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Digital Twin-aided Intelligent Offloading with Edge
Selection in Mobile Edge Computing

Tan Do-Duy, Dang Van Huynh, Octavia A. Dobre, Berk Canberk, and Trung Q. Duong

Abstract—In this paper, we study a mobile edge computing
(MEC) architecture with the assistance of digital twin (DT)
applied for industrial automation where multiple Internet-of-
Things (IoT) devices intelligently offload computing tasks to
multiple MEC servers to reduce end-to-end latency. To do so, first
we propose and formulate a practical end-to-end latency min-
imisation problem in the DT-assisted MEC model subject to the
constraints of quality-of-services and computation resource at the
IoT devices and MEC servers in industrial IoT networks. Then,
we solve the proposed latency minimisation problem by iteratively
optimising the transmit power of IoT devices, user association,
intelligent task offloading, and estimated CPU processing rate of
the devices. Finally, simulation results are conducted to prove
the effectiveness of the proposed method in terms of the latency
performance compared with some conventional methods.

Index Terms—Mobile Edge Computing, Digital Twin, IoT.

I. INTRODUCTION

Mobile edge computing (MEC) has been recently consid-
ered as one of the promising solutions for Internet-of-Things
(IoT) devices (e.g., sensors, smartphones, etc.) to reduce
end-to-end latency by offloading their computing tasks to
surrounding macro base stations (MBS) equipped with pow-
erful computing resources [1], [2]. However, when large-scale
scenarios with the heterogeneous deployment of IoT devices
(UEs) and edge servers in the MEC system are considered,
the challenges in designing the optimal offloading strategy
with efficient resource allocation grow significantly due to the
network size and dynamics. As a potential digital mapping
technology, digital twin (DT) brings an excellent solution for
intelligent resource allocation and network management in the
MEC system by creating a real-time digital representation of
the physical equipment [1]. By combining MEC and DT, the
network status information can be efficiently monitored in real
time and then provided directly to the decision-making module
in the network in a centralised viewpoint.

There are already existing works focusing on designing
optimal offloading schemes in MEC system assisted by the DT.
For instance, in [1], the authors proposed a mobile offloading
scheme to minimize the average offloading latency under the
constraint of long-term migration cost when a mobile user
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(MU) offloads its computing task to nearby edge servers. The
DT estimates the states of the edge servers and training data
for offloading decisions. In another work, the authors in [3]
employed the DT system as an assistant to help MUs in se-
lecting high-quality MEC servers where DT manages the real-
time status of the network so MUs can offload computing tasks
to the MEC servers with low power expenditure and latency.
Most recently, in [4], the authors exploited DT to support
aerial-assisted internet of vehicles networks to capture the
dynamic characteristics of the resource demands. Then, two
incentive mechanisms were designed for jointly optimising the
satisfaction of vehicles and the overall energy efficiency of
road side units in the system.

Different from the existing works, in this paper we consider
a DT empowered MEC architecture for industrial automation
with multiple MEC servers to offload computing tasks from
UEs. In particular, we formulate a practical end-to-end latency
minimisation problem in the MEC model with the support
of the DT technology. Then, we solve the proposed problem
by iteratively optimising the transmit power of UEs, user
association, intelligent task offloading, and estimated CPU
processing rate of the DT. By means of numerical results,
we show the effectiveness of our proposed method for solving
the resource allocation issue under quality-of-service (QoS)
constraints for dealing with the challenge of limited resources
in IoT systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider a DT-empowered MEC ar-
chitecture, where the physical layer consists of many UEs
and MEC servers. Each UE can transmit data to multiple
MECs to offload a computing task, and each MEC server can
assist a finite number of UEs to guarantee performance. The
association between IoT and MEC is established based on
an edge selection indicator. The DT layer provides services
which replicate the physical objects, data analysis, estimation,
and decision making to manage and control physical system.

1) MEC architecture: There are M UEs, M = {1, 2..M}
and K MEC servers, K = {1, 2, ..K}. Each MEC server
is associated with an access point (AP). The user associ-
ation indicator is represented by the binary variable π =
{πmk}∀m,k = {0, 1}; when πmk = 1, there is a connection
between the m-th IoT and the k-th MEC server. Each MEC
server only assists a maximum of Mmax UEs; we have∑
m∈M

πmk ≤Mmax.

