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Abstract

Unmanned aerial vehicles (UAVs) and reconfigurable intelligent sur-

face (RIS) have been considered as promising techniques for enhancing

network performance and coverage in wireless communication. The

UAV-assisted wireless networks are reliable, low-cost, and on-demand

by using the agility and mobile features of the UAVs. The UAVs can

provide the maximum coverage and capacity for the targeted ground

users by adjusting their altitude. Their nimble mobility feature helps

them avoid signal blockages and have better connections with the

ground users. However, due to the limitation of their on-board power

and flight time, it is challenging to obtain an optimal resource alloca-

tion scheme for the UAV-assisted Internet of Things (IoT). The RISs

reflect the signal from the transmitters to the receivers by controlling

the phase-shift value of a massive amount of scattering reflectors. The

reflected signals can be combined coherently to improve the received

signal or destructively to suppress the interference. In addition, the

reliability and zero-delay are also notable advantages of the RIS in

supporting reliable and low-cost wireless communications.

Many of the devices used in IoT applications are energy-limited, and

thus supplying energy while maintaining seamless connectivity for IoT

devices is of considerable importance. In this context, we propose



a simultaneous wireless power transfer and information transmission

scheme for IoT devices with the support from RIS-aided UAV com-

munications. In particular, IoT devices harvest energy from the UAV

through wireless power transfer; and then, the UAV collects data from

the IoT devices through information transmission. To characterise the

agility of the UAV, we consider two scenarios: a hovering UAV and

a mobile UAV. Aiming at maximising the total network sum-rate,

we jointly optimise the trajectory of the UAV, the energy harvesting

scheduling of IoT devices, and the phase-shift matrix of the RIS.

We also investigate RIS-assisted multi-UAV networks that can utilise

both advantages of UAVs’ agility and RIS’s reflection for enhancing

the network’s performance. Aiming at maximising the energy effi-

ciency (EE) of the considered networks, we jointly optimise the power

allocation of the UAVs and the phase-shift matrix of the RIS.

This thesis presents three major contributions. Firstly, we design a

new UAV-assisted IoT system relying on the shortest flight path of

the UAVs while maximising the amount of data collected from IoT

devices. Then, a deep reinforcement learning (DRL)-based technique

is conceived for finding the optimal trajectory and throughput in a

specific coverage area. After training, the UAV has the ability to

autonomously collect all the data from user nodes at a significant to-

tal sum-rate improvement while minimising the associated resources

used. Our proposed techniques strike a balance between the achieved

throughput, trajectory, and the time spent. Secondly, we formulate



a Markov decision process and propose two DRL algorithms to solve

the optimisation problem of maximising the total network sum-rate

in the RIS-assisted UAV communications. Given the strict require-

ments of the RIS and UAV, the significant improvement in processing

time and throughput performance demonstrates that our proposed

scheme is well applicable for practical IoT applications. Thirdly, a

DRL approach is proposed for solving the UAV’s power allocation

and the RIS’s phase shift optimisation problem in the RIS-assisted

multi-UAVs communications. The centralised fashion and the paral-

lel learning approach are also proposed for maximising the EE perfor-

mance. Our proposed DRL methods for RIS-assisted UAV networks

can be used for real-time applications thanks to their capability of

instant decision-making and handling the time-varying channel with

the dynamic environmental setting.

As a result, this thesis proposes novel methods based on the DRL

algorithms for maximising the EE, sum-rate in RIS and UAV-aided

communications. We transform a real-life problem into a digital form

to formulate the environment and define the agents that interact with

the environment to improve the network’s performance.
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Chapter 1

Introduction and Overview

Recently, the use of unmanned aerial vehicles (UAVs) has received tremendous

attention for applications such as surveillance [1], rescue missions, telecommuni-

cations [2–9]. UAVs can deliver low-cost, mobile and reliable wireless communica-

tion solutions for solving various real-life applications thanks to their advantages

of agility and mobility. Reconfigurable intelligent surface (RIS) or intelligent

reflecting surface (IRS), refer to the technology of intelligently using massive

scattering reflectors. They can be deployed in a high location for cost-effective

and reliable solutions to extend the network coverage and performance.

Despite the numerous advantages, there are several technical challenges in the

UAV and RIS-assisted wireless network such as 3D trajectory design, air-to-

ground modelling, channel estimation, flight time optimisation, large-scale op-

timisation, information transmission [10–12]. In this chapter, we first present

the advantages, practical applications and challenges of RIS and UAV-assisted

wireless communications. Then, we provide an overview of deep reinforcement

1



1.1 UAV-enabled wireless communications

learning (DRL) and our research motivation, followed by our contributions.

1.1 UAV-enabled wireless communications

Thanks to the agility of UAVs, they are capable of supporting compelling ap-

plications and are beginning to be deployed more broadly. The high altitude of

UAVs can overcome some bottlenecks of the existing scenarios, such as shadow-

ing, blockages, remote areas, and emergency services. Some real-life applications

of the UAVs are surveillance [1], geography exploration [13], disaster rescue mis-

sion [14–16], and wireless communications [17, 18]. Recently, the UK and Chile

authorities deployed UAVs to deliver medical support and other essential sup-

plies to vulnerable people in response to Covid-19 [19, 20]. In addition, UAVs

were used for image collection and high-resolution topography exploration [21].

Recently, UAVs have received colossal attention for supporting wireless com-

munications to extend network coverage [2–9]. The UAVs can serve as aerial

base stations (BSs) that can deliver low-cost, mobile and on-demand networks

with ubiquitous coverage and robust handover [10, 22–26]. The high altitude of

the UAVs helps them to effectively connect with the ground users and BSs by

line-of-sight (LoS) communication links. The UAVs can provide the maximum

coverage and capacity for the targeted ground users by adjusting their altitude.

Their nimble mobility feature helps them avoid signal blockages and have better

connections with the ground users. Moreover, the UAV can be flexibly deployed

in the poor terrestrial coverage areas, such as remote villages and disaster areas,

to provide on-demand services.

2



1.1 UAV-enabled wireless communications

1.1.1 Applications of UAV Communications

UAVs have been widely used for enhancing wireless networks’ performance as a

benefit of their high altitude and mobility features [1–10, 14–16, 18, 22–28]. The

applications of UAVs in wireless networks span across diverse research fields,

such as wireless sensor networks (WSNs) [29], caching [30], heterogeneous cellu-

lar networks [31], massive multiple-input multiple-output (MIMO) [32], disaster

communications [14, 33] and device-to-device communications (D2D) [34]. For

example, the UAV can be deployed for enhancing the network coverage and ca-

pacity in sports events in which the existing network infrastructure cannot meet

the demand and needs to be boosted rapidly. Moreover, the UAV can provide

ubiquitous wireless coverage in rural areas where terrestrial infrastructure (e.g.,

cables) is costly. In such scenarios, the UAV-enabled wireless network is an ideal

solution to provide low-cost and on-demand internet to ground users.

The UAVs are also used for public safety communications, such as during nat-

ural disasters [16, 35, 36]. In such critical scenarios, the terrestrial networks can

be damaged and destroyed while there is a need for communications between the

victims and rescue teams. Thus, the aerial network based on UAVs is a promising

solution to provide a robust, fast and on-demand communication system. The

UAVs can quickly fly to the positions of ground users to provide connections. In

addition, the UAVs can function as data collection machines to collect data in

the Internet-of-Things (IoT) networks in which the ground users are limited in

terms of the transmit power and communication range [3,37–42]. For example, in

environments with no terrestrial infrastructure, such as remote areas and moun-

tains, the UAVs can be deployed with the emerging technologies (e.g., wireless

3



1.1 UAV-enabled wireless communications

power transfer) to provide energy-efficient and reliable communications [43–51].

Moreover, the UAVs can be used in smart cities where deploying a base station

is expensive and the transmit signal is blocked due to high buildings and obsta-

cles [52, 53]. Clearly, the UAV-assisted wireless communications can effectively

establish high speed, on-demand and cost-effective services in crowded locations

or in areas poorly covered by terrestrial networks.

1.1.2 Challenges in UAV-assisted Communications

Despite the numerous advantages of UAVs for supporting wireless communica-

tions, there are still some challenges to UAVs adoption [10,11]. Firstly, the high

variance and sensitive vibration of UAVs can affect the channel characteristics.

The air-to-ground channel is generally used to formulate the links between the

UAV and the users. However, it depends on the altitude of the UAV and the prop-

agation environment. Thus, there is a need for comprehensive measurements to

formulate a generic channel model. Secondly, the maintenance of the networks

and deployment of the UAVs are still challenging due to the limited propulsion

power level, the flight time of the UAVs and several stringent communications

constraints. Given the several limitations of on-board power level and the ability

to adapt to changes in the environment, UAVs may not be fully autonomous

and can only operate for short flight durations unless remote laser-charging is

used [54].

Moreover, solving a continuous trajectory design for the UAVs is a unique

challenge with the high variance of 3D position at the UAVs. Unlike terrestrial

base stations, UAVs can move in a continuous 3D space. Thus, when optimis-
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ing the UAV’s trajectory or deployment, the channel variation due to the UAV’s

attitude and energy consumption needs to be explicitly taken into account. In

addition, due to some challenging tasks such as topographic surveying, data col-

lection or obstacle avoidance, the existing UAV technologies cannot operate in

an optimal manner.

1.2 Reconfigurable Intelligent Surfaces-aided Wire-

less Networks

RIS has recently received significant attention for enhancing the network quality

and coverage. The signal arrived at the RISs is reflected toward the receivers

by adjusting the phase-shift matrix and active elements. Thus, the received

signals can be improved, and the interference from unexpected sources can be

mitigated for better network services. In addition, the reliability and zero-delay

are also notable advantages of the RIS in supporting reliable and low-cost wireless

communications.

1.2.1 Benefits and Applications of RIS-assisted Commu-

nications

RISs have become an emerging technique owing to their capability of modifying

wireless communications. There are several advantages of RISs as: easy deploy-

ment and sustainable operations, capacity, spectral efficiency and energy efficiency

enhancement, flexible reconfiguration and compatibility [12,55]. With the low-cost

passive scattering elements, the RISs can be easily deployed and replaced. They
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can be attached to the high buildings, ceilings, vehicles, etc., and on UAVs to

provide better cellular services and extend the network coverage at a low cost.

