based estimation
offloading framework, for the specific case of the navigation of
a unicycle robot towards a target position. The robot is subject
to modeling and measurement uncertainties, and the estimation
set is calculated using overapproximation techniques that
alleviate additional computations. A switching set-based control
mechanism provides accurate navigation and triggers more
precise estimation algorithms when needed. To guarantee the
convergence of the system and optimize the utilization of remote
resources, a utility-based offloading mechanism is designed,
which takes into account both the dynamic network conditions
and the available computing resources at the network edge. The
performance of the proposed framework is demonstrated through
simulations and comparison with alternative offloading schemes.

Index Terms—Mobile Robotics, Cyber-Physical Systems,
Computational Offloading, Set Estimation, Edge Robotics.

I. INTRODUCTION

Smart manufacturing leverages the key-enabling 5G
technologies to modernize and improve the performance
of production workflows. Adopting the Industrial Internet
of Things (IIoT) paradigm, a factory floor is equipped
with various interconnected devices, i.e., robots, sensors
and actuators, which can be dynamically configured [1].
Furthermore, the Edge Computing service delivery model
and network softwarization concepts provide the essential
computing resources for deploying end-to-end network
services, enabling the interplay between industrial equipment
and applications of different vendors [2]. These novel
technologies facilitate the formulation of Cyber-Physical
Systems (CPS) that require automated decisions in the sense-
compute-actuate cycle.

Under this setting, the dynamic support of CPS depends
heavily on the provisioning of the right piece of data to
the right computing entity in a timely manner [3]. This
introduces new research and design challenges concerning
data processing, offloading decisions, resource allocation and
controllers’ design [4]. Regarding data processing, Machine

Learning and Deep Learning techniques have been widely
adopted to train models, either locally or remotely, for
predicting the behavior of the IIoT devices [5]. With reference
to the offloading decision, it is beneficial only if reliable and
low-latency wireless connectivity is available. This generates
the need for the network status to be taken into account. With
respect to resource allocation, the IIoT-based applications are
computationally intensive and require a significant amount
of resources for task execution. This imposes the design
of dynamic resource allocation strategies for the underlying
edge and cloud infrastructure, which in turn facilitates the
deployment of industrial applications as network services
that can be reconfigured on demand. A resource allocation
strategy must guarantee the performance requirements of the
applications. To this end, the controller synthesis should
provide formal closed-loop guarantees and stabilize the
industrial process leading to safe and optimal behaviors.
Towards successful closed-loop operations, the co-design of
Control, Communication and Computing (3C) is required to
provide reliable, low-latency and high-performance control for
industrial processes.

This article focuses on the case of Edge Robotics [6],
which is widely used in 5G industrial verticals. Following
the current trend in service delivery, Edge Robotics leverages
the computing capabilities of Edge Computing to achieve
low-latency communication [7]. In this work, the mobile
robot considered is a unicycle, subject to modeling and
measurement uncertainties. In the proposed scenario, the robot
must solve a state estimation, also called localization, problem
and subsequently a trajectory tracking problem. Under this
setting, an offloading mechanism is available for transmitting
the sensing data of the localization procedure to an edge
server for further processing. Following recent works in the
literature, [8], a set-based estimation approach is considered,
as our main concern is to provide deterministic guarantees
on the robot’s estimated pose and subsequently guarantee
convergence towards a target waypoint. Although existing
elegant solutions for control of unicycle robots exist, e.g.,
[9], [10], incorporating set-based estimation methods into the
controller design to provide real-time navigation, is quite
challenging. The proposed algorithm aims to provide a set-
based estimation offloading mechanism in the context of
Edge Robotics. Under this complex scenario, the fundamental

2

trade-off between performance and consumed resources is
investigated, along with the conditions that guarantee the
system’s convergence.

A. Related Work

This section presents the most recent related studies in the
literature that discuss the deployment of robotic applications,
such as path planning, localization and obstacle avoidance.
Depending on whether local or remote resources are utilized,
these studies are classified into two groups; (i) the onboard
sensor-based approaches and (ii) the offloading-based ones.

Due to limited computing resources, the onboard sensor-
based approaches aim to provide lightweight solutions for
robotic applications. Bajcsy et al. [11] proposed a safe
navigation framework for autonomous vehicles moving in a
priory unknown static environments under the assumption that
the sensors work perfectly within their ranges. This framework
was based on Hamilton Jacobi reachability analysis. Due to the
computationally expensive nature of this analysis, the authors
proposed an algorithm that uses only new measurements to
update the safety set and can be executed in an online fashion.
On the other hand, the authors in [12] focused on the path
planning of autonomous vehicles that are able to maneuver
on the road. The path planning problem was formulated as
a nonlinear optimization problem and two Model Predictive
Control solutions were designed for the lane selection and
collision avoidance problems respectively. Miller et al. [13]
proposed a controller synthesis algorithm for path planning in
dynamic and partially unknown environments. The proposed
vehicle system consisted of three subsystems: (i) a perception
subsystem that provided a free space prediction around the
vehicle, (ii) a plant-controller subsystem that guided the
vehicle to specific waypoints and (iii) the planner subsystem
that produced safe reference trajectories using Mixed Integer
Linear Programming. Finally, the authors in [14] proposed
a multi-robot collaborative localization framework, where
followers assisted the self-localization of the leaders in a time-
varying measurement topology. A binomial regulation function
was used to describe the loss or resurgence of an observation.
Then, a centralized extended Kalman filter was implemented
for estimation purposes.

The offloading-based studies leverage the network and
computing capabilities of edge servers to execute remotely
navigation or localization algorithms. The authors in [15],
similar to this work, presented a two-layer architecture for the
realization of a visual-based Simultaneous Localization And
Mapping application (SLAM) for tracking. They proposed
a lightweight version of the computationally-intensive visual
SLAM algorithm that is more suitable for resource-constrained
mobile devices. On the other hand, a more precise variation of
the visual SLAM is deployed on an edge server in proximity.
The mobile devices transfer keyframes of a video for further
processing at the edge side, only when necessary, i.e., when the
feature points between two consecutive images are not similar.
The offloading decision also considers the network conditions.

Chinchali et al. [16] proposed network offloading for
Cloud Robotics. The offloading problem was formulated as

a Markov Decision Process (MDP), where an autonomous
system updated the offloading decision at every time interval.
Then, Deep Reinforcement Learning (DRL) was used for
solving the offloading problem taking into account the diverse
network conditions and the trade-off between local and remote
computation. On the other hand, the authors in [17] focused
on data representation for task-centric communication rather
than addressing the decision making problem of when to
offload. Based on DRL, a robot encoder compressed and
transmitted concise representations instead of raw data, while
a server decoder generated a reconstructed estimation of the
raw sensory input. Then, one of the pre-trained task modules
was used to predict object locations and classes. Spatharakis et
al. [7] proposed a switching offloading mechanism for robot
path planning and localization. In that work, both services
could be executed either locally, on the mobile robot, or
remotely on an edge server. The offloading problem was
formulated as a switching model that balanced the trade-
off between navigation accuracy and mission duration. The
offloading decision took into account both the robot pose
uncertainties and the resource availability at the server side. In
a different manner, the authors in [18] proposed a symbiotic
robotic network for task offloading in the factory floor. Based
on their vicinity, the robots formed clusters where members
could offload tasks to each other. Additionally, a reward-
based feedback task offloading mechanism was proposed to
support delay-sensitive applications. Based on these rewards,
each node had a social repute score which was used to select
the appropriate node to offload the tasks and for the election
of the cluster head.

B. Contributions & Outline

In a smart factory environment, the robots are equipped
with sensors that can provide estimations of the robot’s pose
(i.e., two-dimensional location and orientation) [19]. Although
employing onboard sensor-based localization yields quick
results, they are known to be prone to accumulative errors,
especially when it comes to long trajectories [20]. Thus,
more sophisticated yet computationally intensive techniques
are usually required to increase the localization accuracy.
However, as discussed in [6], mobile robotic agents have
limited computing capabilities. To overcome these limitations,
an Edge Computing infrastructure in the robots’ proximity
can be leveraged to undertake the computationally intensive
localization tasks. The communication between the robots and
the servers can be performed through wireless access points
located also on the operating floor, while 5G connectivity can
be applied as well if available.

Aiming to analyze the above trade-offs and propose novel
control co-design strategies that guarantee the correct behavior
of such a system, this article presents a control co-design
methodology for mobile robot navigation. Specifically, we
consider a unicycle operating on a smart factory floor in an
Industry 4.0 application, able to move independently without
following predefined trajectories. The robot, equipped with
cameras and odometry sensors, navigates from a starting to a
target position, to complete a given mission (e.g., an automated

3

storage/retrieval). In this context, the trade-off between the
accuracy of the navigation and the mission duration is
investigated, according to the mission’s characteristics.

The main contributions of our work that differentiate it from
the rest of the literature, are summarized as follows:

1) A 3C co-design for CPS is introduced where a unicycle-
type mobile robot utilize both onboard and remote
resources to execute the computationally intensive tasks
of an Industry 4.0 application that requires navigation
in a factory floor. Two fundamental problems are jointly
tackled: (i) the synthesis of controllers that dictate the
motion of the unicycle robot in this path planning
problem and (ii) an offloading strategy to compensate
the uncertainty of the local estimation techniques with
the more accurate remote ones, while finding the balance
between navigation accuracy and mission duration. In
the context of event-triggered control and following
well-acknowledged works, e.g., [21] and [22], we
introduce a framework that incorporates the network
and computation availability together with stability-
preserving conditions. To the best of our knowledge,
this is the first work that introduces such a solution.

2) Novel controllers are designed to satisfy the mission’s
hard constraint, i.e., to ensure the convergence of
the mobile robot’s navigation to a target set. A
unicycle kinematic model is assumed for the robot’s
dynamics, while its movement is broken down into
two parts, i.e., rotational and translational. We note
that, although there are works in the literature
providing elegant robust controllers in the presence
of uncertainties, e.g., [10], [23], our proposed method
allows us to deal with three distinct challenges,
namely, (i) uncertainties/disturbances acting on the
dynamics of the third state, (ii) efficiently applying
set-based estimation using odometry measurements,
(iii) guaranteeing convergence of the closed-loop
system to a target waypoint. To further alleviate
the computational strain from the resource-constrained
platform, approximate computations are employed
to locally estimate the robot’s pose. Subsequently,
stabilizing state feedback control mechanisms are
applied to both movements, to guarantee convergence
to the target region.

3) A utility function-based decision making process is
properly formulated to undertake the computational
offloading strategy. This strategy dictates which of
the two different available localization techniques are
used; an error-prone, for example, odometry-based
localization, executed locally on the robot and the
accurate vision-based localization method that requires
a significant amount of computing resources and is
executed on the edge server. Apart from the navigation’s
quality, which is acquired by the controllers’ outputs,
this process also takes into consideration the networking
and edge computing resource availability to regulate
the trade-off between navigation accuracy and mission
duration, based on the performance requirements of the

deployed application.
4) A series of experiments are performed to evaluate the

performance of the proposed CPS in terms of navigation
precision and mission duration. The evaluation indicates
that the desirable solution concerning the preference
of the two localization algorithms is a mixed
strategy employing both of them. Using exclusively
a locally produced estimation, is not sufficient to
provide high enough accuracy, while constantly seeking
for a more precise estimation from the remotely
executed algorithm adds significant overhead in mission
duration. Furthermore, a detailed comparative evaluation
with alternative offloading schemes demonstrates our
framework’s benefits, as well as its adaptability to the
application’s specific requirements.