2) Offloading in MEC: A particular task from the m-th
UE is represented by a tuple Im = {Dm, Cm, Tm}, where
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Dm is the data size (bits), Cm is the required computation
resource (cycles), and Tm is the minimum required latency
for task Im (seconds). Let α = {αm}∀m be the amount
of the task processed locally and β = {βmk}∀m,k be the
offloading factor of the m-th UE to the k-th MEC server,
which satisfy 0 ≤ αm ≤ 1, 0 ≤ βmk ≤ 1. Given that the Im
task originated from the m-th UE, we have Dm = αmDm+∑
k∈K

πmkβmkDm and Cm = αmCm +
∑
k∈K

πmkβmkCm,

where αm +
∑
k∈K

πmkβmk = 1.

3) Digital twin model: The DT services fully replicate the
physical UEs, and include the information on the hardware
configuration, historical data, and real-time operating states.
The DT can interact with the physical system via a real-
time update and control mechanism, which is represented as
DT = {(M,M̃), (K, K̃)}, where {M̃, K̃} are the replica
of the physical network including all UEs and MEC servers.
For the m-th UE, its DT counterpart DTm can be expressed
as DTm = (fm, f̃m), where fm and f̃m are the estimated
CPU frequency assigned to the local task in the physical
UE and the deviation between the value in the real UEs
and its DT, respectively [1]. In particular, UEs can locally
execute its tasks with the processing rate fm and partially
offload the tasks to the MEC servers to minimise computing
latency. The DT layer has the estimated processing rate f̃m
to replicate the behaviours of UEs and trigger decisions on
optimising the physical UEs configuration. Similarly, for the
k-th MEC servers, its DT counterpart DTk can be expressed
as DTk = (fk, f̃k), where fk and f̃k are the estimated CPU
frequency assigned to the local task in the physical MEC
server and the deviation between the value in the real MEC
server and its DT, respectively. The DT of MEC servers
provides the estimated processing rate to reflect the current
states of the real MEC servers in terms of computation ability.
This mechanism allows the DT to make decision on adjusting
offloading factors and edge selection policies to maximise the
system performance.

A. Communication model between physical objects

Connections between UEs and MEC servers are established
based on wireless communications. In this paper, we employ
the efficient maximal ratio transmission (MRT) in beamform-
ing design for the massive MIMO AP, which is formulated
as [5] fmk =

g∗
mk

‖gmk‖ , where gmk is the channel coefficients
between the m-th UE and the k-th AP; fmk is the beamforming
vector at the k-th AP. Here, we consider that the link between
the m-th UE and the k-th MEC server includes both large-
scale and small-scale fading effects as gmk =

√
γmkhmk,

where γmk and hmk are the path-loss expression and the
small-scale fading coefficients for channels from the m-th UE
to the k-th MEC server, respectively [6]. Then, we introduce
ρm,k,l = gTmkg

∗
lk/‖glk‖.

Hence, the achievable transmission rate at the k-th MEC
server according to the task of the m-th UE is given as [7]

Rulmk (p,π) = B log2

(
1 +

πmkpm|ρm,k,m|2

Im(p,π) + σ2
k

)
, (1)

where pm is the transmit power of the m-th UE, σ2
k

is the noise variance, and p = [pm]Mm=1; Im(p,π) =∑
l∈M,l 6=m πlkpl|ρm,k,l|2 represents the interference imposed

on the AP.
The latency between the m-th UE and the k-th edge server

for task offloading can be expressed as T cmmk (p,π, βmk) =
πmkβmkDm

Rul
mk(p,π)

.

B. Computation model of physical and DT objects

1) Local processing: The task Im at the m-th UE executes
αm portion of the task with the processing rate fm. Let
Cm = ξDm (in cycles) denote the required computation
resource, where ξ is the complexity of the task in cycles/bit.
The estimated time required to execute the task locally is given
by T̃ lcm (αm, fm) = αmCm

fm
. Assuming that the deviation of

the CPU processing frequency between the physical IoT and
their DT counterparts can be acquired in advanced [1], the
computing latency gap between the real value and DT esti-
mation can be calculated by ∆T lcm (αm, fm) = αmCmf̃m

fm(fm−f̃m)
.

Consequently, the actual time for local computing at the m-th
UE can be expressed as T lcm = ∆T lcm + T̃ lcm .