The high locations of the RISs can help to enhance the received signal at the

receivers and suppress the interference. As such, the capacity, energy efficiency

and max-min fairness among users are significantly improved in the RIS-assisted

wireless networks. Additionally, the phase-shift matrix at the RIS can be op-

timised to reflect the signal toward specific directions. The efficient phase-shift

optimisation can significantly improve the network performance. Furthermore,

the RISs are also compatible with many other emerging technologies such as

UAV [2, 8, 38, 56, 57] and mobile edge computing [58] to bring more reliable and

high-speed services to the users.

The applications of the RISs are diverse in the wireless networks. The RISs

can be used in the cellular network to bypass the obstacles and improve the links

from the BS toward users [59–61]. Moreover, the RISs can also be deployed for

strengthening the signal and mitigating interference in device-to-device commu-

nications [62–66]. On the other hand, the RISs can act as reliable middle layers

to cancel the undesired signal in the physical layer security [67–69]. In addition,

the RIS is attached to the UAV to provide an on-demand and high-speed aerial

network to the ground users [70, 71]. The RIS can also be exploited for assisting

the smart city [59, 61], autonomous vehicles [72] and intelligent wireless sensor

networks [8, 73].
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1.2.2 Challenges in RIS-assisted Communications

The RISs effectively enhance the received signal, suppress the interference, and

minimise the transmit power. However, there are still some challenges: there is

a need for energy-efficient channel estimation, practical protocols for information

exchange, real-time and distributed optimisation, and light-weight phase recon-

figuration [12].

Given the massive array of the scattering elements, the RIS, controlled by a

processing unit, reconfigures the phase shift to reflect the signal toward the spe-

cific directions. To achieve a better accuracy of channel estimation, the BSs or

UAVs need to use more power for computational purposes and information ex-

change. Moreover, most existing studies still consider full knowledge of channel

state information (CSI) in the RIS-assisted networks. Unlike the traditional sys-

tems, besides the estimation of the direct channel, the reflected channel, which is

cascaded by the BS-RIS link, the RIS phase-shift matrix and the RIS-users link,

also needs to be estimated. The direct channel estimation can be made by the

traditional methods. However, it is challenging to estimate the channel of the

BS-RIS and of the RIS-users link due to the limited power level and processing

capability at the RIS. Thus, there is a need for energy-efficient channel estimation

in RIS-assisted wireless networks.

As aforementioned, the RIS is comprised of a large array of elements. Thus,

the optimisation of the RIS phase shift leads to large-scale optimisation prob-

lems. The joint optimisation of the phase shift with the resource management

at the BS or users also makes the problem more challenging, especially when the

number of RIS’s elements increases or when multi-RISs are deployed. Moreover,
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RIS-assisted wireless communications have more sensitive and vulnerable channel

links than conventional wireless networks. The stringent constraints in terms of

communications, delay and power, bit error rate, etc., also need to be satisfied.

Hence, there is a need to investigate more accurate and efficient methods to deal

with the high-dynamic environment of RIS-aided wireless communications.

1.3 Deep Reinforcement Learning in Wireless

Networks

Machine learning has recently been proposed for the intelligent support of UAVs

and other devices in the network [18,27,28,32,46,74–78]. Reinforcement learning

(RL) is capable of searching for an optimal policy by trial-and-error learning.

However, it is challenging for model-free RL algorithms like the Q-learning algo-

rithm to obtain an optimal strategy while considering a large state and action

space. Fortunately, with the emerging neural networks, the sophisticated com-

bination of RL and deep learning, namely deep reinforcement learning (DRL),

is eminently suitable for solving high-dimensional problems. Hence, DRL algo-

rithms have been widely applied in fields such as robotics [79], business manage-

ment [80], and gaming [81]. Recently, DRL has also become popular in solving

diverse problems in wireless networks thanks to their decision-making ability

and flexible interaction with the environment [18, 27, 28, 30, 32, 46, 76–78, 82–84].

For example, DRL was used for solving problems in the areas of resource alloca-

tion [27,28,83], navigation [6,32], and interference management [76]. This section

introduces the fundamental concept of the Markov decision process (MDP) [85]
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and the RL algorithm.

1.3.1 An Overview of Markov Decision Processes

The MDP [85] is defined by a 4-tuple < S,A,P,R > where S and A is the finite

set of states and actions, respectively; P is the transition probability function

with Pss′(a) is the probability from state s ∈ S to state s′ ∈ S after the action

a ∈ A is taken; R is the reward obtained after the action a is executed. We define

π to be the policy which is mapping the state into the action. The objective of

an MDP is to find an optimal policy π∗ to maximise the defined reward that is

represented as follows:

maxEπ
[ T∑
t=1

γR(s′, s, a)
]

(1.1)

where E[·] is the expectation function, γ is the discounting factor.

1.3.2 A Brief Overview of Deep Reinforcement Learning

In the RL algorithm, one or many agents interact with the environment and

learn through interaction. The essence of RL is trial-and-error learning, in which

the agent observes the state and executes the action toward the environment to

adjust its behaviour in response to obtained rewards. Deep learning enables RL

to work in more complicated problems with a high-dimensional state and action

space.

There are two main approaches for solving the RL problems: value func-

tions (deep Q-learning, SARSA, double deep Q-learning, etc.) and policy search

(vanilla policy gradient, proximal policy optimisation, etc.). There is also a hy-

brid model, namely the actor-critic approach (deep deterministic policy gradient
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algorithm, etc.), based on both value function and policy search. In DRL, we

use deep neural networks for approximating the value function V , the action-

value function Q, the advantage function A and the policy π. In the value search

approach, we consider the gap between the received rewards in two samples to

adjust the value function. In the policy search algorithm, we directly find the

policy for the problems.

1.3.2.1 Value Function

The idea of the value function methods relies on the estimation of the value in

a given state. The state-value function V π(s) is obtained following the policy π

starting at the state s as

V π = E
[
R|s, π

]
, (1.2)

where the expectation operation E[·] depends on the transition function Pss′(a) =

p(s′|s, a) and the stochastic property of the policy π.

Our goal is to find the optimal policy π∗, which has a corresponding optimal

state-value function V ∗(s) as

V ∗(s) = max
π

V π(s), s ∈ S. (1.3)

To maximise the expected cumulative reward, the agent chooses the action

a ∈ A following the optimal policy π∗ that satisfies the Bellman equation [86]

V ∗(s) = V π∗ = max
a∈A

{
E
(
r(s, a)

)
+ ζ

∑
s′∈S

Pss′(a)V ∗(s′)

}
. (1.4)

The action-value function is defined as the obtained reward when the agent
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takes action a at the state s under the policy π as

Qπ(s, a) = E
(
r(s, a)

)
+ ζ

∑
s′∈S

Pss′(a)V (s′). (1.5)

The optimal policy Q∗(s, a) = Qπ∗ , we have

V ∗(s) = max
a∈A

Q∗(s, a) (1.6)

1.3.2.2 Policy Search

Instead of considering the value function model, the agent can directly find an

optimal policy π∗. Among policy search methods, the policy gradient is most

popular due to its efficient sampling with a large number of parameters. The

reward function is defined by the performance under the policy π as

J(θ) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)rπ(s, a), (1.7)

where θπ is the vector of the policy parameters and dπ(s) is the stationary distri-

bution of Markov chain with the policy πθ. The optimal policy π∗ can be obtained

by using gradient ascent for adjusting the parameters θπ relying on the ∇θJ(θπ).

For any MDP, we have [87]

∇θJ =
∑
s∈S

dπ(s)
∑
a∈A

∇θπ(a|s)Qπ(s, a)

= Eπθ
[
∇θ ln πθ(s, a)Qπ(s, a)

] (1.8)

The REINFORCE algorithm, a Monte-Carlo policy gradient learning, ad-
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justs the parameters θπ by estimating the return using Monte-Carlo methods and

episode samples. The optimal policy parameter θ∗π can be obtained by

θ∗π = argmax
θπ

E

[∑
a∈A

π(a|s; θπ)r(s, a)

]
, (1.9)

The gradient is defined as

∇θπ = Eπ
[
∇θπ ln π(a|s; θπ)r(s, a)|s=st,a=at

]
. (1.10)

We use the gradient ascent to update the parameters θπ as

θπ ← θπ + ε∇θπ, (1.11)

where 0 ≤ ε ≤ 1 is the step-size parameter. The optimal action a∗ can be

obtained with the maximum probability as follows:

a∗ = argmax
a∈A

π(a|s; θπ). (1.12)

1.4 Motivation, Contributions and Organisation

Machine learning is an effective tool for optimising the performance of large-scale

networks under dynamic environments. One of the approaches is the DRL al-

gorithm, a combination of RL and neural networks. In this thesis, we propose

methods based on the DRL algorithms for the UAV’s trajectory design, resource

allocation, and the phase-shift matrix for dealing with the aforementioned emerg-

ing challenges in the UAV and RIS-assisted wireless communications.
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1.4.1 Research Motivation

UAV and RIS bring several advantages to extend the coverage, enhance the net-

work quality and improve the energy-efficient performance. There are still some

challenges for adopting UAV and RIS in real-life applications due to stringent

constraints of flying time and power consumption. Some traditional approaches

are proposed for solving the resource allocations, trajectory design and RIS’s

phase shift optimisation. However, the existing works mostly ignore the difficulty

in channel estimation, mobile users, power consumption and delay in information

transmission. In addition, some challenging tasks of joint optimisation are often

considered as sub-problems. They are not applicable in real-time optimisation

and large scale optimisation.

RL algorithm is specially designed for agents to make a sequence of decisions.

In Fig. 1.1, the agent can be any component that has a processing unit in the

wireless networks, such as the UAVs, servers, ground users, etc. The agents

interact with the environment to achieve the optimal reward through trial-and-

error learning. Thus, DRL techniques have been used for lending each node some

degree of autonomy to make the wireless network more intelligent [18, 27, 28, 30,

46, 82, 83, 88]. Firstly, the wireless environments are transferred into a digital

form of IoT locations, UAV flying velocity, angle, position, and channel model

between each element in the network. Then, the DRL algorithms are used to train

the agents. In this thesis, we use several algorithms including deep Q-learning

(DQL), double Q-learning (DDQL), dueling deep Q-learning (dueling DQL) for

the discrete problem and deep deterministic policy gradient (DDPG), proximal

policy optimisation (PPO) for the continuous design. Moreover, to reduce the
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Action

Reward

Observation

Figure 1.1: Reinforcement learning model in wireless networks.

delay in the information transmission between the centralised processing unit and

users, we also use multi-agent learning.

1.4.2 Summary of Contributions

The main contributions of this thesis are summarised as follows:

In Chapter 3, we consider a UAV-assisted IoT system for finding the shortest

flight path of the UAVs while maximising the joint reward function based on the

shortest flight distance and the uplink transmission rate from IoT devices.