The remainder of the paper is organized as follows: in
Section II the problem under consideration is described and
defined, while in Section III the system dynamics and the
approximation analysis are presented. In Section IV, the
details of control design and the guarantee of convergence
are introduced, while Section V provides the details on the
offloading decision mechanism. In Section VI, the mechanism
performance is evaluated and indicative numerical results on
the robot’s navigation are presented. Finally, Section VII
concludes the paper and highlights potential future work.

II. PROBLEM DEFINITION

Formally introducing the overall problem, let x ∈ R3 be the
pose (states) and u ∈ R2 the control actions. Let us denote
by Xt ⊂ R3 the estimation set for x(t) for each time instant
t. Specifically, Xt contains all the possible states the robot
can reach starting from an initial state x(0) = x0 ∈ R3,
with an initial uncertainty X (0) = X0 ∈ R3. The problem
of estimating a conservative approximation of Xt is a rather
challenging computational problem for general dynamics and
constrained environments [24, Chapter 10]. In our setting, we
assume that two localization algorithms are available; (i) a fast,
locally-executed one, providing an unreliable estimation while
moving and (ii) a time-consuming, however more precise
one, executed remotely on an edge server. Furthermore, we
consider we have the option of invoking either of the two
algorithms above; in fact, the challenge addressed in this
work is to provide a stabilizing tracking controller and the
corresponding offloading decision mechanism. We let κ(t) be
a switching signal that denotes which estimation algorithm is
used at each time instant. Then, the twofold problem lies on
the specification of:

a) the robot’s respective control actions u(t), under the
current estimation set, such that the robot reaches and
remains after finite time ϵ-close to the target position x⋆,
i.e., there exists a tf such that ||x(t)− x⋆|| ≤ ϵ, for all
t ≥ tf and

b) the offloading control action O(t) = h(qo), where qo
denotes a utility function that incorporates the current
navigation quality, network conditions and the edge
computing resources availability.

4

TABLE I: Summary of the key notation.

Symbol Interpretation

x1(t), x2(t) Robot’s position at time t
x3(t) Robot’s orientation at time t

u1(t), u2(t) Control actions at time t
x⋆ Target position
T Time period - sampling time

σ(t) Model switching signal
κ(t) Offloading switching signal
δ(t) Heading error - disturbance at time t
D Heading error domain

y⋆1(t), y
⋆
2(t) Measurements at time t

w1(t), w2(t) Robot sensors’ errors at time t
W Measurement errors domain
Xo Initial Estimation Set
Xt Estimation set at time t
X 1:2

t Estimation set of position at time t
X 3

t Estimation set of orientation at time t

X̂t Overapproximated Estimation set at time t

V ol(X̂t) Volume of X̂t set at time t
Zt One-step Reachable set at time t

Ẑt Overapproximated One-step Reachable set at time t
Ct Compatibility set at time t

d(·, ·) Euclidean distance between two points
V (·, ·) Distance from a set to a point
Φ(·, ·) Orientation-target orientation incline
M Set of states where translation motion is allowed
ϵ Acceptable distance from target position
G Goal set

xrepr(t) Representative point of X̂t at time t
eul(d) Transmission time of offloaded task at time t

ecomp(t) Computation time of offloaded task at time t
qo(t) Utility function value at time t
O(t) Offloading strategy at time t
c1, c2 Coefficients of the Utility function

Under this setting, a CPS is formulated by the mobile robot
and the edge infrastructure, which collaborate to satisfy the
requirements of a navigation application.

In the context of this work, the target position is dictated
by an external path planning algorithm, for example as
in [7], under a smart industry application. Moreover, this
consideration allows us to ignore the case of obstacles located
in the factory floor, as the path planning algorithm provides
a safe trajectory. Table I summarizes the key notation used
throughout the article.

III. DYNAMICS AND APPROXIMATION ANALYSIS

In this section, we introduce our proposed method to
estimate the robot’s pose under specific robot dynamics and
uncertainties, a problem which is considered to be challenging
throughout the literature [24].

A. System Dynamics

As mentioned before, for the robot’s movement, we consider
the unicycle kinematic model, also equivalent via an affine
transformation to the differential drive dynamics. This model
assumes that the robot has two wheels that can rotate at
different rates, allowing motion by changing the orientation
and the position either separately or simultaneously. More

specifically, the unicycle kinematics are given as follows, with
the respective state space representation

ẋ1(t) = u1 cosx3(t),

ẋ2(t) = u1 sinx3(t),

ẋ3(t) = u2,

(1)

where x1, x2 refer to the position and x3 to the orientation
of the robot. We consider the control actions (u1(t), u2(t)) to
be piecewise constant since the implementation of the control
action is digital and the sampling time T is considered also
constant. Moreover, as noted before, in this work, a path
planning algorithm has already provided the target position
the robot has to reach to complete its mission.

One celebrated approach in the bibliography [25, p. 96]
is to manipulate the unicycle model by breaking down
and discretizing the motion to two parts, i.e., rotate/adjust
the orientation of the robot (“rotational motion”) and move
forward towards the target (“translational motion”).

Hence, two subsystems are defined. The signal σ(t) : R →
{0, 1}, switches between a translation (S1, σ(t) = 0) and a
rotation (S2, σ(t) = 1), respectively. The systems with the
respective state space representation are defined as:

S1 :

ẋ1(t) = u1(t) cos(x3(t)),

ẋ2(t) = u1(t) sin(x3(t)),

ẋ3(t) = δ(t),

(2)

S2 :

ẋ1(t) = 0,

ẋ2(t) = 0,

ẋ3(t) = u2(t) + δ(t).

(3)

We assume that the effect the rotational motion has on
the robot’s position is negligible, while a bounded, however
unknown, heading non-zero error δ(t) ∈ D = [δmin, δmax] is
applied to both motions. We should note here that, for the
simplified case of zero disturbance, we utilize directly the
dynamics derived by integrating both parts of Systems (2), (3),
as in this case the x3 state is now a constant. The modeling
of the controllers and the proof of convergence remain the
same. At each time step, the robot must decide whether to
rotate or move forward to a straight line, by choosing the
corresponding model to reach to a target position x⋆. Further
analysis on the respective controllers is presented in Section
IV. Regardless, the estimation set Xt for the three states grows
from the initial estimation X0, as the robot moves. As in [24,
Chapter 10], we propagate this set forward, given the control

action u(t) =

[
u1(t)
u2(t)

]
with ui(t) ∈ Ui ⊂ R, i = 1, 2. Then,

for the selected piecewise-constant control action and for an
unknown but constant disturbance δ ∈ D, we solve the two
subsystems analytically over one time period T

S1 :

x1(t+ 1) = x1(t) +

u1(t)
δ(t)

[sin(x3(t+ 1))− sin(x3(t))]

x2(t+ 1) = x2(t) +
u1(t)
δ(t)

[cos(x3(t))− cos(x3(t+ 1))]

x3(t+ 1) = x3(t) + Tδ(t),
(4)

S2 :

x1(t+ 1) = x1(t),

x2(t+ 1) = x2(t),

x3(t+ 1) = x3(t) + T (u2 + δ(t)),

(5)

5

where T is the constant sampling time. We define the
following mapping functions g1, g2 which consist of the
dynamics of eq. (4),(5) respectively

g1(x, u, δ) =

[
x1 +

u1

δ [sin(x3 + Tδ)− sin(x3)]
x2 +

u1

δ [cos(x3)− cos(x3 + Tδ)]

]
,

g2(x, u, δ) = x3 + T (u2 + δ)

The one-step reachable set Zt+1 is defined next; that is, the set
of states that the robot can reach from the estimation set Xt. To
reduce complexity, the calculation of the one-step reachable set
Zt+1, is decoupled by first computing the one-step reachable
set for each state and then calculating the Cartesian product
of these sets Zt+1 = Z1:2

t+1 × Z3
t+1, where:

Z3
t+1 =

{
z ∈ R :

(
∃x3 ∈ X 3

t , ∃δ ∈ D :

z3 =

{
x3 + Tδ, if σ(t) = 0

g2(x3, u, δ), if σ(t) = 1.

)}
. (6)

and Z1:2
t+1 is computed as the Cartesian product of the

propagated states z1(t), z2(t), as follows

Z1:2
t+1 =

{
z ∈ R2 :

(
∃
[
x1

x2

]
∈ X 1:2

t , ∃x3 ∈ X 3
t ,∃δ ∈ D :

z =

g1(x1, u(t), δ) , if σ(t) = 0[
x1

x2

]
, if σ(t) = 1

)}
. (7)

Moreover, as the robot moves, the onboard sensors provide a
local pose estimation, y⋆(t+1). Typically, these measurements
come from odometry calculations and concern distance
travelled and changes in orientation [26, Chapter 5]. Hence, in
the context of this work, we consider that the local estimation
is of the following form:[

y⋆
1(t+ 1)

y⋆
2(t+ 1)

]
=

[
∥x1:2(t+ 1)− x1:2(t)∥22 + w1(t)

x3(t+ 1)− x3(t) + w2(t)

]
, (8)

where w =
[
w1(t) w2(t)

]⊤
are the sensors’ errors for the

distance and the shift in orientation measurements respectively,
that are unknown, however, bounded, i.e., w ∈ W ⊂ R2.
Then, the compatibility set, Ct+1, which includes all the states
compatible with the current measurements, is introduced as,

Ct+1 =

{
v ∈ R3 :

(
∃w ∈ W, ∃x ∈ Xt

)
:

[
y⋆1(t+ 1)− ∥v1:2 − x1:2∥22

y⋆2(t+ 1)− v3 + x3

]
∈ W

}
. (9)

Finally, to complete the calculation of the estimation set, we
compute the intersection set of Ct+1 with Zt+1, Xt+1, which
comprises of the output compatible states

Xt+1 = Ct+1 ∩ Zt+1. (10)

B. Approximation Analysis
The exact calculations for the one-step reachable set and the

compatibility set are challenging and usually computationally
intensive [24, Chapter 10]. To alleviate the computational
strain from the resource-constrained robot, we employ
approximate computations, thus managing to provide fast
computations of the estimation set. Specifically, we employ
parallelotope overapproximations for the Zt+1 set, computed
by eq. (6),(7) and for the Ct+1 set computed by eq. (9).