2) Edge processing: The estimated latency of the
k-th MEC server to execute task Im is given by
T̃ edmk (πmk, βmk, fk) = πmkβmkCm

f̃k
. Then, the latency gap

∆T edm between real value and DT estimation can be expressed
as ∆T edmk (πmk, βmk, fk) = πmkβmkCmf̃k

fk(fk−f̃k)
. As a result, the

actual latency for executing at the edge DT can be expressed
as T edmk = ∆T edmk + T̃ edmk.

C. Total latency of the DT system

For the task Im, the total DT latency in the system
can be expressed as follows: T totm (π, αm, βmk, fm, fk,p)
= T lcm + maxk∈K T

cm
mk + maxk∈K T

ed
mk = αmCm

fm−f̃m
+

maxk∈K
πmkβmk+Dm

Rul
mk(p,π)

+ maxk∈K

(
πmkβmkCm

fk−f̃k

)
.

D. Energy consumption model

The total energy consumption of the m-th UE with
computation (Ecpm ) and transmission (Ecmm ) is given as
Etotm (αm, pm,π, fm) = Ecpm + Ecmm =αm θ

2Cm(fm − f̃m)2 +∑
k∈K pm

πmkβmkDm

Rul
mk(p,π)

, where θ/2 is a constant denoting the
average switched capacitance and the average activity factor
of the m-th UE [4].

E. Problem formulation

In this paper, our main objective is to minimise the total
DT latency based on optimising the edge selection, offloading
policies, transmit power, and estimated CPU frequency of
the UEs and MEC servers. Hence, in the sequel, we will
formulate the optimisation problem (2) with respect to the
following constraints: i) the constraint (2b) represents the
power constraint at the UEs with Pmax denoting the maximum
transmit power; ii) the constraint (2c) is maximum latency
constraint for every incoming task; iii) the constraints (2d)
and (2e) mean that each edge server can serve maximum of
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Mmax UEs; iv) the constraints (2f) and (2g) present value
range and constraint of offloading factors; v) the constraints
(2h) and (2i) are the minimum transmission rate requirement
for uplink transmission from the UEs to the MEC servers and
the maximum energy consumption requirement of the UEs;
and vi) the constraints (2j) and (2k) reflect the computation
resource limitations at the UEs and the MEC servers, respec-
tively.

min
α,β,π,p,f

max
∀m∈M

{
T totm (π, αm, βmk, fm, fk,p)

}
s.t. pm ≤ Pmax,∀m ∈M,

T totm (π, αm, βmk, fm, fk,p) ≤ Tmaxm ,

πmk ∈ {0, 1} ,∀m ∈M,∀k ∈ K,∑
m∈M

πmk ≤Mmax,∀k ∈ K,

αm ∈ [0, 1] , βmk ∈ [0, 1] ,∀m ∈M,∀k ∈ K,

αm +
∑
k∈K

πmkβmk = 1,∀m ∈M,

Rulmk (p,π) ≥ πmkRulmin,∀m ∈M,∀k ∈ K,
Etotm (αm, pm,π, fm) ≤ Emaxm ,∀m ∈M,

αmfm ≤ fmaxm ,∀m ∈M,∑
m∈M

πmkβmkfk ≤ fmaxk ,∀k ∈ K,

(2a)

(2b)
(2c)
(2d)

(2e)

(2f)

(2g)

(2h)
(2i)
(2j)

(2k)

where α = {αm} ,∀m ∈ M; β = {βmk} ,∀m ∈ M,∀k ∈
K; π = {πmk} ,∀m ∈ M,∀k ∈ K; f = {fm, fk} ,∀m ∈
M,∀k ∈ K.

However, the problem (2) is a non-convex problem with
the non-convexity of (2a), (2c), (2h), (2i) which is difficult
to solve. Since large-scale scenarios are considered, the com-
plexity of problem (2) significantly increases with the large
number of UEs and MEC servers. Therefore, we propose a
distributed solution for solving the problem (2).

III. DISTRIBUTED SOLUTION FOR OPTIMAL SYSTEM
RESOURCE ALLOCATION

We develop an iterative method that effectively solves
problem (2). Specifically, first, we relax the integer variables
in user association indicators (π) into continuous variables.
Then, we iteratively optimise the power allocation, offloading
policies, and estimated processing rates of UEs and MEC
servers.