• In our UAV-aided system, the maximum amount of data is collected from

the users with the shortest distance travelled.

• Our UAV-aided system is specifically designed for tackling the stringent

constraints owing to the position of the destination, the UAV’s limited

14



1.4 Motivation, Contributions and Organisation

flight time and the communication link’s realistic constraints. The UAV’s

objective is to find the optimal trajectory for maximising the total network

throughput, while minimising its distance travelled.

• Explicitly, these challenges are tackled by conceiving bespoke DRL tech-

niques for solving the above problem. To elaborate, the area is divided into

a grid to enable fast convergence. Following its training, the UAV can have

the autonomy to make a decision concerning its next action at each position

in the area, hence eliminating the need for human navigation. This makes

our UAV-aided system more reliable, practical and optimises the resource

requirements.

• A pair of scenarios are considered relying either on three or five clusters

for quantifying the efficiency of our novel DRL techniques in terms of both

the sum-rate, the trajectory and the associated time. A convincing 3D

trajectory visualisation is also provided.

• Finally, but most importantly, it is demonstrated that our DRL techniques

approach the performance of the optimal “genie-solution” associated with

the perfect knowledge of the environment.

Although the existing DRL algorithms have been well exploited in wireless net-

works, it is challenging to apply to current scenarios due to stringent constraints

of the considered system, such as UAV’s flying time, transmission distance, and

mobile users. As with the DQL and dueling DQL algorithm, we discretise the

flying path into grid and the UAV only needs to decide the action in a finite

action space. With the finite state and action space, the neural networks can
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be easily trained and deployed for online phase. With other existing RL algo-

rithm, we have tried and found out that some of them are not effective in solving

our proposed problem. Meanwhile, the continuous solver RL algorithms are not

suitable and so challenging for the trade-off problem. Therefore, in this chapter,

we propose the DQL and dueling DQL algorithm to obtain the optimal trade-off

in total achievable sum-rate and trajectory. As such, we can transfer a real-life

application into a digital environment for optimisation and solve it efficiently.

In Chapter 4, we introduce a new system model for RIS-assisted UAV com-

munications with the downlink power transfer and uplink information transmis-

sion protocol for maximising the network sum-rate.

• We conceive a system model of UAV-assisted IoT wireless power transfer

with the support of a RIS. The IoT devices harvest energy in the downlink

and transmit information in the uplink to the UAVs.

• To characterise the agility of UAVs in supporting the energy harvesting

(EH) and information transmission of IoT devices, we consider two scenarios

of UAVs. Firstly, the UAV is hovering at the centre of the cluster and

provides energy to the IoT devices. The RIS helps alleviate the uplink

interference when the IoT devices transmit their information to the UAV.

Secondly, the UAV is deployed in an initial location and required to find

a better location for communication. In each location of the UAV’s flying

trajectory, the EH time scheduling and the RIS’s phase shift matrix are

optimised for maximising the network throughput performance.

• For the defined problem, we formulate a Markov decision process (MDP)

[86] with the definition of the state space, action space and the reward
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function. Then, we propose a method based on deep deterministic policy

gradient (DDPG) and proximal policy optimisation algorithm (PPO) for

solving the maximisation game.

• Our results suggest that with the support of the RIS, a better connection

is established and the overall performance is significantly improved.

However, when deploying the optimisation algorithm with DRL into RIS-assisted

UAV communications, previous works assumed the perfect condition of the envi-

ronment, flat fading channels, static users, and perfect CSI, which are unrealistic

and infeasible for real-life applications. Furthermore, the delay when using a

mathematical model and in the centralised learning is huge for real-time use

cases. To overcome these aforementioned shortcomings, in this chapter, we also

propose a parallel learning for reducing the information transmission requirement

of the centralised approach.

In Chapter 5, we consider multi-UAV networks supported by a RIS panel to

enhance the network performance.

• We conceive a wireless network of multi-UAVs supported by an RIS. Each

UAV is deployed for serving a specific cluster of UEs. Due to the severe

shadowing effect, the RIS is used to enhance the received signal’s quality

at the UEs from the associated UAV and to mitigate the interference from

others.

• The EE problem is formulated for the downlink channel with the power

restrictions and the RIS’s requirement. To optimise the EE network per-

formance, we propose a centralised DRL technique for jointly solving the
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power allocation at the UAVs and phase-shift matrix of the RIS. Then, a

parallel learning is used for training each element in our model to be intel-

ligent and to reduce the delay when transmitting the action between UAV

and the RIS.

• To improve the network performance, we introduce the proximal policy

optimisation (PPO) algorithm with a better sampling technique.

• Through the numerical results, we demonstrate that our proposed methods

efficiently solve the joint optimisation problem with the dynamic environ-

mental setting and time-varying CSI and outperform the other benchmarks.

1.4.3 Outlines of the thesis

The organisation of the thesis are as follows. In Chapter 2, we introduce some

existing works related to RIS and UAV-assisted wireless communications. In

Chapter 3, we propose a novel DRL-aided UAV-assisted system for finding the

optimal UAV path to maximise the joint reward function based on the short-

est flight distance and the uplink transmission rate. In Chapter 4, we consider

the IoT wireless networks with the support of a UAV and one RIS and employ

the downlink power transfer and uplink information transmission protocol for

maximising the network’s sum-rate. In particular, we adopt the harvest-then-

transmit protocol, which means the IoT devices use all the harvested energy in

the first phase for transmitting during the remaining time. Then, the methods

based on the DQL algorithm and dueling DQL algorithm are deployed for solv-

ing the problem in RIS-assisted UAV communications. In Chapter 5, we exploit

the efficiency of DRL techniques in multi-UAV-assisted wireless communications
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with the support of one RIS. We propose efficient DRL algorithms by jointly

optimising the power allocation of the UAVs and the RIS’s phase-shift matrix

for maximising the EE performance. The DRL approaches bring a flexible and

autonomous ability to the UAVs and the RIS. With trained neural networks, the

UAVs can choose a proper flying direction and velocity while the RIS can adjust

the phase shift without delay. Furthermore, continuous learning with up-to-date

data by interaction with the environment helps the UAVs and RIS to adapt to

the dynamic environment. Moreover, we also improve the model with multi-agent

learning to reduce the information transmission delay. The summary of the thesis

and the potential future works are presented in Chapter 6.
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Chapter 2

Literature Review

2.1 Trajectory Design and Resource Manage-

ment in UAV-assisted Communications

Given the mobility, agility, and flexibility, using the UAVs is a promising tech-

nique for enhancing the network performance. In particular, the UAV can act

as an aerial base station to provide ubiquitous coverage and on-demand services

to ground users in different scenarios such as natural disaster relief and tem-

porary hotspots. However, numerous challenges such as 3D trajectory design,

resource management, and energy limitations must be solved for enabling effec-

tive UAV-assisted networks. Several techniques have been proposed to overcome

these challenges to enhance the energy efficiency and the network performance.
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2.1.1 UAV Trajectory Design and Deployment

The high-flying altitude of the UAV helps the wireless networks improve the

coverage and transmit signal [7,15,17,18]. In [15], multiple UAVs were deployed

in a disaster area to efficiently support the users. The K-means algorithm was

proposed for the deployment mission, while the Block Coordinate Descent (BCD)

procedure was used for maximising the worst end-to-end sum-rate. In [17], the

authors used the UAV as a mobile data collector. The optimised UAV’s flying

path and the wake-up scheduling at the sensor nodes helped to reduce the energy

consumption in both the UAV and the sensors. The authors in [18] considered

the UAV as an energy supplier for the non-fixed power source devices to assist

communications in D2D networks. In [7], the UAV’s trajectory was optimised to

maximise the energy efficiency (EE) in an unconstrained condition and circular

trajectory.

The issues of data collection, energy minimisation, and path planning have

been also considered in [5, 17, 77, 89–96]. In [17], the authors minimised the en-

ergy consumption of the data collection task considered by jointly optimising the

sensor nodes’ wake-up schedule and the UAV trajectory. The authors of [89] pro-

posed an efficient algorithm for joint trajectory and power allocation optimisation

in UAV-assisted networks to maximise the sum-rate during a specific length of

time. A pair of near-optimal approaches for optimal trajectory was proposed

for a given UAV power allocation and power allocation optimisation for a given

trajectory. In [90], the authors introduced a communication framework for UAV-

to-UAV communication under the constraints of the UAV’s flight speed, location

uncertainty and communication throughput. Then, a path planning algorithm

21



2.1 Trajectory Design and Resource Management in UAV-assisted
Communications

was proposed for minimising the associated completion time task while balancing

the performance by computational complexity trade-off.

2.1.2 Wireless Power Transfer Technique

Along with the development of the IoT devices is the increased power supply for

each device. However, not all the nodes are equipped with fixed power providers

and have solar batteries. Moreover, in some environments such as human bodies,

toxic locations, or underwater, replacing and recharging the batteries are expen-

sive, complicated and even impossible. Thus, wireless power transfer (WPT) is a

promising technique that enables the IoT nodes to have enough energy to main-

tain the connections with the BSs. There are two major applications of WPT

in wireless communications: wireless powered communication network (WPCN)

and simultaneous wireless information and power transfer (SWIPT) [97, 98]. In

WPCN, the devices harvest energy from the source in the downlink in order to

send information in the uplink, whereas in SWIPT, the energy and information

are transferred from the source to devices [99,100].

The downlink power transfer and uplink information transmission protocol

is one of the solutions to enable the IoT devices to harvest energy from source

providers and switch to information transmission in the uplink phase on demand

[73,101–105]. That helps reduce the power consumption as well as the cables and

wires for providing power. In [106], the author considered joint optimisation of the

time scheduling, the transmit signal and the transmit power for maximising the

network throughput in a general multi-user wireless powered interference channel.

In [107], the authors present an energy trading game in the WPCN where two
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scenarios of the multiantenna power station (PS) and the user nodes belonging

to the same service operator and in different service operators were considered.

UAVs also act as an energy provider source for powering the sensor nodes.

Although the UAVs have limited power onboard, the UAV-enable WPT system

can improve the energy efficiency due to the LoS links between the UAV and

the IoT nodes. Very recently, UAVs have been used as an energy supplier for

the energy constrained IoT devices due to the fact that the UAV can easily be

recharged at the docking station and the energy of these IoT devices is compa-

rably smaller than UAV’s capacity. Moreover, UAVs can adjust their locations

and altitude to approach the ground users and transfer energy thanks to their

flexibility feature [43–51]. For example, in [44], the UAV flies to charge the de-

vice on the ground and then return to the landing docks. The authors used an

iterative algorithm and a transition-based design to optimise the UAV trajectory,

lengths of working period and charging phase. In [45], the UAV-mounted mobile

energy transmitter was deployed to provide energy to the receivers. In [48], the

authors considered four sub-problems to jointly optimise the 3D trajectory and

time allocation to maximise the energy harvested at the receivers.