1) Approximation of the one-step reachable set Z: For the
problem of computing the one-step reachable set for each
state (eq. (6),(7)), a Taylor Model (TM) approximation is
invoked, as in [27]. TMs are used to represent flowpipes,
i.e., a set of states reachable by continuous dynamics from
an initial set within a given time interval. As a result, they
can be used to provide guaranteed enclosures to the solutions
of ordinary differential equations, often involving non-linear
functions, such as the model into consideration. The interested
reader may refer to [28] for further analysis of a TM flowpipe
construction for non-linear hybrid systems. In the scope of
this work, given the non-linear continuous system defined in
eq. (2),(3) and the current estimation set Xt, acting as the
initial set at each time, we compute the TM flowpipes for
each state variable, such that a polynomial overapproximation
is computed, given the respective control action u(t). In this
way, each overapproximated state variable lies on an interval.
Next, to acquire a guaranteed overapproximation of eq. (4),
the Cartesian product of the three intervals of the states
is computed. As a result, Zt+1 is overapproximated by a
parallelotope in the 3-D space, hereinafter, denoted as Ẑt+1
and computed by

Ẑt+1 = Ẑ1
t+1 × Ẑ2

t+1 × Ẑ3
t+1 = [zmin

1 (t+ 1), zmax
1 (t+ 1)]×

[zmin
2 (t+ 1), zmax

2 (t+ 1)]× [zmin
3 (t+ 1), zmax

3 (t+ 1)]. (11)

The reachable sets for the remaining states are computed
similarly. We should note here that different approximation
methods for the calculation of the one-step reachable set can be
chosen, using for example a Bernstein polynomial basis [29],
[30]. Moreover, the exact calculation of the one-step reachable
set is known [31] or can be approximated [32], however for
recursive calculations, the computation time rises. For our
work particularly, we selected the TM approximation due to its
popularity and the fact that, as the initial set becomes smaller
or the order of the polynomial used for approximation becomes
larger [28, Chapter 3.3], the overapproximation becomes more
accurate. On the other hand, shorter sampling time results
in more accurate approximations, increasing, however, the
complexity. The proposed technique is computationally light
and complexity-preserving. Hence, it is suitable for calculating
the reachable set repeatedly and providing real-time navigation
to the resource-constrained mobile robot. The calculation
of the estimation set (eq. (10)), i.e. the intersection of the
reachable set with the compatibility set, is in principle a
non-convex problem. As a result, using a fixed-complexity
polytope as a template for the reachable set, alleviates the
complexity and reduces computation time, as presented in the
next subsection.

2) Approximation of the estimation set X : As stated in
[24, Chapter 10], even more challenging is the calculation
of the output compatible states. These states are defined by
eq. (9). Hence, an interval for where each state lies can be
found. Again, a parallelotope approximation X̂ is used to
provide an overapproximation of the X set. Specifically, we
aim to further reduce the overapproximation acquired with
Ẑt+1, by investigating the compatibility with the acquired
measurements y⋆(t+1). Thus, we formulate two optimization
problems for each state variable, to find the respective
maximum and minimum values of this interval. As a result,
the calculation of the interval approximation of the output
compatible set can be achieved by solving generally nonlinear

6

optimization problems. Specifically, to find the maximum
attainable value for x1, given a measurement y∗ ∈ R2, we
solve the following:

maximize
v1,v2,w1,x1,x2

v1 (12a)

subject to y∗1 − ∥v1:2 − x1:2∥22 ∈ W1, (12b)

(x1, x2) ∈ X̂ 1:2
t , (12c)

(v1, v2) ∈ Ẑ1:2
t+1. (12d)

From the solution of the above problem, the maximum output-
compatible value umax

1 for the x1 state can be obtained.
Similarly, to find the minimum output-compatible value for
each state, an equivalent optimization problem with different
cost functions and the same constraint set, is solved. All
such problems are quadratically constrained linear programs.
It should be noted that, the output compatible values for x1, x2
states must be positive, as we consider that the operating
ground corresponds to the first quadrant of a Cartesian plane.
Since W1 = [wmin

1 , wmax
1], with wmin

1 ∈ R, wmax
1 > 0 being

an interval, relation (12b) is equivalent to:

∥v1:2 − x1:2∥22 ≤ y∗1 − wmin
1 , (13)

∥v1:2 − x1:2∥22 ≥ y∗1 − wmax
1 . (14)

Ineq. (13) contributes with a convex constraint and (14) with
a concave constraint respectively, thus, the total constraint set
of the optimization problem is non-convex. As a result, the
problem cannot be easily solved with efficient convex interior-
point methods. Nevertheless, an optimal solution can be found
by exploiting the other interval constraints.

First, the solutions for the maximization problem without
constraint (14) and the minimization problem without
constraint (13), are presented. Subsequently, using Proposition
1, we showcase that the constraints for each problem
are redundant. For example, regarding Problem (12a), let
us focus on constraint (13): The general solution of the
inequality is: −

√
y1 − wmin

1 − (v2 − x2)2 + x1 ≤ v1 ≤√
y1 − wmin

1 − (v2 − x2)2 + x1, therefore the maximum
positive output-compatible value vmax

1 is attained in

vmax
1 =min

{
vmax
1 , xmax

1 +√
y⋆
1 − wmin

1 − min
v2∈Ẑ2

t+1,x2∈X̂2
t

(v2 − x2)2
}
, (15)

where minv2∈Ẑ2
t+1,x2∈X̂ 2

t
(v2 − x2)

2 can be easily calculated,
as both v2, x2 have known values in intervals. Analogously,
for the minimization of v1, (14) has the following general
solution: v1 ∈ (−∞,−

√
y1 − wmax

1 − (v2 − x2)2 + x1] ∪
[
√
y1 − wmax

1 − (v2 − x2)2 + x1,∞) and therefore the
minimum positive output-compatible value is given by:

umin
1 =max

{
vmin
1 , xmin

1 +√
y⋆
1 − wmax

1 − max
v2∈Ẑ2

t+1,x2∈X̂2
t

(v2 − x2)2
}
, (16)

where, similarly, max
v2∈Ẑ2

t+1,x2∈X̂ 2
t

(v2 − x2)
2 can be easily

calculated. We should note here that, in the case where the
quantities under the square root are negative for both problems,
then they become infeasible and, thus, the maximum and

minimum value of v1 becomes equal to the corresponding
value obtained by the one-step reachable set.

Proposition 1. Let vmax
1 be a feasible solution of

the maximization problem (12a) without constraint (14)
contributing to the problem and, similarly, let vmin

1 be a
feasible solution for the respective minimization problem
without (13) respectively. If vmin

1 ≤ vmax
1 , then the

two constraints are redundant for solving the respective
optimization problems.

Proof. Let vmax
1 ,vmin

1 ∈ Ẑ1:2
t+1 be the two feasible

solutions of the maximization problem (12a) without
constraint (14) and the corresponding minimization problem
without constraint (13), respectively. Then, we want to
show that vmin

1 ≤ vmax
1 . By construction of the TM

overapproximation, we know that xmin
1 ≤ xmax

1 . As a
result, proving vmin

1 ≤ vmax
1 is equivalent to showing

that xmin
1 +

√
y⋆1 − wmax

1 − max
v2∈Ẑ2

t+1,x2∈X̂ 2
t

(v2 − x2)2 ≤

xmax
1 +

√
y⋆1 − wmin

1 − min
v2∈Ẑ2

t+1,x2∈X̂ 2
t

(v2 − x2)2. This is also

equivalent of proving that y⋆1 − wmax
1 − max

v2∈Ẑ2
t+1,x2∈X̂ 2

t

(v2 −

x2)
2 ≤ y⋆1 − wmin

1 − min
v2∈Ẑ2

t+1,x2∈X̂ 2
t

(v2 − x2)
2 which is true

as both v2, x2, w
max
1 , y1 are positive. As a result, the two

solutions do not intersect and the respective absent constraints
do not contribute to the feasible solutions.

Hence, the solution of a non-convex optimization problem
reduces to a simple calculation for each state variable. The
minimum and maximum output-compatible values of the x2
state are attained similarly.

On the other hand, for the output-compatible values of the
x3 state, it suffices to solve two similar linear programs to
find the minimum and maximum admissible values. In order
to find a maximum value umax

3 , the following optimization
problem must be solved, derived by eq. (9)

maximize
v3,x3,w2

v3 (17a)

subject to v3 − x3 ≤ y⋆2 − wmin
2 , (17b)

v3 − x3 ≥ y⋆2 − wmax
2 , (17c)

w2 ∈ W2, (17d)

x3 ∈ X̂ 3
t , (17e)

v3 ∈ Ẑ3
t+1, (17f)

where W2 = [wmin
2 , wmax

2], with wmin
2 ∈ R, wmax

2 > 0.
The minimum output-compatible value umax

3 is attained by
the respective minimization problem subject to the same
constraints. Finally, having calculated the output-compatible
intervals for the three states, e.g., X̂ 1

t+1 ∈ [umin
1 , umax

1], the
overapproximated estimation set X̂t+1 is computed as the
Cartesian product of the three sets:

X̂t+1 = X̂ 1
t+1 × X̂ 2

t+1 × X̂ 3
t+1

= [umin
1 , umax

1]× [umin
2 , umax

2]× [umin
3 , umax

3]. (18)

Thus, in the context of this work, the estimation set
is a parallelotope in the 3-D space. As it will be
thoroughly examined in the following section, the low

7

Fig. 1: An example of the overapproximation for the
calculation of the next estimation set, X̂t+1.

complexity of the approximation of the estimation set leads to
simple calculations for deriving controllers for each motion.
Moreover, the volume of the estimation set in the 3-D space
is introduced:

Vol(X̂t+1) = (umax
1 − umin

1)(umax
2 − umin

2)(umax
3 − umin

3). (19)

In Fig. 1, an example of our approximation is demonstrated,
for the experiment setting introduced in Section VI. The
blue-dashed line denotes X̂t, while the red-dashed line the
overapproximation using the TM technique. Finally, the next
estimation set, X̂t+1, is drawn with a green line. Additionally,
for the specific example of translational motion, Table II
presents the actual overapproximation of our method in
numbers. For the calculation of these sets, the following values
are used wmin

1 = 0.38, wmax
1 = −0.22, wmin

2 = −0.008,
wmax

2 = 0.002 and δ = 0.1. More details regarding the
measurement errors and the disturbance follow in Section VI.

TABLE II: A numerical example of the proposed technique.

i X̂ i
t Ẑi

t+1 X̂ i
t+1 u1(t) y⋆1 y⋆2

1 [5.42, 5.64] [5.62, 5.84] [5.62, 5.83] 0.38 0.15 0.1
2 [5.67, 6.00] [5.98, 6.32] [5.98, 6.20]
3 [0.98, 1.02] [0.97, 1.03] [0.97, 1.02]

We can notice that the conservative approximation of the
estimation set, while taking into account the measurements,
affects significantly the result, especially in this nonlinear
setting. To sum up, the challenging calculation of the
estimation set is handled with overapproximation techniques
due to the TM properties and our approach of computing the
output-compatible states.