A. Optimal power allocation with fixed α,β,π, f
Given α,β,π, f, the problem (2) can be reduced to

min
p

max
∀m∈M

{
T totm (p)

}
s.t. (2b), (2c), (2h), (2i).

(3a)

To solve problem (3), we use the logarithmic inequality
given in [5], [8], which follows from the convexity of the
function f(x, y) = log2

(
1 + 1/xy

)
as

f(x, y) = log2(1 +
1

xy
) ≥ f̂(x, y), (4)

where, for ∀x > 0, x̄ > 0, y > 0, ȳ > 0, we have f̂(x, y) =

log2

(
1 + 1

x̄ȳ

)
+ 2

(x̄ȳ+1) −
x

x̄(x̄ȳ+1) −
y

ȳ(x̄ȳ+1) . Let i denote the
ith iteration and exploit x = 1

πmkpm|ρm,k,m|2 , y = Im(p)+σ2
k,

x̄ = x(i) = 1

πmkp
(i)
m |ρm,k,m|2

, and ȳ = y(i) = Im(p(i)) + σ2
k

for the approximation of the achievable transmission rate at
the k-th MEC server in (1) as

Rulmk(p) ≥ R̂ul(i)mk (p),∀m ∈M,∀k ∈ K, (5)

where

R̂
ul(i)
mk (p) = B

(
log2

(
1 +

1

x̄ȳ

)
+

2

(x̄ȳ + 1)

− x

x̄(x̄ȳ + 1)
− y

ȳ(x̄ȳ + 1)

)
. (6)

Hence, the constraint (2h) can be rewritten as

R̂
ul(i)
mk (p) ≥ πmkRulmin, ∀m ∈M,∀k ∈ K. (7)

Next, by introducing the new variables r , {rmk}
(∀m ∈ M,∀k ∈ K) that satisfy 1

Rul
mk(p)

≤ rmk,
the objective function T totm (p) can be upper-bounded as
T totm (p) ≤ T̂ totm (r) = αmCm

fm−f̃m
+ maxk∈K

(
πmkβmkCm

fk−f̃k

)
+

maxk∈K {rmkπmkβmkDm}.
We can express (2c) and (2i) as

T̂ totm (r) ≤ Tmaxm ,

αm
θ

2
Cmf

2
m +

∑
k∈K

pmrmkπmkβmkDm ≤ Emaxm ,

1

R̂
ul(i)
mk (p)

≤ rmk,

∀m ∈M,∀k ∈ K.

(8a)

(8b)

(8c)

(8d)

Since the constraint (8b) is still non-convex, we apply the
following inequality

x2y2 ≤
1

2

(
ȳ2

x̄2
x2

2 +
x̄2

ȳ2
y2

2

)
, (9)

with x2 = pm, x̄2 = p
(i)
m , y2 = rmk, ȳ2 = r

(i)
mk, to iteratively

express (8b) as∑
k∈K

1

2

(
r

(i)
mk

p
(i)
m

p2
m +

p
(i)
m

r
(i)
mk

r2
mk

)
πmkβmkDm

+ αm
θ

2
Cmf

2
m ≤ Emaxm ,∀m ∈M,∀k ∈ K. (10)

Consequently, problem (3) is equivalent to the following
problem to generate a feasible point at the ith iteration:

min
p,r

max
∀m∈M

{
T̂ totm (r)

}
,

s.t. (2b), (8a), (7), (8c), (10).

(11a)

Hence, problem (11) is now a standard convex program and
can be efficiently solved by convex optimisation solvers, e.g.,
CVX [9]. We propose a power allocation procedure for solving
problem (11), as summarised in Algorithm 1.
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B. Optimal edge selection with fixed α,β,p, f
For fixed α,β,p, f, problem (2) can be simplified as

min
π

max
∀m∈M

{
T totm (π)

}
s.t. (2c), (2d), (2e), (2g), (2h), (2i), (2k).

(12a)

Algorithm 1 : Optimal power allocation procedure for solving
problem (11)
.

Input:
Set i = 0, α,β,π, f and initial point p(0);
Set the tolerance ε = 10−3, the maximum iterations

Imax = 20 to stop the algorithm;
Repeat

Solve problem (11) for the feasible solution (p(i+1));
Set i = i+ 1;

Until Convergence or i > Imax;
Output: Optimal power control coefficients (p∗).