2.1.3 Resource Management in UAV-assisted Networks

With the aforementioned benefits, the use of UAVs in wireless networks efficiently

enhances the network performance. However, the associated resource allocation

problems remain challenging in real-life applications. Several techniques have

been developed for solving resource allocation problems [6,15,27,28,49,108–111].

In [108], the authors have conceived a multi-beam UAV communications and a
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cooperative interference cancellation scheme for maximising the uplink sum-rate

received from multiple UAVs by the base stations (BS) on the ground. The UAVs

were deployed as access points to serve several ground users in [49]. Then, the

authors proposed successive convex programming for maximising the minimum

uplink rate gleaned from all the ground users. In [6], the authors characterised

the trade-off between the ground terminal transmission power and the specific

UAV trajectory both in a straight and in a circular trajectory. In [110], the

authors jointly optimised the UAV trajectory, backscatter devices, and carrier

emitters on the ground to maximise the EE in the UAV-assisted backscatter

communication network. UAV-aided wireless networks have also been used for

machine-to-machine communications [90], and D2D scenarios in 5G [111–113].

In [111], the UAVs were working as relays to help the D2D communications. The

authors optimised the UAV’s power, D2D users’ power, the available bandwidth

and the UAV trajectory to maximise the network throughput. In addition, the

UAVs were also used to assist the ultra-reliable low-latency computation offload-

ing in [37]. The UAVs’ position, resource allocation and the offloading decisions

were divided into two sub-problems, and a two-stage approximate algorithm was

proposed for maximising the rate of served requests.

2.2 Optimisation in Reconfigurable Intelligent

Surface-aided Communications

The RISs reflect the signal from the transmitters to the receivers by controlling

the phase-shift value of a massive amount of scattering reflectors. The reflected
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signals can be combined coherently to improve the received signal or destructively

to suppress the interference.

2.2.1 RIS for Energy-Efficient Communications

Recently, RIS technology has been introduced as a low-cost, and easily installed

technology to mitigate interference and direct transmitted signals toward their

receivers [59–61, 114]. In [60], the authors considered two-way communications

assisted by a RIS. The reciprocal channel to maximise the signal-to-interference-

plus-noise ratios (SINR) and the non-reciprocal channel with the target of max-

imisation of the minimum SINR were considered. The gamma approximation was

used for the reciprocal channel, while the semi-definite programming relaxation

and a greedy-iterative method were used for the non-reciprocal channel. In [114],

an iterative algorithm with low computation complexity was proposed to solve

the joint optimisation of transmit beamforming vector and the phase shift of a

RIS under proper and improper Gaussian signalling. In [61], the authors opti-

mised the beamforming matrices at the BS and the reflective vector at the RIS

to minimise the total transmit power at a multiple-input single-output (MISO)

non-orthogonal multiple access (NOMA) network. An algorithm based on the

second-order cone programming-alternating direction method of multipliers was

proposed to reach an optimal local problem.

As aforementioned, RIS has been recently attracting enormous attention as

an emerging technology for enabling beyond 5G due to its unique characteristics,

which include the low-cost production and less energy consumption [59, 60, 62,

101, 114–119]. In [115], an algorithm was proposed for maximising the weighted
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sum-rate of all users via beamforming vector and RIS phase-shift optimisation

under the perfect CSI and imperfect CSI scenarios. In [116], the power alloca-

tion and the phase-shift optimisation algorithm was proposed for maximising the

EE performance. In [62], the RIS was used for enhancing communication and

reducing interference in the D2D networks. Two sub-problems with the fixed

power transmission and the discrete RIS’s phase-shift matrix were considered

and solved efficiently. The authors in [117] optimised the beamforming vector at

secondary users transmitter and the RIS phase-shift in a downlink multiple-input

single-output (MISO) cognitive radio system with multiple RISs. The perfect CSI

and imperfect CSI scenarios were considered; then, the block coordinate descent

procedure was used to maximise the achievable sum-rate.

2.2.2 RIS-assisted UAV Communications

By utilising both advantages of the UAV and the RIS, the received signal at

the ground users is strengthened while the power consumption is reduced and

the flying time of the UAV can be extended [2, 8, 38, 56, 57]. In [57], the UAV’s

trajectory and the RIS’s passive beamforming vector were optimised to maximise

the average rate in RIS-assisted UAV communications. The problem was derived

into two subproblems; then, a closed-form phase shift algorithm was introduced to

find the local optimal reflective matrix and the successive convex approximation

was used to find the suboptimal trajectory solution. In [38], the UAV acts as a

mobile relay, and the RIS was used to provide short packets communications ultra-

reliable and low-latency between ground transmitter and ground IoT devices.

The UAV’s position, the RIS phase shift and the blocklength were optimised
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to minimise the total decoding error rate by using a polytope-based method,

namely Nelder-Mead simplex. In [56], the joint beamforming vector, trajectory

and phase-shift optimisation algorithm was proposed for maximising the received

signal at the ground users in the UAV-assisted wireless communications.

2.2.3 Others Trends for RIS-assisted Networks

The efficiency of RIS is also investigated in wireless power transfer [101,102] and

mobile edge computing [58]. In [101], the authors designed a time-switching pro-

tocol for a RIS with the energy harvesting phase to charge the RIS capacitor and

the signal reflecting phase to assist the transmission from the access point (AP)

to the receivers. The AP’s transmit beamforming, the RIS’s phase scheduling

and the passive beamforming were optimised to maximise the information rate.

Two sub-problems were solved following the conventional semi-definite relaxation

method and monotonic optimisation. In [102], the transmit precoding matrices

of the BS and the RIS’s passive phase shift matrix were optimised for maximising

the weight sum-rate of all information receivers in power transfer scenarios. The

RIS is also used for supporting the D2D communications [62–66]. In [62], the

authors considered two sub-problems with fixed passive beamforming vector at

transmitters and fixed phase shift matrix at the RIS. The gradient method and

a local search algorithm were proposed to solve these sub-problems.
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2.3 Deep Reinforcement Learning in UAV-assisted

Wireless Networks

By relying on their decision-making ability, DRL algorithms have been used for

lending each node some degree of autonomy [18, 27, 28, 30, 46, 82, 83, 88]. In [82],

an optimal DRL-based channel access strategy to maximise the sum-rate and

α-fairness was considered. In [27, 28], DRL techniques were used for enhancing

the energy efficiency of D2D communications. As a further advance, caching

problems were considered in [30] to maximise the cache success hit rate and to

minimise the transmission delay. The authors designed both a centralised and a

decentralised system model and used an actor-critic algorithm to find the optimal

policy.

In UAV-assisted wireless networks, the DRL algorithms have shown impres-

sive results for solving the resource management problems [120–123]. In [120], the

multiple cooperative UAVs was deployed for assisting the cellular network. The

iterative algorithm with two steps of using the deep Q-learning algorithm and

a difference of convex algorithm was proposed to optimise the UAV’s positions,

transmit beamforming and the UAV-users association to maximise the network’s

sum-rate. In [121], the UAV was deployed with the WPT technique to charge the

ground devices and collect data. The multi-objective deep deterministic policy

gradient method was proposed to solve the three objectives: sum-rate maximisa-

tion, harvested energy maximisation, and energy consumption minimisation.

DRL algorithms have also been applied for path planning in UAV-assisted

wireless communications [32, 76–78, 84, 124, 125]. In [76], the authors proposed

a DRL algorithm based on the echo state network of [126] for finding the flight
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path, transmission power and associated cell in UAV-powered wireless networks.

The so-called deterministic policy gradient algorithm of [127] was invoked for

UAV-assisted cellular networks in [84]. The UAV’s trajectory was designed for

maximising the uplink sum-rate attained without the knowledge of the user lo-

cation and the transmit power. Moreover, in [32], the authors used the DQL

algorithm for the UAV’s navigation based on the received signal strengths esti-

mated by a massive MIMO scheme. In [77], Q-learning was used for controlling

the movement of multiple UAVs in a pair of scenarios, namely for static user lo-

cations and for dynamic user locations under a random walk model. In [46], the

authors characterised the DQL algorithm for minimising the data packet loss of

UAV-assisted power transfer and data collection systems. The multi-agent DRL

was used for trajectory design and model selection in a cellular internet of UAVs

in [125]. However, the aforementioned contributions have not addressed the joint

trajectory and data collection optimisation of UAV-assisted networks, which is a

difficult research challenge. Furthermore, these existing works mostly neglected

interference, 3D trajectory and dynamic environment.

2.4 Deep Reinforcement Learning for the Au-

tonomous RIS-aided Communications

The demand for a technique that is flexible and adaptive to changes in the en-

vironment while satisfying real-life constraints is rising, and DRL algorithms are

among the most potential methods to deal with these problems in wireless net-

works [18,27,28,128]. Recently, DRL algorithms are also used for the RIS-assisted
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wireless networks with promising results [68,129–131]. The power allocation and

the phase shift optimisation were optimised for maximising the sum rate in [129].

In [130], a RIS-assisted UAV was deployed for serving ground users. The trajec-

tory and phase shift optimisation relying on DRL for maximising the sum rate

and fairness of all users was proposed. In [68], the authors used a RIS to as-

sist the secure communications against eavesdroppers. The DRL algorithms were

used to optimise the BS beamforming and the RIS’s reflecting beamforming were

shown to improve the secrecy rate and the quality-of-service satisfaction proba-

bility. In [131], a deep deterministic policy gradient was proposed to obtain the

optimal phase shift matrix at the RIS to maximise the received signal-to-noise

ratio (SNR) in a MISO system. In [2], the joint optimisation of the power and

the RIS’s phase shift in a multi-UAV-assisted network is considered.