IV. CONTROL DESIGN AND THEORETICAL GUARANTEE
OF CONVERGENCE

In the previous section, the solution for calculating a
conservative approximation of the estimation set was agnostic
to the control actions. In this section, we propose a
stabilizing state feedback control mechanism, that guarantees
convergence to the target region. Let d(x(t), x⋆) = ∥x⋆1:2 −

x1:2(t)∥2 be the distance between two points, specifically
between a specific point and the target. The distance between
a point and a set is defined as:

V (X̂t, x
⋆) = max

x∈X̂t

d(x, x⋆). (20)

Moreover, let

Φ(X̂t, x
⋆) =

{
φ ∈ R : (∃x ∈ X̂t :

φ = x3 − tan−1

(
x2 − x⋆

2

x1 − x⋆
1

)
)
}
, (21)

be the set of angles between the robot’s current estimation
of orientation and the line connecting current robot’s position
and the target position for X̂t, simply put, the set of angles of
incline towards the target. Finally, let M be the set of states
where translation is performed,

M =
{
x ∈ R3 :

(
∃u1 ∈ R : l |u1| < 2V (X̂t, x

⋆) cos(δM)
)}

,

(22)

where δm = max{|δmin| , δmax},

l =

√
2(δm

−2(1− cos(Tδm)),

δM = max{
∣∣∣Tδmin + Φ(X̂t, x

⋆)
∣∣∣ , ∣∣∣Tδmax + Φ(X̂t, x

⋆)
∣∣∣}

The reasoning behind the choice of the M set is presented
in Subsection IV-D. In order to select between performing
either translational or rotational motion and reduce the overall
computational complexity, only the center of the convex hull of
the estimation set is investigated in terms of whether it belongs
in the M set. Hereinafter, the center point of the current
estimation set, X̂t, is referred to as the representative point,
xrepr(t). As the estimation set is the Cartesian product of three
intervals of the states, the coordinates of the representative
point are computed straightforwardly:

xrepr(t) = (xrepr
1 (t), xrepr

2 (t), xrepr
3 (t)), (23)

where xrepri (t) = 1
2 (x

max
i (t) + xmin

i (t)), i ∈ [1, 2, 3], is the
center of the interval of each state xi ∈ X̂ i

t . The translational
motion is selected if xrepr ∈ M for any u1, otherwise the
rotational motion is selected. Moreover, we consider that the
robot has reached the target position when X̂t ⊆ G, with

G = {x ∈ IR3 : V (X̂t, x⋆) ≤ ϵ}, (24)

where ϵ is an acceptable distance from the target position, for
the mission to be assumed successful. Note that the robot’s
orientation when the goal set is reached is not considered
important. Since in the proposed modeling the motion is
considered either strictly translational or rotational, one control
input in each case is nonzero. The overall control strategy
that includes the state-dependent switching mechanism can
be described by a directed graph of Fig. 2, which illustrates
the control automaton. It is noted that the closed-loop system
can be described by a linear hybrid automaton with non-
convex guard conditions. Nevertheless, we do not use this
formalism in order to simplify exposition, especially since
the convergence proofs that follow are simple enough not to
necessitate the adoption of this powerful modeling approach.
Independently of the selected estimation technique, the robot
moves as described in the control automaton; specifically
(i) decides the motion (signal σ(t)) according to (22) for

8

Fig. 2: The control automaton for the robot’s motion.

xrepr(t), (ii) computes and moves according to the selected
control action, (iii) acquires an estimation of its pose using
an estimation technique and finally (iv) follows the procedure
introduced in the previous section to compute the new
estimation set and repeats the process. When the goal set is
reached the robot stops. A complete algorithm of the proposed
technique is presented in detail in Subsection V-D.

A. Set Controller for Translational Motion

In this subsection, we compute a translational control
action that decreases the distance to the target set, i.e.:
V (X̂t+1, x

⋆) < V (X̂t, x⋆). The control action u1(t) is
computed by the solution of the following optimization
problem,

minimize
λ,λ2

λ (25a)

subject to λ2 ≥ 1 + (λ22 − 2λ2) cos
2(δM) (25b)

λ ∈ (0, 1) (25c)
λ2 ∈ (0, 2), (25d)

where δM = max{
∣∣∣Tδmin + Φ(X̂t, x⋆)

∣∣∣ , ∣∣∣Tδmax + Φ(X̂t, x⋆)
∣∣∣}.

Then, for the selected λ2 that minimize λ, we select the
following control action

l |u1| = λ2d(x
repr
1:2 , x⋆) cos(TδM), (26)

where l =
√

2(δm
−2(1− cos(δm)). In this work we consider

only forward motion for the unicycle robot; as a result, the
positive value of u1 is selected. Next, for the selected control
action u1(t), the approximation of the one-step reachable
set Ẑt is computed using eq. (11). Also, as stated in
Subsection III-B1, the approximated one-step reachable set
Ẑt, has guaranteed enclosures for the solution of eq. (4) by
construction. Let us consider Ẑ1:2

t , omitting the orientation
plane as the distance function denoted in eq. (20), is defined
in the 2-D space. It should be noted here that the following
condition for the selected control action is investigating using
the reachable set approximation and without taking into
account the compatibility set, as this presupposes a control
action that is already applied to the robot. To this purpose, the
value of eq. (20) can be deduced from the vertices of Ẑ1:2

t ,

since it is a parallelotope overapproximation. Thus, it suffices
to investigate whether the distance from the vertices of Ẑ1:2

t

towards the target decreases for a given control action. To this
purpose, let us denote the vertices of Ẑt+1 as:

pij(t+ 1) = [zi1, z
j
2], (27)

where i = 1, 2, j = 1, 2 indicate the four vertices of Ẑ1:2
t .

For example, i = 1 denotes zmin
1 (t + 1) and similarly j = 2

denotes zmax
2 (t+1), where zmin

1 (t+1), zmax
1 (t+1) ∈ Ẑ1

t+1 and
zmin
2 (t+1), zmax

2 (t+1) ∈ Ẑ2
t+1 as in eq. (11). Consequently,

V (X̂t+1, x
⋆) = max

i,j∈[1,2]
d(pij(t+ 1), x⋆). (28)

As a result, given the selected control action u1(t), the
following condition must be investigated to determine if the
translational motion decreases the distance of the Ẑ1:2

t set to
the target position in one step

max
i,j∈[1,2]

d(pij(t+ 1), x⋆) ≤ λ′V (X̂t, x⋆), (29)

where λ′ ∈ (0, 1). If this condition holds, then the robot
implements the translational motion for u1(t), acquires the
measurements and proceeds with the calculation of X̂t+1,
as described in Subsection III-B2. Otherwise, eq. (20) is
not decreasing and a more precise estimation of the current
location is required to approach the target position. Hence,
each time the translational motion is allowed, it suffices to find
the maximum λ′max(t) ∈ (0, 1) for all vertices to guarantee
that the distance towards the target is decreasing.

B. Set Controller for Rotational Motion

When the representative point xrepr(t+1) does not belong
in M, the robot performs a rotational motion. During this, the
rotational controller acts to ensure that after one actuation step
the translational motion will be allowed. This is essential as
naturally the considered function of eq. (20) is not decreasing
when the rotational motion is performed.

In this section, an interval of angles of incline a ∈
[amin, amax] of the lines connecting each point in the
estimation set to the target position, is specified. The purpose
of this is to find, if exists, a rotational control action that
shifts the robot’s orientation, aiming to satisfy ineq. (22) for
xrepr(t+1). Since the overapproximated estimation set X̂t is
a parallelotope in the 3-D space, i.e., the states xi, i ∈ [1, 2, 3]
lie in known intervals, then amin and amax can be specified by
calculating the angles of incline for the lines that connect the
vertices of the estimation set, in the 2-D space and the target
position, as illustrated in Fig. 3. Consequently, the control
action u2(t) is calculated by solving the following linear
problem:

min
u2

max
X̂t,a,δ

(x3 + δ − u2 − a) (30a)

subject to x3 ∈ X̂ 3
t , (30b)

a ∈ [amin, amax], (30c)
δ ∈ D, (30d)
u2 ∈ U2, (30e)

9

Fig. 3: An illustrated example of the maximum minimum
distance and slope between X̂t and the target position.

where amin = min{tan−1
(
x2,j(t)−x⋆

2

x1,i(t)−x⋆
1

)
} and amax =

max{tan−1
(
x2,j(t)−x⋆

2

x1,i(t)−x⋆
1

)
}, where i = 1, 2 and j = 1, 2

indicate the four vertices of the estimation set in the 2-D space.
For example, i = 1 indicates the minimum value of the interval
of x1(t) and similarly j = 2 indicates the maximum value
for x2(t). Next, for the selected control action u2(t), Ẑt+1 is
computed by, eq. (11) which also has guaranteed enclosures
for the solution of eq. (6) by construction. Similarly to the
previous subsection, the compatibility set in not taken into
consideration. We define

zrepr(t+ 1) = (zrepr1 (t+ 1), zrepr2 (t+ 1), zrepr3 (t+ 1)), (31)

where zrepri (t + 1) = 1
2 (z

max
i (t + 1) + zmin

i (t + 1)), for
i ∈ [1, 2, 3], is the center of the interval of each state
zi ∈ Ẑi

t+1. It should be noted that when a rotation is performed
the robot’s position (x1, x2) is not affected. As a result,
the following condition is examined; whether the shift in
orientation endeavors to satisfy ineq. (22) for the representative
point zrepr(t+ 1):

|u1| <
2

l
d(zrepr1:2 (t+ 1), x⋆) cos(δM), (32)

where l =
√
2(δm

−2(1− cos(Tδm))) and δM = max{
|Tδmin + Φ(zrepr(t+ 1), x⋆)| , |Tδmax + Φ(zrepr(t+ 1), x⋆)|
}. If zrepr(t + 1) belongs in M then the robot performs
the rotational motion for u2(t), acquires the measurements
and proceeds with the calculation of Ẑt+1, as described in
Subsection III-B2.

To sum up, after the rotational motion, if xrepr(t) belongs
in M then the translational motion is allowed in the next step.
Hence, the robot performs the translational motion for u1(t),
acquires a measurement and proceeds with the calculation
of X̂t+1, as described in Subsection III-B2. Otherwise, a
more precise estimation is necessary to proceed towards the
target position. One must note that, after rotating with u2(t),
if zrepr(t + 1) is in M, then, due to the parallelotope
overapproximation, it is certain that xrepr(t+1) will be in M,
as described in Subsection III-B2. That is why translational
motion is allowed in the next step.

C. Remote Estimation Technique
It should be clear now that if conditions (29) and (32) are

not satisfied for the translational and the rotational motion
respectively, then the system can no longer converge to the
target position and the switching signal κ(t) triggers the
precise estimation technique to assist in the navigation

κ(t) =

1, if σ(t) = 0 and (29) is not satisfied
or

if σ(t) = 1 and (32) is not satisfied,

0, otherwise.

(33)

Whenever κ(t) = 1, the localization algorithm described in
[19] is invoked remotely. Briefly, this estimation technique
relies on a bilateration method using principles of projective
geometry. The robot’s equipped camera captures images from
the area and offloads them into the proximate edge server.
There, the localization algorithm analyzes the images to detect
landmarks and provide a highly precise estimation regarding
the pose of the robot. Thus, this real-time image processing is
resource-intensive and time-consuming, even when executed
on an edge server. Hence, both the transmission overhead of
the images via the access point and the remote processing
overhead must be considered to find the right balance between
navigation accuracy and mission duration.

In the context of this work, the estimation computed by this
technique is considered accurate, without measurement errors.
Consequently, after invoking the remote estimation technique,
the exact pose of the robot is considered known. This allows
us to compute a fine-grained control approach and prove the
convergence of the proposed technique. We should note here
that, the choice of the selected remote estimation technique is
made to showcase a general setting in edge robotics in which
computationally intensive algorithms are not to be executed on
the robot, but rather to be offloaded on an edge server. Many
works exist in the bibliography such as [33], [34] that provide
very precise estimations regarding the robot’s pose. Moreover,
such landmark-based techniques are broadly utilized for indoor
localization in the context of Industry 4.0. [35]. It should be
emphasized, that the scope of this article is to introduce an
offloading strategy between different estimation techniques,
seeking a trade-off between mission duration and accuracy
and not seeking the best between different methods.