As observed in subproblem (12), the objective function
and the constraints (2c), (2h), (2i) are non-convex. To solve
subproblem (12), first we use the logarithmic inequality (4) to
obtain the approximation of the achievable transmission rate
at the k-th MEC server as

Rulmk(π) ≥ R̂ul(i)mk (π),m ∈M, (13)

where

R̂
ul(i)
mk (π) = B

(
log2

(
1 +

1

x̄3ȳ3

)
+

2

(x̄3ȳ3 + 1)

− x3

x̄3(x̄3ȳ3 + 1)
− y3

ȳ3(x̄3ȳ3 + 1)

)
, (14)

with x3 = 1
πmkpm|ρm,k,m|2 , y3 = Im(π) + σ2

k, x̄3 = x
(i)
3 =

1

π
(i)
mkpm|ρm,k,m|2

, and ȳ3 = y
(i)
3 = Im(π(i)) + σ2

k. Hence,
constraint (2h) is equivalently approximated as

R̂
ul(i)
mk (π) ≥ πmkRulmin. (15)

Second, we introduce new variables r̃ , {r̃mk} (∀m ∈
M,∀k ∈ K) that satisfy 1

Rul
mk(π)

≤ r̃mk. By following the
same inequality (9), we can express (2c) and (2i) as in the
following constraints

T̂ totm (π, r̃) =
αmCm

fm − f̃m
+ max

k∈K

(
πmkβmkCm

fk − f̃k

)
+ max

k∈K

{
1

2

( r̃(i)
mk

π
(i)
mk

π2
mk +

π
(i)
mk

r̃
(i)
mk

r̃2
mk

)
βmkDm

}
≤ Tmaxm (16)

αm
θ

2
Cmf

2
m +

∑
k∈K

1

2

( r̃(i)
mk

π
(i)
mk

π2
mk +

π
(i)
mk

r̃
(i)
mk

r̃2
mk

)
pmβmkDm ≤ Emaxm ,

(17)

1

R̂
ul(i)
mk (π)

≤ r̃mk. (18)

We note that from (16), the objective function T totm (π) can
be upper-bounded as

T totm (π) ≤ T̂ totm (π, r̃) . (19)

Consequently, at the i-th iteration, we solve the following
convex problem of (12):

min
π,̃r

max
∀m∈M

{
T̂ totm (π, r̃)

}
s.t. (16), (2d), (2e), (2g), (15), (17), (18), (2k),

(20a)

which is a convex program, and thus, can be efficiently solved
by convex optimisation solvers. The procedure for solving
problem (20) is similar to Algorithm 1. Therefore, we omit
the details here.

C. Optimal offloading policies with fixed π,p, f
For fixed π,p, f, problem (2) can be rewritten as

min
α,β

max
∀m∈M

{
T totm (αm, βmk)

}
s.t. (2c), (2f), (2g), (2i), (2j), (2k).

(21a)

Obviously, problem (21) is a standard linear programming
problem that can be solved by linear programming solvers.

D. Optimal estimated processing rates of UEs and MEC
servers with fixed α,β,π,p

For fixed α,β,π,p, problem (2) can be simplified as

min
f

max
∀m∈M

{
T totm (fm, fk)

}
s.t. (2c), (2i), (2j), (2k),

(22a)

since the constraints (2c), (2j), (2k) are convex with respect
to f. Hence, the problem (22) is convex with respect to f and
can be efficiently solved by CVX.

Finally, based on the above analysis, we propose an itera-
tive optimisation algorithm for efficiently solving the optimal
resource allocation for UEs and MEC servers. The iterative
algorithm is presented in Algorithm 2.

Algorithm 2 : Iterative optimisation algorithm for solving
problem (2).

Input:
Set κ = 0, initial point α(0), β(0), π(0), p(0), f(0);
Set the tolerance ε = 10−3, the maximum iterations

Imax = 20 to stop the algorithm;
Repeat

For α(κ), β(κ), π(κ), f(κ), solve problem (11) for optimal
power control coefficients (p(κ+1));

For α(κ), β(κ), p(κ), f(κ), solve problem (12) for optimal
edge selection (π(κ+1));

For π(κ), p(κ), f(κ), solve problem (21) for optimal
offloading policies (α(κ+1),β(κ+1));

For α(κ), β(κ), π(κ), p(κ), solve problem (22) for optimal
estimated processing rates (f(κ+1));

Set κ = κ+ 1;
Until Convergence or κ > Imax;
Output: Optimal resource allocation α∗, β∗, π∗, p∗, f∗.
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Finally, assume that each MEC server selects Mmax UEs
to serve based on the Mmax largest continuous variables
in the user association indicators. Let Sk denote the set of
Mmax UEs served by the k-th MEC server. We convert the
corresponding user association indicators to integer values
πmk = 1, m ∈ Sk.