Since DRL is an effective solution for solving the dynamic environment with

continuous moving [18,27,28,82], some recent works have explored the efficiency

of the DRL techniques for RIS-assisted wireless networks [71, 102, 131, 132]. The

author in [102] optimised the transmit beamforming vector and the RIS phase-

shift model by using the DRL algorithm to maximise the total sum-rate. A deep

Q-learning and deep deterministic policy gradient were proposed and showed

impressive results in the MISO communications. To minimise the sum age-of-

information, the authors in [71] proposed a DRL algorithm to adjust the UAV’s

altitude and the RIS phase-shift.
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Table 2.1: A comparison with existing literature in Chapter 3

[5] [29] [46] [77] [91] [32] [92] [124] [93] [94] Our work
3D trajectory X X X X
Sum-rate maximisation X X X X X X X
Time minimisation X X X X X
Dynamic environment X X X X
Unknown users X
Reinforcement learning X X X X X
Deep neural networks X X X X

Table 2.2: A comparison with existing literature in Chapter 4

[57] [38] [101] [129] [84] [68] [131] [133] [134] [70] Our work
UAV’s trajectory design X X X X
Sum-rate maximisation X X X X X X
Energy harvesting time optimisation X X
RIS phase shift optimisation X X X X X X X X X X
Random users X X X X X X X
Reinforcement learning X X X X X
Deep neural networks X X X X X

2.5 Contributions and Novelty of the Thesis

As mentioned earlier, it is crucial to improve the decision-making time for meet-

ing the stringent requirements of UAV-assisted wireless networks. In Chapter 3,

we conceive emerging methods based on the DRL algorithm to design the UAV

trajectory and resource allocation for maximising the EE and the network’s sum-

rate. We design an approach based on the DQL and the dueling DQL algorithm

for a trade-off problem. Our proposed methods show the efficient trajectory and

sum-rate while satisfying all the strict constraints of distance, flying time and

communications. We boldly and explicitly contrast our proposed solution to the

state-of-the-art in Table 2.1. Our proposed solution can work in a dynamic en-

vironment with randomly distributed and mobile users. The designated function

is flexible for adjustment to adapt to several missions of fast deployment and

sum-rate maximisation. Moreover, the aforementioned works mostly assume the

perfect conditions of CSI and static users. In addition, the high computational
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complexity of these methods cause delays and make the system unrealistic for

deploying in real-life applications. In Chapter 3, the UAV needs only the local

information of its location to formulate the state space. In Chapter 4, we jointly

optimise the UAV trajectory and the phase shift to maximise the network’s sum-

rate while we optimise the power allocation at the UAVs and phase-shift at the

RIS to maximise the EE performance in Chap 5. In both chapters, due to the

acquisition delay and the feedback overhead incurred during the mobility of UAV

and users, obtaining a perfect CSI of the links between UAV and RIS as well as

grounds devices is a formidable challenge. Thus, we assume that the perfect CSI

can be achieved by the perfect channel estimation model at UAV and RIS. Our

proposed solution is one of the first research works that investigates the efficiency

of DRL for optimisation in RIS-assisted UAV communications with mobile users

and the dynamic environment. Particularly, in Chapter 4, we conceive a method

based on the DDPG algorithm and the PPO algorithm for optimising the UAV’s

trajectory, the EH time scheduling and the RIS’s phase-shift matrix. We compare

our proposed methods to the existing literature in Table 2.2. In Chapter 5, we

propose a method based on the DDPG algorithm for single-agent learning and

multi-agent learning to maximise the EE in RIS-assisted multi-UAV communica-

tions. Then, the PPO algorithm with a better sampling technique is conceived

for improving the performance and convergence.
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Chapter 3

3D UAV Trajectory and Data

Collection Optimisation via Deep

Reinforcement Learning

3.1 Introduction

As discussed in Chapter 1, wireless networks supported by UAVs constitute a

promising technology for enhancing the network performance [135]. For ex-

ample, in [16], UAVs were deployed to provide network coverage for people in

remote areas and disaster zones. UAVs were also used for collecting data in

a WSN [29]. Nevertheless, the benefits of UAV-aided wireless communication

are critically dependent on the UAV’s limited onboard power level. Thus, the

resource allocation of UAV-aided wireless networks plays a pivotal role in ap-

proaching optimal performance. Yet, the existing works typically assume static

environments [14,33,112] and often ignore the stringent flight-time constraints in
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real-life applications [29, 31,136].

Recently, thanks to the real-time decision-making ability, the DRL algorithms

have become a promising solution to solve the complicated problems in wireless

networks [18, 27, 28, 30, 32, 46, 76–78, 82–84]. For example, the DRL was used

for solving the resource management problems [120–123], path planning and de-

ployment in the UAV-assisted wireless communications [32, 76–78, 84, 124, 125],

caching problems [30], and interference management [76]. In the DRL algorithm,

the neural networks are used to calculate the value function and policy approx-

imation. Thus, after being trained, the agents can instantly choose the most

appropriate action for maximising the designed reward.

In this chapter, we propose a novel DRL-aided UAV-assisted system for finding

the optimal UAV path for maximising the joint reward function based on the

shortest flight distance and the uplink transmission rate. Firstly, we define the

objective of our UAV-aided system as to maximise the amount of data collected

from the users with the shortest distance travelled. Our UAV-aided system is

specifically designed for tackling the stringent constraints owing to the position

of the destination, the UAV’s limited flight time and the communication link’s

realistic constraints. Next, these challenges are tackled by conceiving bespoke

DRL techniques for solving the above problem. To elaborate, the area is divided

into a grid to enable fast convergence. Following its training, the UAV can have

the autonomy to make a decision concerning its next action at each position in

the area, hence eliminating the need for human navigation. This makes our UAV-

aided system more reliable, practical and optimises the resource requirements. In

the simulation results, a pair of scenarios are considered relying either on three or

five clusters for quantifying the efficiency of our novel DRL techniques in terms
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of both the sum-rate, the trajectory and the associated time. A convincing 3D

trajectory visualisation is also provided. Finally, but most importantly, it is

demonstrated that our DRL techniques approach the performance of the optimal

“genie-solution” associated with the perfect knowledge of the environment.

The rest of this chapter is organised as follows. In Section 3.2, we describe our

data collection system model and the problem formulation of IoT networks relying

on UAVs. Then, the Q-learning algorithm is presented in Section 3.3. Deep Q-

learning (DQL) is employed for finding the best trajectory and for solving our

data collection problem in Section 3.4. Furthermore, we use the dueling DQL

algorithm of [137] for improving the system performance and convergence speed

in Section 3.5. Next, we characterise the efficiency of the DRL techniques in

Section 3.6. Finally, in Section 3.7, we summarise our findings and discuss our

future research.

3.2 System Model and Problem Formulation

Consider a system consisting of a single UAV and M groups of users, as shown

in Fig. 3.1, where the UAV relying on a single antenna visits all the clusters

to cover all the users. The 3D coordinate of the UAV at time step t is defined

as X t = (xt0, y
t
0, H

t
0). Each cluster consists of K users, which are unknown and

distributed randomly within the coverage radius of C. The users are moving

following the random walk model with the maximum velocity v. The position of

the kth user in the mth cluster at time step t is defined as X t
m,k = (xtm,k, y

t
m,k).

The UAV’s objective is to find the best trajectory while covering all the users

and to reach the dock upon completing its mission.
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Dock

Figure 3.1: System model of UAV-aided IoT communications.

3.2.1 Observation model

The distance from the UAV to user k in cluster m at time step t is given by:

dtm,k =
√

(xt0 − xtm,k)2 + (yt0 − ytm,k)2 +H t
0

2. (3.1)

We assume that the communication channels between the UAV and users are

dominated by line-of-sight (LoS) links; thus the channel between the UAV and

the kth user in the mth cluster at time step t follows the free-space path loss

model, which is represented as

htm,k = β0d
t
m,k
−2

=
β0

(xt0 − xtm,k)2 + (y0 − ytm,k)2 +H t
0

2 ,
(3.2)
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where the channel’s power gain at a reference distance of d = 1m is denoted by

β0.

The achievable throughput from the kth user in the mth cluster to the UAV

at time t if the user belongs to the coverage of the UAV is defined as follows:

Rt
m,k = W log2

(
1 +

ptm,kh
t
m,k∑M

i 6=m
∑K

j p
t
i,jh

t
i,j +

∑K
u6=k p

t
m,uh

t
m,u + α2

)
,∀m, k, (3.3)

where W and α2 are the bandwidth and the noise power, respectively; pm,k is the

transmit power at the kth user in the mth cluster. Then the total sum-rate over

the T time step from the kth user in cluster m to the UAV is given by:

Rm,k =

∫ T

0

Rt
m,kdt,∀m, k. (3.4)

3.2.2 Game formulation

Both the current location and the action taken jointly influence the rewards ob-

tained by the UAV; thus the trial-and-error based learning task of the UAV

satisfies the Markov property. We formulate the associated Markov decision pro-

cess (MDP) [85] as a 4 tuple < S,A,Pss′ ,R >, where S is the state space of the

UAV, A is the action space; R is the expected reward of the UAV and Pss′ is the

probability of transition from state s to state s′, where we have s′ = st+1|s = st.

Through learning, the UAV can find the optimal policy π∗ : S→ A for maximis-

ing the reward R. As the definition of RL, the UAV does not have any knowledge

about the environment. We transfer a real-life application of the data collection

in the UAV-assisted IoT networks into a digital form. Thus, the UAV only has

local information of its location and the state is defined by the position of UAV.

38



3.2 System Model and Problem Formulation

We have also discretised the state and action space for learning. More partic-

ularly, we formulate the trajectory and data collection game of UAV-aided IoT

networks as follows:

• Agent : The UAV acts like an agent interacting with the environment to

find the peak of the reward.

• State space: We define the state space by the position of UAV as

S = {x, y,H}. (3.5)

At time step t, the state of the UAV is defined as st = (xt, yt, H t).

• Action space: The UAV at state st can choose an action at of the action

space by following the policy at time-step t. By dividing the area into a

grid, we can define the action space as follows:

A = {left, right, forward, backward, upward, downward, hover}. (3.6)

The UAV moves in the environment and begins collecting information when

the users are in the coverage area of the UAV. When the UAV has sufficient

information Rm,k ≥ rmin from the kth user in the mth cluster, that user

will be marked as collected in this mission and may not be visited by the

UAV again.

• Reward function: In joint trajectory and data collection optimisation, we

design the reward function to be dependent on both the total sum-rate of

ground users associated with the UAV plus the reward gleaned when the

39



3.2 System Model and Problem Formulation

UAV completes one route, which is formulated as follows:

R =
β

MK

(
M∑
m

K∑
k

P (m, k)Rm,k

)
+ ζRplus, (3.7)

where β and ζ are positive variables that represent the trade-off between

the network’s sum-rate and UAV’s movement, which will be described in

the sequel. Here, P (m, k) ∈ {0, 1} indicates whether or not user k of cluster

m is associated with the UAV; Rplus is the acquired reward when the UAV

completes its mission by reaching the final destination. On the other hand,

the term
∑M
m

∑K
k P (m,k)Rm,k
MK

defines the average throughput of all users.