D. Convergence when Constantly Invoking Remote Estimation

In this section, we show that the proposed technique
converges to the target position after finite time, when the
remote estimation technique is exclusively invoked. Let us
assume that at time t = t⋆ the remote estimation technique
provides a precise estimation to the robot, thus the estimation
set is minimized to a point Xt⋆ = {xA}, as illustrated in Fig.
4. Then, it is straightforward to compute the Zt+1 set using
eq. (4) and (5).

The robot initially aligns the orientation accordingly and
then proceeds with the translational motion. Another benefit
of the precise estimation is that the set-based controller,
proposed in Problem (30), considers only one point in order
to provide the control action u⋆2. In this way, the robot

10

Fig. 4: Convergence example after the rotational motion.

manages to rotate, aligning to (AT), as illustrated in Fig. 4.
Thus, the angle of incline towards the target is minimized,
specifically Φ(Zt⋆+1, x

⋆) ⊆ D. As a result, the orientation
of the robot Z3

t⋆+1 lies in the interval
[
tan−1

(
xA
2 −x⋆

2

xA
1 −x⋆

1

)
+

δmin, tan
−1

(
xA
2 −x⋆

2

xA
1 −x⋆

1

)
+ δmax].

Lemma 1. Consider the Subsystem S2 (5) and that the
remote estimation technique provides an accurate estimation
xA at time t = t⋆. Let u∗2 be the control input obtained
by the solution of Problem (30) applied to (5) at time t∗. If
|(T + 1)δm| < π

2 , then the translational motion is allowed in
the next step, i.e., there exists a control action u⋆1 that satisfies
ineq. (22) for Zt⋆+1.

Proof. After performing a rotational motion, the robot is still
positioned at xA1:2, i.e., Z1:2

t⋆+1 = xA1:2, and Φ(Zt⋆+1, x
⋆) ⊆ D.

Moreover, for the translational motion to be allowed, it suffices
that Zt⋆+1 ⊆ M. Subsequently, given that V (Zt⋆+1, x

⋆) =
d(xA, x⋆), from ineq. (22) we get:

l |u1| < 2d(xA, x⋆) cos(δM), (34)

where

l =

√
2(δm

−2(1− cos(Tδm)), δm = max{|δmin| , δmax}

δM = max{
∣∣∣Tδmin + Φ(X̂t, x

⋆)
∣∣∣ , ∣∣∣Tδmax + Φ(X̂t, x

⋆)
∣∣∣}

Under our assumption that |(T + 1)δm| < π
2 and since

Φ(Zt⋆+1, x
⋆) ⊆ D, then l is a positive constant and 0 <

cos(δM) < 1. As a result, the translational motion is allowed
at time t = t⋆+1 for all u⋆1 that satisfy ineq. (34) and therefore
(22).

We note that typically the heading error lies in the fraction
of a few degrees [36], thus, the condition of Lemma 1 is not
particularly conservative since the sampling time T is small.

Proposition 2. Suppose that the robot rotates at time t⋆. Then,
there exists a control action u⋆1 such that V (Xt+1, x

⋆) ≤
λV (Xt, x⋆) for t = t⋆ + 1, λ ∈ (0, 1).

Proof. After rotational motion, by eq. (10) we know that
Xt⋆+1 ⊆ Zt⋆+1, since the compatibility set is not included

in this proof. By Lemma 1, at time t = t⋆ + 1, the robot is
positioned at xA1:2, hence the orientation X 3

t lies in the interval[
tan−1

(
xA
2 −x⋆

2

xA
1 −x⋆

1

)
+ δmin, tan

−1
(

xA
2 −x⋆

2

xA
1 −x⋆

1

)
+ δmax] . Moreover, it

also holds that Φ(Xt, x⋆) ⊆ D and the translational motion is
allowed for all u⋆1 that satisfy ineq. (34). Also, from Subsystem
(4), it occurs that the shift in the robot’s orientation, produced
by the heading error during the translational motion, is equal
to Tδ. Then, Θ is the set of angles that combine Φ(Xt⋆+1, x

⋆)
and this shifts in the orientation, as follows:

Θ(δ, Φ(Xt, x
⋆)) =

{
ϑ ∈ R :

(
∃δ ∈ D, ∃φ ∈ Φ(Xt⋆+1, x

⋆) :

ϑ = Tδ + φ
)}

. (35)

It should be noted that θ ∈ Θ ⊆ [dmin + Tdmin, dmax +
Tdmax], since rotational motion is applied first, i.e.,
Φ(Xt⋆+1, x

⋆) ⊆ D and d is bounded in D.
Let us also define the circle C(h, r), centered at the target

position x⋆, h = T (x⋆1, x
⋆
2) and its radius is the distance

from the target position r = (AT) = d(xA1:2, x
⋆). If the robot

after translational motion is located inside this circle then the
distance in one step, is decreasing.

Let xΓ1:2 be a point in the circumference of circle C,
as illustrated in Fig. 4. By definition, (AΓ) chord’s length,
d(xA, xΓ), is equal to 2d(xA, x⋆) sin(ψ2

2). We assume that the
robot traverses the (AΓ) chord by performing a translational
motion with a combined error θ ∈ Θ. Using the circle’s
identities, we get that ψ1 = θ, as (AΓT) is an isosceles
triangle and, thus, ψ2 = π−2θ. This means that for the (AΓ)
length we get that d(xA, xΓ) = 2d(xA, x⋆) cos(θ).

Next, suppose that x∆1:2 is a point on (AΓ) that the robot
can reach in one step, i.e., x∆1:2 ∈ Z1:2

t+1 for t = t⋆ + 1. Using
basic trigonometric identities, we get that the distance between
∆ and the target point x⋆, i.e., d(x∆, x⋆), is minimized if ∆
is a point on the perpendicular bisector of (AΓ), i.e., when its
distance from point A is equal to d(xA,xΓ)

2 = d(xA, x⋆) cos(θ).
Now, let us assume the general case where

d(xA, x∆) ≤ λ2d(x
A, x⋆) cos(θ), (36)

where λ2 ∈ (0, 2). This parametrization guarantees that point
∆ is inside the defined circle. The coordinates of x∆, can
be computed by eq. (4): x∆ = g1(x

A, u1, δ). As a result,
d(xA, x∆) = ∥x∆1:2 − xA1:2∥2. Using eq. (4) and involving
trigonometric identities ineq. (36) becomes:√

(
u1

δ
)2[2− 2 cos(Tδ)] < λ2d(x

A, x⋆) cos(θ). (37)

Satisfaction of ineq. (37), which is by assumption true, implies
existence of a u1 satisfying ineq. (34), for Xt = xA and for
θ = δM . Next, we show that ineq. (37) implies

V (Xt+1, x
⋆) ≤ λV (Xt, x

⋆) for t = t⋆ + 1. (38)

To this purpose, let us assume that, V (Xt+1, x
⋆) = d(x∆, x⋆),

as point ∆ lies arbitrarily in Xt for t = t⋆ + 1 Exploiting the
law of cosines for the (A∆T) triangle we know that for t =
t⋆ + 1

V 2(Xt+1, x
⋆) =V 2(Xt, x

⋆) + d2(xA, x∆)

− 2V (Xt, x
⋆)d(xA, x∆) cos(θ) (39)

By replacing eq. (39) to eq. (38), then

V 2(Xt, x
⋆) + d2(xA, x∆)− 2V (Xt, x

⋆)d(xA, x∆) cos(θ)

≤ λ2V 2(Xt, x
⋆) (40)

11

By eq. (36), eq. (40) becomes:

V 2(Xt, x
⋆) + λ2

2V
2(Xt, x

⋆) cos2(θ)− 2V 2(Xt, x
⋆)λ2 cos

2(θ)

≤ λ2V 2(Xt, x
⋆), for t = t⋆ + 1. (41)

And finally,

1 + cos2(θ)(λ2
2 − 2λ2) < λ2. (42)

Ineq. (42) is satisfied for any λ2 ∈ (0, 2) and λ ∈ (0, 1), thus,
V (Xt+1, x

⋆) < λV (Xt, x⋆), for t = t⋆ + 1.

Theorem IV.1. Consider the system (2), (3). Then, by
repeatably, invoking the remote estimation and performing
first rotational motion and then translational motion, the robot
converges to the target set G eq. (24).

Proof. By Lemma 1, after the remote estimation technique
is invoked, the shift is orientation defined by problem (30a),
guarantees that the translational motion is allowed in the next
step, i.e.: X (t⋆ + 1) ⊆ M. Furthermore, by Proposition 2,
there is guarantee that V (Xt+1, x

⋆) ≤ λV (Xt, x⋆) for t =
t⋆ + 1, namely the distance from the target position is
decreasing. The robot repeats the following process when
constantly invoking the remote estimation technique, namely
(i) performing a rotational motion and (ii) proceeds after one
time step to the translational motion. Consequently, for any
initial condition X0 such that V (X0, x

∗) ≤ c, it follows that
V (Xt) ≤ λ⌊

N
2 ⌋V (X0, x

∗) ≤ λ⌊
N
2 ⌋c, thus, the robot converges

to G as defined in eq. (24), in at most N∗ ≥ 2⌊ log ϵ−log c
log λ ⌋

steps.

Following this simple technique, i.e., initially rotating to fix
the heading error and then proceed to translational motion, it
is apparent that the convergence of the proposed technique
is guaranteed in the case of the robot constantly invokes
the remote estimation. As stated before, this computationally
intensive method heavily affects the mission duration of the
robot. Thus, while relying on the theoretical guarantee, next we
need to find an offloading strategy to find a balance between
accuracy and mission duration, whilst the dynamic conditions
of the network and remote computation resources, are also
considered.

V. COMPUTATIONAL OFFLOADING DECISION MECHANISM

In this section, the decision-making mechanism behind
the offloading of the computationally intensive tasks of our
framework is presented. This mechanism is based on a utility
function decision-making procedure that quantitatively ranks
the current conditions, in terms of their associated resource
metrics (i.e., availability of networking and computing
resources at the edge and quality of robot’s navigation)
and dynamically assigns tasks to be executed on the edge
infrastructure. To get a reliable estimation of these conditions,
network and computing resource profiles are developed, as
described in the following subsections.