IV. NUMERICAL RESULTS

We consider a MEC network where UEs are distributed
randomly in a 100 m × 100 m area with M = [5, 8] UEs
and K = 2 MEC servers. Each AP is equipped with L = 4
antennas. The channel path loss between the UEs and APs
is modelled as PL = 140.7 + 36.7 log10 d (dB), with d as
the geographical distance. The system bandwidth is set to
B = 10 MHz, and the maximum transmit power of an UE
is 30 dBm. The noise power density is set to σ2 = −174
dBm/Hz. The maximum CPU cycle frequency of the UEs and
the MEC servers is set to fmaxm = 1.0 Giga cycles/s and
fmaxk = 20 Giga cycles/s, respectively, [3], [7]. The input
data size at the m-th UE is set to Dm = 100 kB [2]. The
complexity of the task is ξ = [600, 1200] cycles/bit. The
minimum data rate is Rulmin = 0.1 Mbps and the maximum
energy consumption is Emaxm = 1.5 Joule. The maximum
latency constraint is Tmaxm = 1 second. Each edge server
can serve up to Mmax = 3 UEs. The effective capacitance
coefficient is θm = 10−24 Watt.s3/cycle3 [3], [4]. To indicate
the advantage of our proposed method, we compare our
approaches with conventional methods as follows:
• Our proposed scheme: combining optimal power alloca-

tion, optimal edge selection, optimal offloading policy,
and optimal frequency/processing rate allocation.

• Scheme 1: without considering the optimal edge selection
(i.e., only nearby selection). For edge selection, UEs
always offload their computing task to the MEC server
with minimum path loss.

• Scheme 2: without optimal offloading policy (i.e., equal
offloading policy). For the offloading policy, UEs assign
equal offloading factors to the associated MEC servers.
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Fig. 1: The worst-case end-to-end latency performance with
deviation of 1% and 5% versus (a) values of fmaxm , and (b)
different values of ξ, with K = 2, M = 6.

In Fig. 1a, we evaluate the worst-case latency with respect
to a range of fmaxm at K = 2, M = 6, ξ = 900 cycles/bit.
As can be seen from the figure, the worst-case latency goes
down with the increase of the computation resource limitations

at the UEs. This is due to the fact that the larger the local
computation resource limitations, the higher the capability to
process the tasks locally instead of task offloading to MEC
servers, and therefore, the higher the chance to reduce the
latency especially with optimal allocation of network resource.
Furthermore, we also investigate the impact of the deviation
between the assigned CPU frequency in the real UEs/MEC
servers and its DT by varying the different deviations of
1% and 5%. Specifically, for a fixed deviation of 1%, the
average gain of the latency obtained with the proposed scheme
is about 10% and 5% when compared with Scheme 1 and
Scheme 2, respectively. It is also noticed that the latency
performance decreased with the increase of the deviations. Fig.
1b shows how the worst-case latency changes with different
values of ξ with K = 2, M = 6. We can observe that
given the particular computation resource at the MEC servers
and UEs, the worst-case latency is clearly an increasing
function with task complexity, where part of the computing
tasks at the UEs should be offloaded to the MEC servers in
order to guarantee performance. Therefore, by making optimal
offloading policies, the proposed scheme always provides a
better performance than the benchmark schemes in terms of
the worst-case latency. For instance, when ξ increases from
600 to 1200 cycles/s, the worst-case latency with the proposed
method increases from some 0.4 to 0.9 seconds while with
Scheme 2, the worst-case latency rises from approximately
0.45 to 0.95 seconds.

V. CONCLUSION

In this paper, we have proposed a novel DT framework
assisting the task offloading of IoT devices for industrial
IoTs networks with MEC. We then have solved the highly
non-convex optimisation problem by minimising the end-to-
end latency of the considered systems with respect to the
transmission power, user association, task offloading, and CPU
processing frequency. We have demonstrated that our proposed
scheme outperforms the benchmark schemes.
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