• Probability : We define Pstst+1(at, π) as the probability of transition from

state st to state st+1 by taking the action at under the policy π.

At each time step t, the UAV chooses the action at based on its local informa-

tion to obtain the reward rt under the policy π. Then the UAV moves to the next

state st+1 by taking the action at and starts collecting information from the users

if any available node in the network satisfies the distance constraint. Meanwhile,

the users in clusters also move to new positions following the random walk model

with velocity v. Again, we use the DRL techniques to find the optimal policy π∗

for the UAV to maximise the reward attained (3.7). Following the policy π, the

UAV forms a chain of actions (a0, a1, . . . , at, . . . , afinal) to reach the landing dock.

Our target is to maximise the reward expected by the UAV upon completing

a single mission during which the UAV flies from the initial position over the

clusters and lands at the destination. Thus, we design the trajectory reward

Rplus when the UAV reaches the destination in two different ways. Firstly, the
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binary reward function is defined as follows:

Rplus =

 1 , Xfinal ∈ Xtarget

0 , otherwise.
, (3.8)

where Xfinal and Xtarget are the final position of UAV and the destination, re-

spectively. The landing dock Xtarget is set by a zone of multiple grids. However,

the UAV has to move a long distance to reach the final destination. It may also

be trapped in a zone and cannot complete the mission. These situations lead to

increased energy consumption and reduced convergence. Thus, we consider the

value of Rt
plus in a different form by calculating the horizontal distance between

the UAV and the final destination at time step t, yielding:

Rt
plus =

 1 , Xfinal ∈ Xtarget

exp
(√

(xtarget − xt0)2 + (ytarget − yt0)2
)−1

, otherwise.
(3.9)

When we design the reward function as in (3.9), the UAV is motivated to

move ahead to reach the final destination. However, one of the disadvantages

is that the UAV only moves forward. Thus, the UAV is unable to attain the

best performance in terms of its total sum-rate in some environmental settings.

We compare the performance of the two trajectory reward function definitions in

Section 3.6 to evaluate the pros and cons of each approach.

In our work, we optimise the 3D trajectory of the UAV and data collection for

the IoT network. Particularly, we have design the reward function by a trade-off

game between the achievable sum-rate and the trajectory. Denote the flying path

of the UAV from the initial point to final position by X = (X0, X1, . . . , Xfinal),
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the agent needs to learn by iterating with the environment to find an optimal

X. We have defined a trade-off value β and ζ to make our approach more adap-

tive and flexible. By modifying the value of β/ζ , the UAV adapts to several

scenarios: a) fast deployment for emergency services with lower value of β/ζ, b)

maximising the total sum-rate with higher value of β/ζ, and c) maximising the

number of connections between the UAV and users. Depending on the specific

problems, we can adjust the value of the trade-off parameters β, ζ to achieve the

best performance. Thus, the game formulation is defined as follows:

maxR =
β

MK

(
M∑
m

K∑
k

P (m, k)Rm,k

)
+ ζRplus,

s.t. Xfinal = Xtarget,

dm,k ≤ dcons,

Rm,k ≥ rmin,

P (m, k) ∈ {0, 1},

T ≤ Tcons

β ≥ 0, ζ ≥ 0,

(3.10)

where the term Xfinal = Xtarget denotes the completed flying route when the

final position of the UAV belongs to the destination zone. We have designed

the reward function following this constraint with two functions: binary re-

ward function in (3.8) and exponential reward function in (3.9). The terms

dm,k ≤ dcons, Rm,k ≥ rmin, P (m, k) ∈ {0, 1} denote the communication con-

straints. Particularly, the distance constraint dm,k ≤ dcons indicates that the

served (m, k)-user has a satisfying distance to the UAV. P (m, k) ∈ {0, 1} indi-
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cates whether or not user k of cluster m is associated with the UAV. Rm,k ≥ rmin

denotes the minimum information collected during the flying path. All the con-

straints are integrated into the reward functions in the RL algorithm. The term

T ≤ Tcons denotes the constraint about the flying time where T is the flying

time of the UAV in a single mission and Tcons is the maximum flying time. The

UAV needs to complete a route by reaching the destination zone before Tcons. If

the UAV can not complete a route before Tcons, the Rplus = 0 as we defined in

(3.8) and (3.9). We have the trade-off value in reward function β ≥ 0, ζ ≥ 0.

Those stringent constraints, such as the transmission distance, position and flight

time make the optimisation problem more challenging. Thus, we propose DRL

techniques for the UAV in order to attain optimal performance.

3.3 Q-learning algorithm for UAV-assisted IoT

Networks

In this section, we introduce the fundamental concept of Q-learning, where the

so-called value function is defined by a reward of the UAV at state st as follows:

V (s, π) = E
[ T∑

t

γRt(st, π)|s0 = s

]
, (3.11)

where E[�] represents an average of the number of samples and 0 ≤ γ ≤ 1 denotes

the discount factor.

In a finite game, there is always an optimal policy π∗ that satisfies the Bellman
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optimality equation [86]

V ∗(s, π) = V (s, π∗) = max
a∈A

[
E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S

Pss′(a, π
∗)V (s′, π∗)

]
. (3.12)

The action-value function is obtained, when the agent at state st takes action

at and receives the reward rt under the agent policy π. The optimal Q-value can

be formulated as:

Q∗(s, a, π) = E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S

Pss′(a, π
∗)V (s′, π∗). (3.13)

The optimal policy π∗ can be obtained from Q∗(s, a, π) as follows:

V ∗(s, π) = max
a∈A

Q(s, a, π). (3.14)

From (3.13) and (3.14), we have

Q∗(s, a, π) = E
[
Rt(st, π∗)

]
+ γ

∑
s′∈S

Pss′(a, π
∗) max

a′∈A
Q(s′, a′, π),

= E
[
Rt(st, π∗) + γmax

a′∈A
Q(s′, a′, π)

]
,

(3.15)

where the agent takes the action a′ = at+1 at state st+1.

Through learning, the Q-value is updated based on the available information

as follows:

Q(s, a, π) = Q(s, a, π) + α

[
Rt(st, π∗) + γmax

a′∈A
Q(s′, a′, π)−Q(s, a, π)

]
, (3.16)

where α denotes the updated parameter of the Q-value function.
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In RL algorithms, it is challenging to balance the exploration and exploitation

for appropriately selecting the action. The most common approach relies on the

ε-greedy policy for the action selection mechanism as follows:

a =

 argmaxQ(s, a, π) with ε

randomly if 1− ε.
(3.17)

Upon assuming that each episode lasts T steps, the action at time step t is at

that is selected by following the ε-greedy policy as in (3.17). The UAV at state st

communicates with the user nodes from the ground if the distance constraint of

dm,k ≤ dcons is satisfied. Following the information transmission phase, the user

nodes are marked as collected users and may not be revisited later during that

mission. Then, after obtaining the immediate reward r(st, at) the agent at state

st takes action at to move to state st+1 as well as to update the Q-value function

in (3.16). Each episode ends when the UAV reaches the final destination and the

flight duration constraint is satisfied.

3.4 An Effective Deep Reinforcement Learning

Approach for UAV-assisted IoT Networks

In this section, we conceive the DQL algorithm for trajectory and data collection

optimisation in UAV-aided IoT networks. Q-learning technique typically falters

for large state and action spaces due to its excessive Q-table size. Thus, instead

of applying the Q-table in Q-learning, we use deep neural networks to represent

the relationship between the action and state space. Furthermore, we employ a
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pair of techniques for stabilising the neural network’s performance in our DQL

algorithm as follows:

• Experience replay buffer : Instead of using current experience, we use a so-

called replay buffer B to store the transitions (s, a, r, s′) for supporting the

neural network in overcoming any potential instability. When the buffer B

is filled with the transitions, we randomly select a mini-batch of K samples

for training the networks. The finite buffer size of B allows it to be always

up-to-date, and the neural networks learn from the new samples.

• Target networks : If we use the same network to calculate the state-action

value Q and the target network, the network can be shifted dramatically

in the training phase. Thus, we employ a target network Q′ for the target

value estimator. After a number of iterations, the parameters of the target

network Q′ will be updated by the network Q.

The UAV starts from the initial position and interact with the environment

to find the proper action in each state. The agent chooses the action at following

current policy at state st. By executing the action at, the agent receives the

response from the environment with reward rt and new state st+1. After each

time step, the UAV has a new position and the environment is changed with

moving users. The obtained transitions are stored into a finite memory buffer

and used for training the neural networks.

The neural network parameters are updated by minimising the loss function

defined as follows:

L(θ) = Es,a,r,s′
[(

yDQL −Q(s, a; θ)

)2
]
, (3.20)
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Algorithm 1 The deep Q-learning algorithm for trajectory and data collection
optimisation in UAV-aided IoT networks.

1: Initialise the network Q and the target network Q′ with the random param-
eters θ and θ′, respectively

2: Initialise the replay memory pool B
3: for episode = 1, . . . , L do
4: Receive initial observation state s0

5: while Xfinal /∈ Xtarget or T ≤ Tcons do
6: Obtain the action at of the UAV according to the ε-greedy mechanism

(3.17)
7: Execute the action at and estimate the reward rt according to (3.7)
8: Observe the next state st+1

9: Store the transition (st, at, rt, st+1) in the replay buffer B

10: Randomly select a mini-batch of K transitions (sk, ak, rk, sk+1) from
B

11: Update the network parameters using gradient descent to minimise
the loss

L(θ) = Es,a,r,s′
[(

yDQL −Q(s, a; θ)

)2
]
, (3.18)

The gradient update is

∇θL(θ) = Es,a,r,s′
[(

yDQL −Q(s, a; θ)

)
∇θQ(s, a; θ)

]
, (3.19)

12: Update the state st = st+1

13: Update the target network parameters after a number of iterations as
θ′ = θ

14: end while
15: end for

where θ is a parameter of the network Q and we have

y =

 rt if terminated at st+1

rt + γmaxa′∈AQ
′(s′, a′; θ′) otherwise.