A. Network Profiling

‘q wsac dIn the following, mainly for demonstration
purposes, we assume that the wireless access technique
between the robot and the access point is based on IEEE
802.11g. In this network deployment, a common effect that
occurs when a signal travels through a communication channel
is its power level decreases as the distance increases. To
estimate this propagation loss, the well-accepted Log-Distance
Path Loss (LDPL) model is utilized [37]. The LDPL model
applies to indoor environments with the presence of obstacles,
having a propagation exponent that indicates whether the
environment has more or fewer obstacles, impacting on the
computed loss. The respective path-loss is calculated as
follows:

PL(d)dB = PL(d0)dB + 10nlog10(
d

d0
), d ≥ d0, (43)

where PL(d0)dB is the path-loss at a reference distance d0 =
1m, n is the path-loss exponent (PLE), which depends on the
presence of obstacles in the environment. To set the upper
bounds of the channel capacity we also leverage the signal-
to-noise-ratio (SNR) metric,

SNR(d) = PdB − PL(d)dB −NdB , (44)

where PdB is the incoming signal to the access point and
NdB is a Gaussian noise. Then, the channel capacity C can
be calculated using the Shannon–Hartley theorem,

C(d) = B log2(1 + SNR(d)), (45)

where B is the available WLAN bandwidth (in Hz), giving
in this way an estimation of the tightest upper bound on
the information rate of data (in bits per second) that can
be communicated at an arbitrarily low error rate using
SNR. Having this bound available, an estimation of the
task transmission duration (in seconds) can be calculated as
follows:

eul(d) =
8 m

C(d)
, (46)

where m is the size of the offloaded data in bytes.

B. Edge Computing Resources Profiling

Regarding the profiling of the computing resources at the
edge, we assume that the allocation of the resources to
the localization service on the server is managed by the
resource orchestrator of the infrastructure provider. Hence,
we can only estimate the amount of allocated resources
through measurements. To this end, we model the resource
allocation strategy on the edge server as a linear dynamical
system, subject to process and measurement uncertainty
disturbances which follow the standard Kalman Filtering
estimation approach [38], a computationally light prediction
method. Briefly, using previous CPU utilization measurements,
allows for acquiring a current estimation of the virtual CPU
cores allocated to the container, ĉ(t), dedicated the remote
estimation technique. Subsequently, this allows for estimating
the expected computation time (in seconds) of the offloaded

12

task to the edge server, ecomp(t), by modeling it as a linear
relationship of the available resources, specifically:

ecomp(t) = α ĉ(t) + β. (47)

The coefficients α, β are calculated using a least-squares fitting
method on a set of pairs (ecomp(t), ĉ(t)) produced offline
while experimenting with a dataset of pictures from the robot’s
camera. The interested reader may also refer to [7] for further
information on this process, as it is based on this previous
work.

C. Utility-based Offloading Strategy

After evaluating the current network and available edge
computing resources, we apply the results in a utility
function in order to quantify the trade-off between remote
execution time and navigation performance. Naturally, this
utility function incorporates a term, which assesses the quality
of the navigation till the point of the offloading decision
making, t, which in our case is expressed as a fraction (rational
number) that is the quotient of the volume of the estimation
set X̂t, divided by the robot’s remaining maximum distance
of the estimation set towards the target position, V (X̂t, x⋆), as
introduced in Section IV. The rationale behind this inclusion
lies in the fact that the smaller the distance is between the
robot and the target, the more precise the navigation has to
be in order to approach it ϵ-close, thus the more preferable
the offloading. Additionally, in Subsection IV-C, we identified
a hard constraint for resorting to remote execution, expressed
by the value of κ(t) in eq. (33), which also has to be engaged
in the offloading decision.

Therefore, taking the above into consideration, the utility
function of edge computing processing for the robot can be
defined as:

qo(t) = c1 ·
V ol(X̂t)
V (X̂t, x⋆)

− c2 · eo(d, t) + κ(t) · C, (48)

where eo(d, t) = eul(d)+ecomp(t) denotes the total estimated
duration of the remote execution. We should note here that,
similarly to other studies [39], in the envisioned application,
the duration of the transmission of the computation results is
negligible, as the size of the computation results (plain text) is
much smaller than the size of the input data (image or video).
Thus, in our case, the total duration specifically involves
the uplink transmission and the computation execution time.
The c1, c2 ≥ 0,∈ R coefficients are carefully selected after
thoroughly experimenting with different combinations in order
to reflect the desired balance of mission duration and accuracy.
C ≥ 0,∈ R represents a very large number.

By carefully examining eq. (48), one can notice that the
system’s utility increases as the navigation accuracy decreases,
while decreases as the total offloading duration increases and is
maximized when offloading is deemed necessary, i.e., κ(t) =
1. Leveraging the above, we define O(t), a function that

dictates whether the task is offloaded to the edge (O(t) = 1)
or not (O(t) = 0), as follows:

O(t) =

1, if qo(t) ≥ JTH

0, otherwise,
(49)

where JTH ≪ C is a predefined threshold, the value of which,
together with the values of c1, c2 and C, tunes the sensitivity
of our mechanism in triggering the remote execution technique
and depends on the mission’s characteristics.

D. Convergence of the Proposed Technique and Core
Algorithm

To summarize the whole operation of the proposed CPS,
as introduced in Section IV, the robot’s motion, dictated
by the control automaton of Fig. 2, relies at first on local
techniques for pose estimation. On the one hand, the robot
performs a translational motion using the respective controller
computed by eq. (25) and (26), only when it is guaranteed
that the distance towards the target position for the whole
estimation set decreases. On the other hand, the robot performs
a rotation using the controller computed by problem (30a),
only when it is guaranteed that in the next step the translational
motion is allowed. In both cases, an overapproximation of the
estimation set is calculated, as explained in Subsection III-B2.
The offloading strategy switches to the remote estimation
according to the system’s utility, given by the utility function
(48). This utility function dictates the robot to invoke the
remote estimation whenever at least one of the two conditions
for convergence, eq. (29) and (32), is not satisfied, or when
the communication conditions and/or the available computing
resources result in a fast computation for the precise remote
estimation technique. In this case, given the precise estimation,
by Theorem IV.1, the distance between the robot and the target
position decreases. Thus, using a combination of the local and
remote estimation technique, the robot eventually converges to
the target position.

Corollary 1. Consider the system (2), (3) and the utility-based
offloading strategy defined in (48). Then, the robot converges
to the target set G eq. (24).

Proof. The proof of Corollary 1 follows the same reasoning
as in Theorem IV.1, with the exception that the convergence
speed is λ̂ = maxt λ

′(t), as given by eq. (29) and that the
rotation is invoked at worst every two time instants.

Algorithm 1 is also presented in order to provide the reader
with a summarized outline.

VI. PERFORMANCE EVALUATION

In this section, we provide a detailed numerical performance
evaluation of the proposed technique, through modeling and
simulation of various scenarios, illustrating the operation,
features and benefits of our approach. Specifically,
in Subsection VI-A, the detailed configuration of the
experimental setup is described. In Subsection VI-B, we
focus on the control sequence benchmarking. To this end,

13

Algorithm 1: The algorithm of the proposed technique.

Data: Initial estimation set X0 ⊂ R3

Result: The robot reaches ϵ-close to the target x⋆

function Main(X0):
while V (X̂t, x⋆) > ϵ do

// Target not reached
if xrepr ∈ M then

1: compute the translational control action
u1(t): Problem (25) and eq. (26)

2: compute an approximation of the
reachable set: Ẑt+1, Sec. III-B1
// Convergence Constraint

if ineq. (29) is not satisfied then
go to 5

end
call Calculate X̂t

else
3: compute the rotational control action
u2(t): Problem (30a)

4: compute an approximation of the
reachable set: Ẑt+1, Sec. III-B1
// Convergence Constraint

if ineq. (32) is not satisfied then
go to 5

end
call Calculate X̂t

end
5: estimate the execution time of the remote

estimation algorithm: eul(d), eq. (46)
6: estimate the execution time of the remote

estimation algorithm: ecomp(t), eq. (47)
7: compute the Utility-based Offloading

Strategy: O(t), eq. (48)
if O(t) == 1 then // Offloading

8: invoke precise remote estimation, Sec.
(IV-C)

9: compute the rotational control action
u2(t): Problem (30a)

call Calculate X̂t
10: compute the translational control
action u1(t): Problem (25) and eq. (26)

call Calculate X̂t
end

end
11: Stop // Target reached

function Calculate X̂t:
1: wait until the motion is performed and perform

local estimation using measurements
2: compute an approximation of the reachable set:
Ẑt+1, Sec. III-B1

3: compute the estimation set X̂t+1: Sec. III-B2
return

we identify two metrics, based on which we evaluate the
performance of our mechanism, namely the a) navigation
accuracy and b) mission duration and different offloading
strategies are compared. In Subsection VI-C, the utility
function is evaluated for different application scenarios,
indicating the easily adapted applicability of the proposed
technique. The benchmarking is conducted by simulating
the motion of a mobile wheeled robot in Python. For the
calculation of X̂ , we utilize Flow*, described in [40] and
[41]. Flow* is a software used for calculating reachable sets
in hybrid automata, together with other dedicated software
(e.g., CORA1) [42]. The simulation code, alongside any
related dataset used in this section, is publicly available2.

A. Experiment Setup

In order to have a realistic setting, for evaluating the
described scenarios, we simulate a square, 20m× 20m sized
factory floor where five wireless access points are located. Four
of them are placed in the corners of the floor and the last one
is places in its center. As the simulated robot, an AlphaBot3

is selected, thus, the local pose estimation is performed by
using the robot’s photoelectric sensors (encoders) attached
to each wheel, which provide an estimation about the
travelled distance and the shift in orientation. Moreover, the
discretization time is set at T = 0.1s. The remaining key
experiment parameters are listed in Table III, unless otherwise
explicitly stated. Additionally, regarding the mission, we
consider that the robot starts from a known position X0 and
stops when it reaches ϵ-close to the target position x⋆; for
illustration purposes and in order to be able to average the
following results over multiple repetitions of the experiment,
the starting and final position are kept always the same.

Parameter Value
ϵ 0.2 m
D [0.1, 0.2] rad
w1 [−0.2, 0.03] m
w2 [−0.06, 0.04] rad
x⋆ (13, 14)
X0 (3, 2)
JTH 10
U1 [0, 5] m/s
U2 [0, 2π] rad/s

TABLE III: Simulation parameters.

Regarding the networking settings, we assume a signal of
power PdB for the uplink, which is proportional to the distance
between the robot and the access point it is connected to and
which has a maximum value of PmaxdB = 24dB. Moreover, we
fix PL(d0) at −20dBm, based on the work of [37], which
presents an access point with the same characteristics of ours
and the same reference distance. The path-loss exponent n
is set equal to 3.5, a value typical for a factory floor setting
[43]. The size of offloaded data, in MB, follows a uniform
distribution with a mean value of 0.075 and variance equal to
0.25. The Gaussian Noise NdB is set equal to −114dB while

1https://swmath.org/software/25659
2https://github.com/Dspatharakis/Replan
3https://www.waveshare.com/wiki/AlphaBot

14

the bandwidth B allocated to the robot at any given time is
set to 1MHz.

Finally, regarding the edge computing resources, as
mentioned in subsection V-B and similar to [7], a least-squares
fitting method is used to calculate the coefficients α = −1.34
and β = 3.675 for the computation of the remote estimation
technique. Also, the allocated cores of the edge server ĉ(t)
are updated every 0.5s, following a Normal Distribution with
a mean value of 0.75 and variance equal to 0.5.

B. Control Sequence Benchmarking

In this scenario we compare the performance of the
following three computational offloading schemes, in terms
of navigation accuracy and mission duration: i) exclusively
local estimation, where the robot never invokes the remote
estimation algorithm, ii) exclusively remote estimation, where
the robot constantly invokes the estimation algorithm,
iii) utility-based offloading decision, where our proposed
mechanism comes into operation. For each of these three
cases, a set of 35 experiments is conducted and the results
are averaged per time slot for better illustration.

Fig. 5 depicts the changes in the estimation set volume
(per second), as the robot moves and offloads tasks. The
estimation set is depicted in 2-D, as the robot’s position
(and not its orientation) is sufficient to satisfy the termination
condition (eq. (24)). Alongside this, Fig. 6 shows how quickly
the robot reaches ϵ-close to the target in each case. As
expected, in case i), where only local estimations are used,
although the robot moves rather quickly as shown in Fig. 6a,
it consistently fails to approach the target as the localization
error is accumulated in each step. This is illustrated in Fig.
5a. There, the vast increase of the size of the estimation set,
due to this accumulated error, indicates that the robot can not
converge to the target position. It must be noted that, in the
35 repetitions of this setting, only once the robot managed
to reach ϵ-close to the target, as shown in Table IV. On the
other hand, case ii) showcases great precision in localization,
which also reflects at the size of the volume of the estimation
set, which is fixed at the minimum value (point) throughout
the mission, as shown in Fig. 5b. However, this comes with a
cost in mission duration which is significantly increased due
to the robot uncritically invoking a time-consuming estimation
technique, despite the networking conditions and available
edge computing resources not being always favorable.

After the evaluation of the first two cases, it becomes evident
that a balance between the investigated metrics, i.e., navigation
accuracy and mission duration, is of paramount importance
and our method, iii), manages to deliver one.

As illustrated in Fig. 5c, in the beginning, where the
robot moves quickly using the local pose estimation, the
estimation set increases over time. Then, the utility-based
offloading strategy invokes the remote estimation technique
three times, specifically at the 16th, 25th and 29th second
of the experiment. In these moments, a precise estimation
of the robot’s pose is provided, thus the estimation set is
minimized to a point. After offloading, the robot moves again
faster towards the target position, as long as the size of the

estimation set allows it. In this setting, the average mission
duration is kept to a low 33s, which is only 10% longer in
duration than the single successful try of case i). We should
note here that the coefficients of the utility function of eq.
(48) were fixed to values that provided a balanced outcome
between the evaluation metrics, in order to reflect a generic
mission. In the next subsection, an evaluation on the different
values and dynamics between these coefficients follows.

Offloading Scheme
Average
mission

duration (s)

Average
offloading
triggers

Success
Rate

Exclusively Local 25 0 3%
Exclusively Remote 270 95 100%
Utility-based 33 3 100%
Time-triggered (µ = 5) 95 26 100%
Time-triggered (µ = 10) 58 11 100%
Time-triggered (µ = 15) 48 7 100%
Time-triggered (µ = 35) 35 3 100%
Time-triggered (µ = 50) 38 3 95%

TABLE IV: Experiment metrics for each offloading scheme.

Finally, along with the three aforementioned offloading
schemes we evaluate five different settings of a time-triggered
remote estimation, a variation of case iii), where the remote
estimation is now triggered periodically every µ seconds.
Although this time-triggered estimation provides, in some
cases, similar results to our case, it has no convergence
guarantees. This is elucidated in Table IV, where the averaged
results for the set of 35 experiments, for all the offloading
schemes are presented. As one can notice, our technique is
superior to all the other offloading strategies when it comes to
providing a guaranteed convergence to the navigation target,
while keeping the mission duration low.

C. Offloading Strategy Benchmarking

Having evaluated the overall usefulness of the proposed
mechanism, in this section, we investigate the effect of the
coefficients of the utility function, on navigation accuracy and
mission duration. To this end, we tweak the coefficients of
eq. (48) to steer the offloading strategy towards benefiting one
of the two metrics, depending on the mission requirements.
In this context, we identify three mission-scenarios, differing
on which term of the utility function gets promoted and
the results this has on the mission metrics: i) time-critical
mission, (e.g., rescue robots), ii) navigation-critical mission,
(e.g., autonomous museum tour guides) and iii) sparse
communication mission (e.g., space robotics). The first case
differs from the exclusively local execution one of the previous
subsection, as we guarantee a 100% mission success rate, i.e.,
the robot always reaches the target.

For case i), we tweak the coefficients of the utility function
to benefit the mission duration. Consequently, c2, which is
associated with the total duration of the remote execution of
the precise estimation technique is promoted, while c1, which
is associated with the quality of the navigation, is demoted.
Hence, the time-consuming remote estimation is invoked either
when the total duration of remote execution is really low,
compared to the local estimations, or when the estimation set
has grown vastly, as shown in Fig 7a. In detail, the remote
estimation technique is invoked two times in this experiment,

15

(a) Exclusively Local. (b) Exclusively Remote. (c) Balanced Utility-based.

Fig. 5: Estimation set propagation for the three offloading schemes.

(a) Exclusively Local. (b) Exclusively Remote. (c) Balanced Utility-based.

Fig. 6: Decrease of distance V (X̂t, x⋆) for the three offloading schemes.

when the volume of X̂t results in a great deterioration of the
quality of the navigation, as shown in Fig. 7b and at the same
time the total duration of remote execution is minimized. The
average mission duration for this setting was 33s.

On the other hand, in case ii), to address the need for a more
fine-grained navigation, c1 is promoted and c2 is demoted,
thus, the estimation set’s volume is not allowed to grow
uncontrollably. This results, as presented in Fig 8a, in invoking
the remote estimation technique more frequently, i.e., 6 times
during this experiment. In this case, the quality of navigation
is more important than execution time; this is evident in
the 1st, 3rd and 6th offloading trigger, where the network
conditions and available edge resources are not so preferable,
but, still the robot chooses to offload in order to minimize the
localization uncertainties. In addition, naturally, the volume of
the estimation set, depicted in Fig. 8b, is relatively compared
to the first case, resembling the case of exclusively offloading
of Subsection VI-B. The average mission duration for this
setting is 33% longer (45s) than case i), as expected.

Finally, in case iii), we minimize c1, to simulate a scenario
where the robot invokes the remote estimation algorithm only
when it is an absolute necessity. This setting is a special case
of case i) to indicate that the mission duration also depends
on the increase of the estimation set. Therefore, as shown in
Fig. 9a, in this case we notice only two offloading triggers,
namely; the 1st due to the increase of the estimation set,
at the 22nd second of the experiment and the 2nd due to
the κ(t) signal trigger at the 33rd second. As presented in

Subsection IV-C, κ(t) becomes equal to 1 either when the
distance towards the target is not decreasing or the rotational
controller fails to allow translational motion in the next time
instant. As shown in the same figure, regardless of the current
network and computing conditions, the robot seeks a more
precise estimation to guarantee that the target is reached. A last
note is that the average mission duration for this setting is 15%
longer than time-critical experiment (38s). So, a conclusion
that is drawn is that the bigger the estimation set, the more it
deteriorates the quality of the navigation, under the proposed
controller design.

To sum up, it is noticeable that promoting c1 results in more
precise yet time-consuming navigation, as the robot offloads
more frequently. On the other hand, when promoting c2, the
robot offloads rarely, when absolutely necessary, resulting in
quicker but less precise navigation. Moreover, in the special
case, where c1 is minimized, the robot offloads either when
the estimation set grows vastly, or when the conditions that
guarantee convergence are not satisfied. It should be noted
that, while all three configurations manage to achieve a 100%
success rate in reaching the target position, the first one is
allowed to roam more freely, relying on its local navigation
capabilities in favor of speed, the second one manages so in a
more fine-grained trajectory while the third one invokes the
remote estimation technique only when necessary. To sum
up, the utility-based offloading decision framework manages
to achieve the required balance among the various mission
characteristics, making it suitable in the context of co-design

16

(a) Utility function breakdown. (b) Estimation set propagation.

Fig. 7: Time-critical mission.

(a) Utility function breakdown. (b) Estimation set propagation.

Fig. 8: Navigation-critical mission.

of 3C for a CPS.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel resource-aware estimation and control
framework for edge robotics, that jointly tackles the problem
of convergence in trajectory navigation of a unicycle robot and
the problem of efficiently using communication and computing
resources, is presented. The conservative overapproximation
techniques introduced alleviate additional computationally
intensive tasks from the resource-constrained robot and
provide a quick solution to the challenging problem of
calculating the estimation set in the presence of modeling and
measurement uncertainties. Moreover, we propose controllers
that guarantee the robot reaches a target position after a
finite number of steps. Finally, a utility-based offloading
decision strategy is presented and thoroughly evaluated to
highlight the need of finding a balance between two important

metrics, namely navigation accuracy and mission duration. The
performance evaluation of the proposed technique suggests
that our solution outperforms other typically used offloading
schemes and is easily adjustable to the needs of different
application characteristics. More importantly, the proposed
framework guarantees convergence to the target position
independent of the various parameters chosen, in contrast to
the periodic offloading schemes.

Our current and future research work focuses on further
examining offloading capabilities in the context of 3C,
especially the integration of planning algorithms and the
adaptation of the offloading decisions based on safety
guarantees for the robot’s navigation. We also plan to
investigate more sophisticated techniques to manipulate the
unicycle dynamics [9], [23] and integrate them to the proposed
set-based solution. Moreover, we aim to extend our work
to cover the case of multiple robots moving in a common

17

(a) Utility function breakdown. (b) Estimation set propagation.

Fig. 9: Sparse communication mission.

environment and using shared resources, thus requiring to
adapt our framework to interacting agents in both the resource
utilization problem and the trajectory tracking and path
planning problem. Finally, deep learning techniques will be
investigated, for calculating and dynamically adapting the
utility function coefficients based on different application
criteria.

ACKNOWLEDGEMENT

This work was partially supported by the CHIST-ERA
grant CHIST-ERA-18-SDCDN-003 and by Greek GSRT grant
T11EPA4-00022.

REFERENCES

[1] T. Taleb, I. Afolabi, and M. Bagaa, “Orchestrating 5G network slices to
support industrial internet and to shape next-generation smart factories,”
IEEE Network, vol. 33, no. 4, pp. 146–154, 2019.

[2] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton, R. M.
Jungers, and S. Papavassiliou, “Edge computing resource allocation for
dynamic networks: The DRUID-NET vision and perspective,” Sensors,
vol. 20, no. 8, p. 2191, 2020.

[3] E. Uysal, O. Kaya, A. Ephremides, et al., “Semantic Communications
in Networked Systems,” arXiv preprint arXiv:2103.05391, 2021.

[4] T. Abdelzaher, Y. Hao, K. Jayarajah, A. Misra, P. Skarin, S. Yao,
D. Weerakoon, and K.-E. Årzén, “Five challenges in cloud-enabled
intelligence and control,” ACM Transactions on Internet Technology
(TOIT), vol. 20, no. 1, pp. 1–19, 2020.

[5] F. Saeik, M. Avgeris, D. Spatharakis, et al., “Task offloading in Edge
and Cloud Computing: A survey on mathematical, artificial intelligence
and control theory solutions,” Computer Networks, p. 108177, 2021.

[6] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[7] D. Spatharakis, M. Avgeris, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, “A Switching Offloading Mechanism for Path Planning
and Localization in Robotic Applications,” in 2020 International
Conferences on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE
Congress on Cybermatics (Cybermatics), pp. 77–84, IEEE, 2020.