(3.21)

The details of the DQL approach in our joint trajectory and data collection
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trade-off game designed for UAV-aided IoT networks are presented in Algorithm 1

where L denotes the number of episodes. Moreover, in this chapter, we design the

reward obtained in each step to assume one of two different forms and compare

them in our simulation results. Firstly, we calculate the difference between the

current and the previous reward of the UAV as follows:

rt1(st, at) = rt(st, at)− rt−1(st−1, at−1). (3.22)

Secondly, we design the total episode reward as the accumulation of all im-

mediate rewards of each step within one episode as

rt2(st, at) =
t∑
i=0

rt1(st, at). (3.23)

3.5 Deep Reinforcement Learning Approach for

UAV-assisted IoT networks: A Dueling Deep

Q-learning Approach

The standard Q-learning algorithm often falters due to the over-supervision of

all the state-action pairs [137]. On the other hand, it is unnecessary to estimate

the value of each action choice in a particular state. For example, in our environ-

ment setting, the UAV has to consider moving either to the left or to the right

when it hits the boundaries. Thus, we can improve the convergence speed by

avoiding visiting all state-action pairs. Instead of using Q-value function of the

conventional DQL algorithm, the dueling neural network of [137] is introduced for

48



3.5 Deep Reinforcement Learning Approach for UAV-assisted IoT
networks: A Dueling Deep Q-learning Approach

Algorithm 2 The dueling deep Q-learning algorithm for trajectory and data
collection optimisation in UAV-aided IoT networks.

1: Initialise the network Q and the target network Q′ with the random param-
eters, θ and θ′, respectively

2: Initialise the replay memory pool B
3: for episode = 1, . . . , L do
4: Receive the initial observation state s0

5: while Xfinal /∈ Xtarget or T ≤ Tcons do
6: Obtain the action at of the UAV according to the ε-greedy mechanism

(3.17)
7: Execute the action at and estimate the reward rt according to (3.7)
8: Observe the next state st+1

9: Store the transition (st, at, rt, st+1) in the replay buffer B

10: Randomly select a mini-batch of K transitions (sk, ak, rk, sk+1) from
B

11: Estimate the Q-value function by combining the two streams as follows:

Q(s, a; θ, θA, θV ) = V (s; θV ) +

(
A(s, a; θA)− 1

|A|
∑
a′

A(s, a′; θA)

)
. (3.24)

12: Update the network parameters using gradient descent to minimise
the loss

L(θ) = Es,a,r,s′
[(

yDuelingDQL −Q(s, a; θ, θA, θV )

)2
]
, (3.25)

13: where

yDuelingDQL = rt + γmax
a′∈A

Q′(s′, a′; θ′, θA, θV ). (3.26)

14: Update the state st = st+1

15: Update the target network parameters after a number of iterations as
θ′ = θ

16: end while
17: end for

improving the convergence rate and stability. The so-called advantage function

A(s, a) = Q(s, a) − V (s) related both to the value function and to the Q-value

function describes the importance of each action related to each state.
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The idea of a dueling deep network is based on a combination of two streams

of the value function and the advantage function used for estimating the single

output Q-function. One of the streams of a fully-connected layer estimates the

value function V (s; θV ), while the other stream outputs a vector A(s, a; θA), where

θA and θV represent the parameters of the two networks. The Q-function can be

obtained by combining the two streams’ outputs as follows:

Q(s, a; θ, θA, θV ) = V (s; θV ) + A(s, a; θA). (3.27)

Equation (3.27) applies to all (s, a) instances; thus, we have to replicate the

scalar V (s; θV ), |A| times to form a matrix. However, Q(s, a; θ, θA, θV ) is a pa-

rameterised estimator of the true Q-function; thus, we cannot uniquely recover

the value function V and the advantage function A. Therefore, (3.27) results in

poor practical performances when used directly. To address this problem, we can

map the advantage function estimator to have no advantage at the chosen action

by combining the two streams as follows:

Q(s, a; θ, θA, θV ) = V (s; θV ) +

(
A(s, a; θA)− max

a′∈|A|
A(s, a′; θA)

)
. (3.28)

Intuitively, for a∗ = argmaxa′∈AQ(s, a′; θ, θA, θV ) = argmaxa′∈AA(s, a′; θA),

we have Q(s, a∗; θ, θA, θV ) = V (s; θV ). Hence, the stream V (s; θV ) estimates the

value function and the other streams is the advantage function estimator. We

can transform (3.28) using an average formulation instead of the max operator
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as follows:

Q(s, a; θ, θA, θV ) = V (s; θV ) +

(
A(s, a; θA)− 1

|A|
∑
a′

A(s, a′; θA)

)
. (3.29)

Now, we can solve the problem of identifiability by subtracting the mean as

in (3.29). Based on (3.29), we propose a dueling DQL algorithm for our joint

trajectory and data collection problem in UAV-assisted IoT networks relying on

Algorithm 2. Note that estimating V (s; θV ) and A(s, a; θA) does not require any

extra supervision and they will be computed automatically.

3.6 Simulation Results

In this section, we present our simulation results characterising the joint optimi-

sation problem of UAV-assisted IoT networks. To highlight the efficiency of our

proposed model and the DRL methods, we consider a pair of scenarios: a simple

having three clusters, and a more complex one with five clusters in the coverage

area. We use Tensorflow 1.13.1 [138] and the Adam optimiser [139] for training

the neural networks. In this paper, we set the maximum value of β/ζ not too

large because we prefer the completion of a mission. The maximum value is set

to β/ζ = 4/1. All the other parameters are provided in Table 3.1.

In Fig. 3.2, we present the trajectory obtained after training using the DQL

algorithm in the 5-cluster scenario. The green circle and blue dots represent the

clusters’ coverage and the user nodes, respectively. The red line and black line

in the figure represent the UAV’s trajectory based on our method in (3.8) and

(3.9), respectively. The UAV starts at (0, 0), visits about 40 users, and lands
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Table 3.1: Simulation parameters in Chapter 3.

Parameters Value

Bandwidth (W ) 1 MHz

UE transmission power 0.1 W

The start position of UAV (0, 0, 200)

Discounting factor γ = 0.9

Max number of users per cluster 10

Rate constraint rmin = 1bits/s/Hz

Noise power α2 = −110dBm

The reference channel power gain β0 = −50dB

Path-loss exponent 2

at the destination that is denoted by the black star. In a complex environment

setting, it is challenging to expect the UAV to visit all users, while satisfying the

flight-duration and power level constraints.

3.6.1 Expected reward

We compare our proposed algorithm with opitimal performance and the Q-

learning algorithm. The optimal performance scenario is based on the assump-

tions of knowing the IoT devices’ position and unlimited power level of the UAV.

For comparison, we run the algorithm five times in five different environmental

settings and take the average to draw the figures. Firstly, we compare the reward

obtained following (3.7). Let us consider the 3-cluster scenario and β/ζ = 2 : 1

in Fig. 3.3a, where the DQL and the dueling DQL algorithms using the expo-

nential function (3.9) reach the best performance. When using the exponential

trajectory design function (3.9), the performance converges faster than that of

the DQL and of the dueling DQL methods using the binary trajectory function
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Figure 3.2: Trajectory obtained by using our dueling DQL algorithm.

(3.8). The performance of using the Q-learning algorithm is worst. In addition,

in Fig. 3.3b, we compare the performance of the DQL and dueling DQL tech-

niques using different β/ζ values. The average performance of the dueling DQL

algorithm is better than that of the DQL algorithm. Furthermore, the results of

using the exponential function (3.9) are better than that of the ones using the

binary function (3.8). When the value of β/ζ ≥ 1 : 2, the performance achieved

by the DQL and dueling DQL algorithm close to the optimal performance.

Furthermore, we compare the rewards obtained by the DQL and dueling DQL
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Figure 3.3: The performance when using the DQL and dueling DQL algorithms
with 3 clusters while considering different β/ζ values.

algorithms in complex scenarios with 5 clusters and 50 user nodes in Fig. 3.4.

The performance of using the episode reward (3.23) is better than that using the
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Figure 3.4: The expected reward when using the DQL and dueling DQL algo-
rithms with 5-cluster scenario.

immediate reward (3.22) in both trajectory designs relying on the DQL and du-

eling DQL algorithms. In Fig. 3.4a, we compare the performance in conjunction
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with the binary trajectory design while in Fig. 3.4b the exponential trajectory

design is considered. For β/ζ = 1 : 1, the rewards obtained by the DQL and

dueling DQL are similar and stable after about 400 episodes. When using the

exponential function (3.9), the dueling DQL algorithm reaches the best perfor-

mance and close to the optimal performance. Moreover, the convergence of the

dueling DQL technique is faster than that of the DQL algorithm. In both reward

definitions, the Q-learning with (3.22) shows the worst performance.
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Figure 3.5: The performance when using the DQL and dueling DQL algorithms
with 5 clusters and different β/ζ values.

In Fig. 3.5, we compare the performance of the DQL and of the dueling DQL

algorithms while considering different β/ζ parameter values. The dueling DQL

algorithm shows better performance for all the β/ζ pair values, exhibiting better

rewards. Additionally, when using the exponential function (3.9), both proposed

algorithms show better performance than the ones using the binary function (3.8)

if β/ζ ≤ 1 : 1, but it becomes less effective when β/ζ is set higher. Again, we
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achieve a near-optimal solution while we consider a complex environment without

knowing the IoT nodes’ position and mobile users. It is challenging to expect the

UAV to visit all IoT nodes with limited flying power and duration.
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Figure 3.6: The expected reward when using the DQL algorithm with 5 clusters
and different reward function settings.
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Figure 3.7: The performance when using the dueling DQL with 5 clusters, and
different β/ζ values

We compare the performance of the DQL and of the dueling DQL algorithm

using different reward function setting in Fig. 3.6 and in Fig. 3.7, respectively.

The DQL algorithm reaches the best performance when using the episode reward

(3.23) in Fig. 3.6a while the fastest convergence speed can be achieved by using

the exponential function (3.9). When β/ζ ≥ 1 : 1, the DQL algorithm relying

on the episode function (3.23) outperforms the ones using the immediate reward

function (3.22) in Fig. 3.6b. The reward (3.7) using the exponential trajectory

design (3.9) has a better performance than that using the binary trajectory design

(3.8) for all the β/ζ values. The similar results are shown when using the dueling

DQL algorithm in Fig. 3.7. The immediate reward function (3.22) is less effective

than the episode reward function (3.23).
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Figure 3.8: The network’s sum-rate when using the DQL and dueling DQL algo-
rithms with 3 clusters.
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3.6.2 Throughput comparison

In (3.7), we consider two elements: the trajectory cost and the average through-

put. In order to quantify the communication efficiency, we compare the total

throughput in different scenarios. In Fig. 3.8, the performances of the DQL

algorithm associated with several β/ζ values are considered while using the bi-

nary trajectory function (3.8), the episode reward (3.23) and 3 clusters. The

throughput obtained for β/ζ = 1 : 1 is higher than that of the others and when

β increases, the performance degrades. However, when comparing with the Fig.