[8] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“Fastrack: A modular framework for fast and guaranteed safe motion
planning,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pp. 1517–1522, 2017.

[9] R. Olfati-Saber, “Near-identity diffeomorphisms and exponential/spl
epsi/-tracking and/spl epsi/-stabilization of first-order nonholonomic se
(2) vehicles,” in Proceedings of the 2002 american control conference
(ieee cat. no. ch37301), vol. 6, pp. 4690–4695, IEEE, 2002.

[10] J.-C. Ryu and S. K. Agrawal, “Differential flatness-based robust control
of mobile robots in the presence of slip,” The International Journal of
Robotics Research, vol. 30, no. 4, pp. 463–475, 2011.

[11] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tomlin, “An
efficient reachability-based framework for provably safe autonomous
navigation in unknown environments,” in 2019 IEEE 58th Conference
on Decision and Control (CDC), pp. 1758–1765, IEEE, 2019.

[12] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), pp. 174–179, IEEE, 2017.

[13] K. Miller, C. Fan, and S. Mitra, “Planning in dynamic and partially
unknown environments,” in In Proceedings of 7th IFAC Conference on
Analysis and Design of Hybrid Systems (ADHS’21), 2021.

[14] L. Zhang, Z. Zhang, R. Siegwart, and J. J. Chung, “Optimized motion
strategy for active target localization of mobile robots with time-varying
connectivity,” in 2019 International Symposium on Multi-Robot and
Multi-Agent Systems (MRS), pp. 185–187, IEEE, 2019.

[15] J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang,
“Edge assisted mobile semantic visual slam,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pp. 1828–1837, IEEE,
2020.

[16] S. Chinchali, A. Sharma, J. Harrison, A. Elhafsi, D. Kang, E. Pergament,
E. Cidon, S. Katti, and M. Pavone, “Network offloading policies for
cloud robotics: a learning-based approach,” Autonomous Robots, pp. 1–
16, 2021.

[17] M. Nakanoya, S. Chinchali, A. Anemogiannis, A. Datta, S. Katti, and
M. Pavone, “Task-relevant representation learning for networked robotic
perception,” arXiv preprint arXiv:2011.03216, 2020.

[18] A. W. Malik, A. U. Rahman, M. Ali, and M. M. Santos, “Symbiotic
robotics network for efficient task offloading in smart industry,” IEEE
Transactions on Industrial Informatics, 2020.

[19] M. Avgeris, D. Spatharakis, N. Athanasopoulos, D. Dechouniotis, and
S. Papavassiliou, “Single vision-based self-localization for autonomous
robotic agents,” in 2019 7th International Conference on Future Internet
of Things and Cloud Workshops (FiCloudW), pp. 123–129, 2019.

[20] D. Pizarro, M. Mazo, E. Santiso, M. Marron, D. Jimenez, S. Cobreces,
and C. Losada, “Localization of mobile robots using odometry and an
external vision sensor,” Sensors, vol. 10, no. 4, pp. 3655–3680, 2010.

[21] M. Lemmon, “Event-triggered feedback in control, estimation, and
optimization,” Networked control systems, pp. 293–358, 2010.

[22] S. Liu, D. E. Quevedo, and L. Xie, “Event-triggered distributed
constrained consensus,” International Journal of Robust and Nonlinear
Control, vol. 27, no. 16, pp. 3043–3060, 2017.

[23] C. Ferrin, G. Droge, and R. Christensen, “Zero-error tracking for

18

autonomous vehicles through epsilon-trajectory generation,” IEEE
Control Systems Letters, vol. 5, no. 6, pp. 2084–2089, 2020.

[24] F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Birkhäuser
Basel, 1st ed., 2007.

[25] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[26] M. Ben-Ari and F. Mondada, Robotic Motion and Odometry, pp. 63–93.

Cham: Springer International Publishing, 2018.
[27] X. Chen, E. Abraham, and S. Sankaranarayanan, “Taylor model flowpipe

construction for non-linear hybrid systems,” in 2012 IEEE 33rd Real-
Time Systems Symposium, pp. 183–192, IEEE, 2012.

[28] X. Chen, Reachability analysis of non-linear hybrid systems using Taylor
models. PhD thesis, RWTH Aachen University, 2015.

[29] T. Dang, “Approximate reachability computation for polynomial
systems,” in International Workshop on Hybrid Systems: Computation
and Control, pp. 138–152, Springer, 2006.

[30] T. Dreossi, T. Dang, and C. Piazza, “Parallelotope bundles for
polynomial reachability,” in Proceedings of the 19th International
Conference on Hybrid Systems: Computation and Control, pp. 297–306,
2016.

[31] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents,” American Journal of mathematics, vol. 79, no. 3, pp. 497–516,
1957.

[32] L. Liebenwein, C. Baykal, I. Gilitschenski, S. Karaman, and D. Rus,
“Sampling-based approximation algorithms for reachability analysis
with provable guarantees,” in Proceedings of Robotics: Science and
Systems, (Pittsburgh, Pennsylvania), June 2018.

[33] A. Bais and R. Sablatnig, “Landmark based global self-localization
of mobile soccer robots,” in Asian Conference on Computer Vision,
pp. 842–851, Springer, 2006.

[34] D. C. Yuen and B. A. MacDonald, “Vision-based localization
algorithm based on landmark matching, triangulation, reconstruction,
and comparison,” IEEE Transactions on robotics, vol. 21, no. 2, pp. 217–
226, 2005.

[35] G. Vasiljević, D. Miklić, I. Draganjac, Z. Kovačić, and P. Lista, “High-
accuracy vehicle localization for autonomous warehousing,” Robotics
and Computer-Integrated Manufacturing, vol. 42, pp. 1–16, 2016.

[36] W. Chen and T. Zhang, “An indoor mobile robot navigation technique
using odometry and electronic compass,” International Journal of
Advanced Robotic Systems, vol. 14, no. 3, p. 1729881417711643, 2017.

[37] D. B. Faria et al., “Modeling signal attenuation in ieee 802.11 wireless
lans-vol. 1,” Computer Science Department, Stanford University, vol. 1,
2005.

[38] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[39] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal
delay constrained offloading for vehicular edge computing networks,” in
2017 IEEE International Conference on Communications (ICC), pp. 1–
6, 2017.

[40] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Computer Aided Verification
(N. Sharygina and H. Veith, eds.), (Berlin, Heidelberg), pp. 258–263,
Springer Berlin Heidelberg, 2013.

[41] X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis
for nonlinear systems,” in 2016 IEEE Real-Time Systems Symposium
(RTSS), pp. 13–24, IEEE, 2016.

[42] M. Althoff, D. Grebenyuk, and N. Kochdumper, “Implementation of
taylor models in cora 2018,” in Proc. of the 5th International Workshop
on Applied Verification for Continuous and Hybrid Systems, 2018.

[43] D. C. G. Valadares et al., “802.11 g signal strength evaluation in an
industrial environment,” Internet of Things, vol. 9, p. 100163, 2020.

Dimitrios Spatharakis is currently a Ph.D. student
and a research associate in the NETMODE Lab
at the National Technical University of Athens
(NTUA). He received a Diploma in Electrical &
Computer Engineering (ECE) from NTUA, Greece,
in 2018. His research interests focus on IoT,
cyber-physical systems, edge computing and cloud
computing. He has been involved as a researcher in
several European and National R&D projects.

Marios Avgeris is currently a Ph.D student and
a research associate in the NETMODE Lab at the
National Technical University of Athens (NTUA).
He received his Diploma in Electrical & Computer
Engineering (ECE) from NTUA, Greece, in 2016.
His research interests lie in the area of control
theory, edge and cloud computing, IoT, semantic
web technologies and network monitoring. He has
been involved as a researcher in several European
and National R&D projects.

Nikolaos Athanasopoulos Nikolaos
Athanasopoulos is a Senior Lecturer at the
School of Electronics, Electrical Engineering and
Computer Science, Queen’s University Belfast.
He received a Diploma and a Ph.D in Electrical
and Computer Engineering from the University of
Patras, Greece, and has held postdoctoral researcher
positions in TU/e, the Netherlands, and UCLouvain,
Belgium. He has been awarded with an IKY (2006)
and a Marie Curie (2012) Fellowship. His interests
are in control theory with a focus on hybrid systems

and set-based methods, with applications to robotics, edge computing and
dynamic networks.

Dimitrios Dechouniotis is currently a senior
research associate with NETMODE Lab of the
National Technical University of Athens (NTUA).
From 2007 to 2016, he was non-tenured Lecturer at
the EE Dept. of Technical Educational Institute of
Western Greece. He received his diploma in ECE
from University of Patras in 2004, the MSc degree
in Control Systems and Robotics from NTUA in
2009, and the Ph.D. degree in ECE from University
of Patras in 2014. His research interests lie in the
area of cloud computing, Internet of Things, trust

management and control theory.

Symeon Papavassiliou (S’92-M’96-SM’11)
Symeon Papavassiliou is currently a Professor in
the School of Electrical and Computer Engineering
at the National Technical University of Athens.
From 1995 to 1999, he was a senior technical staff
member at AT&T Laboratories, New Jersey. In
August 1999 he joined the ECE Department at the
New Jersey Institute of Technology, USA, where
he was an Associate Professor until 2004. He has
an established record of publications in his field
of expertise, with more than 300 technical journal

and conference published papers. His main research interests lie in the
area of computer communication networks, with emphasis on the analysis,
optimization, and performance evaluation of mobile and distributed systems,
wireless networks, and complex systems. He received the Best Paper Award
in IEEE INFOCOM 94, the AT&T Division Recognition and Achievement
Award in 1997, the US National Science Foundation Career Award in 2003,
the Best Paper Award in IEEE WCNC 2012, the Excellence in Research
Grant in Greece in 2012, the Best Paper Awards in ADHOCNETS 2015,
ICT 2016 and IEEE/IFIP WMNC 2019, as well as the 2019 IEEE ComSoc
Technical Committee on Communications Systems Integration and Modeling
best paper award (for his INFOCOM 2019 paper). He also served on the
board of the Greek National Regulatory Authority on Telecommunications
and Posts from 2006 to 2009.

	Introduction
	Related Work
	Contributions & Outline

	Problem Definition
	Dynamics and Approximation Analysis
	System Dynamics
	Approximation Analysis
	Approximation of the one-step reachable set Z
	Approximation of the estimation set X

	Control Design and Theoretical Guarantee of Convergence
	Set Controller for Translational Motion
	Set Controller for Rotational Motion
	Remote Estimation Technique
	Convergence when Constantly Invoking Remote Estimation

	Computational Offloading Decision Mechanism
	Network Profiling
	Edge Computing Resources Profiling
	Utility-based Offloading Strategy
	Convergence of the Proposed Technique and Core Algorithm

	Performance Evaluation
	Experiment Setup
	Control Sequence Benchmarking
	Offloading Strategy Benchmarking

	Conclusions and Future Work
	References
	Biographies
	Dimitrios Spatharakis
	Marios Avgeris
	Nikolaos Athanasopoulos
	Dimitrios Dechouniotis
	Symeon Papavassiliou