3.3b, we realise that in some scenarios the UAV was stuck and could not find

the way to the destination. That leads to increased flight time spent and dis-

tance travelled. More details are shown in Fig. 3.8b, where we compare the

expected throughput of both the DQL and dueling DQL algorithms. The best

throughput is achieved when using the dueling DQL algorithm with β/ζ = 1 : 1

in conjunction with (3.8), which is higher than the peak of the DQL method with

β/ζ = 1 : 2.

In Fig. 3.9, we compare the throughput of different techniques in the 5-cluster

scenario. Let us now consider the binary trajectory design function (3.8) in Fig.

3.9a, where the DQL algorithm achieves the best performance using β/ζ = 1 : 1

and β/ζ = 2 : 1. There is a slight difference between the DQL method having

different settings, when using exponential the trajectory design function (3.9), as

shown in Fig. 3.9b.

In Fig. 3.10 and Fig. 3.11, we compare the throughput of different β/ζ pairs.

The DQL algorithm reaches the optimal throughput with the aid of trial-and-

learn methods, hence it is important to carefully design the reward function to
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Figure 3.9: The obtained total throughput when using the DQL algorithm with
5 clusters.

avoid excessive offline training. As shown in Fig. 3.10, the DQL and dueling

DQL algorithm exhibit reasonable stability for several β/ζ ≤ 1 : 1 pairs as well
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Figure 3.10: The obtained throughput when using the DQL and dueling DQL
algorithms in 5-cluster scenario.

as reward functions. While we can achieve the similar expected reward with

different reward setting in Fig. 3.6, the throughput is degraded when the β/ζ
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increases. In contrast, with higher β values, the UAV can finish the mission

faster. It is a trade-off game when we can choose an approximate β/ζ value for

our specific purposes. When we employ the DQL and the dueling DQL algorithms

with the episode reward (3.23), the throughput attained is higher than that using

the immediate reward (3.22) with different β/ζ values.

Furthermore, we compare the expected throughput of the DQL and of the

dueling DQL algorithm when using the exponential trajectory design (3.9) in

Fig. 3.11a and the episode reward (3.23) in Fig. 3.11b. In Fig. 3.11a, the dueling

DQL method outperforms the DQL algorithm for almost all β/ζ values in both

function (3.22) and (3.23). When we use the episode reward (3.23), the obtained

throughput is stable with different β/ζ values. The throughput attained by using

the exponential function (3.9) is lower than that using the binary trajectory (3.8)

and by using the episode reward (3.23) is higher than that using the immediate

reward (3.22). We can achieve the best performance when using the dueling DQL

algorithm with (3.9) and (3.23). However, in some scenarios, we can achieve the

better performance with different algorithmic setting as we can see in Fig. 3.8b

and Fig. 3.10a. Thus, there is a trade-off governing the choice of the algorithm

and function design.

3.6.3 Parametric Study

In Fig. 3.12, we compare the performance of our DQL technique using different

exploration parameters γ and ε values in our ε-greedy method. The DQL algo-

rithm achieves the best performance with the discounting factor of γ = 0.9 and

ε = 0.9 in the 5-cluster scenario of Fig. (3.12). Balancing the exploration and
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Figure 3.11: The expected throughput when using the DQL and dueling DQL
algorithms with 5 clusters.

exploitation as well as the action chosen is quite challenging, in order to maintain

a steady performance of the DQL algorithm. Based on the results of Fig. 3.12,
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Figure 3.12: The performance when using the DQL algorithm with different
discount factors, γ, and exploration factors, ε.

we opted for γ = 0.9 and ε = 0.9 for our algorithmic setting.
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Figure 3.13: The performance when using the DQL algorithm in 5-cluster scenario
and different batch sizes, K.

Next, we compare the expected reward of different mini-batch sizes, K. In
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the 5-cluster scenario of Fig. 3.13, the DQL achieves the optimal performance

with a batch size of K = 32. There is a slight difference in terms of convergence

speed where batch size K = 32 is the fastest. Overall, we set the mini-batch size

to K = 32 for our DQL algorithm.
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Figure 3.14: The performance when using DQL algorithm with different learning
rate, lr.

Fig. 3.14 shows the performance of the DQL algorithm with different learning

rates in updating the neural networks parameters while considering the scenarios

of 5 clusters. When the learning rate is as high as α = 0.01, the pace of updating

the network may result the fluctuating performance. Moreover, when α = 0.0001

or α = 0.00001 the convergence speed is slower and may be stuck in a local opti-

mum instead of reaching the global optimum. Thus, based on our experiments,

we opted for the learning rate of α = 0.001 for the algorithms.
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3.7 Conclusion

In this chapter, the DRL technique has been proposed to jointly optimise the

flight trajectory and data collection performance of UAV-assisted IoT networks.

The optimisation game has been formulated to balance the flight time and total

throughput while guaranteeing the quality-of-service constraints. Bearing in mind

the limited UAV power level and the associated communication constraints, we

proposed a DRL technique for maximising the throughput while the UAV has to

move along the shortest path to reach the destination. Both the DQL and dueling

DQL techniques having a low computational complexity have been conceived.

Our simulation results showed the efficiency of our techniques both in simple and

complex environmental settings.
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Chapter 4

RIS-assisted UAV

Communications for IoT with

Wireless Power Transfer Using

Deep Reinforcement Learning

4.1 Introduction

UAVs have recently drawn considerable attention thanks to their agile mobility

and cost-effectiveness. UAVs have been used for geometry monitoring, disaster

relief [16], emergency services, and wireless networks [18]. UAVs can be deployed

at sporting events or in rescue missions to provide and enhance connectivity to

the users. UAVs are also used as data collectors that fly to remote areas to

collect sensor data [128]. However, restrictions regarding flying time and on-

board processing ability are bottlenecks that must be dealt with in unexpected
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environments and complicated missions.

Reconfigurable intelligent surface (RIS) has emerged as a promising technol-

ogy for future wireless networks. The arrival signal at a RIS is reflected toward

the receiver by the RIS’s passive elements operated by a module controller. The

received signal at the users is composed of elements from the direct channel and

the reflective link. It helps to increase the signal quality and reduce interference.

The RIS is usually deployed in high locations such as buildings to reduce the cost

of establishing a new station. However, the optimisation of RIS performance is

still challenging due to a large number of elements and the processing ability of

the controller.

One area in which UAVs can be useful is Internet-of-Things (IoT) applications.

Not only can they provide communication coverages, but, since many IoT devices

are energy-limited, they can also be sources of power for such devices through

downlink power transfer. A downlink power transfer and uplink information

transmission protocol can implemented in two phases: wireless power transfer

(WPT) and wireless information transmission (WIT). In the first phase, the IoT

devices harvest energy from a base station (BS) or from the UAV. The harvested

energy is then used for transmitting local information to receivers or back to the

UAV and the BS. By using such a downlink power transfer and uplink information

transmission protocol, the IoT devices can obtain the energy to establish and

maintain communication with the BS and the UAV.

Machine learning is an effective tool for optimising the performance of large-

scale networks under dynamic environments. One of the approaches is deep rein-

forcement learning (DRL), which is a combination of reinforcement learning and

neural networks. In wireless networks, DRL algorithms are used for maximising
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the network performance, reducing power consumption and improving the pro-

cessing time for real-time applications [18, 27, 28]. DRL algorithms are powerful

in wireless networks because the agents do not need pre-collected data for train-

ing. Rather, DRL agents interact with their environment and establish training

samples for the responses in those interactions. The neural networks are trained

by up-to-date state transitions to adjust their parameters for maximising a desig-

nated reward. Then, the trained networks are deployed for real-time prediction.

However, when deploying the optimisation algorithm with DRL into RIS-assisted

UAV communications, previous works assumed the perfect condition of the envi-

ronment, flat fading channels, static users, and perfect CSI, which are unrealistic

and infeasible for real-life applications.

In this chapter, we consider the IoT wireless networks with the support of a

UAV, and one RIS, and employ the downlink power transfer and uplink infor-

mation transmission protocol for maximising the total network’s sum-rate. In

particular, we adopt the harvest-then-transmit protocol, which means the IoT

devices use all the harvested energy in the first phase for transmitting during the

remaining time. Then, two DRL algorithms are deployed for solving the problem

in RIS-assisted UAV communications. Firstly, we conceive a system model of

UAV-assisted IoT wireless power transfer with the support of a RIS. The IoT

devices harvest energy in the downlink and transmit information in the uplink to

the UAVs. To characterise the agility of UAVs in supporting the energy harvest-

ing (EH) and information transmission of IoT devices, we consider two scenarios

of UAVs. In the first scenario, the UAV is hovering at the centre of the cluster

and provides energy to the IoT devices. The RIS helps alleviate the uplink in-

terference when the IoT devices transmit their information to the UAV. In the
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second scenario, the UAV is deployed in an initial location and required to find

a better location for communication. In each location of the UAV’s flying trajec-

tory, the EH time scheduling and the RIS’s phase shift matrix are optimised for

maximising the network throughput performance. Next, for the defined problem,

we formulate a Markov decision process (MDP) [86] with the definition of the

state space, action space and the reward function. Then, we propose a method

based on deep deterministic policy gradient (DDPG) and proximal policy opti-

misation algorithm (PPO) for solving the maximisation game. Furthermore, the

delay when using a mathematical model and in the centralised learning is huge

for real-time use cases. To overcome these aforementioned shortcomings, in this

chapter, we also propose a parallel learning for reducing the information trans-

mission requirement of the centralised approach. Finally, our results suggest that

with the support of the RIS, a better connection is established and the overall

performance is significantly improved.

In the remaining of this chapter, we present the system model of the UAV-

assisted wireless communication with the support of the RIS and problem formu-

lation in Section 4.2. The MDP for maximising the network throughput problem

is introduced for the hovering UAV scenario in Section 4.3. In Section 4.4, the

DDPG algorithm is deployed for continuous control of the UAV’s trajectory,

EH time scheduling and the phase shift matrix of the RIS. The PPO technique

with the clipping method is introduced in Section 4.5 for improving the network

throughput. The simulation results are presented in Section 4.6 to illustrate the

efficiency of our proposed methods compared with other baseline schemes. Some

existing problems and potential future research topics for the RIS and the UAV

in real-life applications are discussed in Section 4.7.
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4.2 System Model and Problem Formulation

We consider that the system includes one single-antenna UAV and N ground IoT

devices distributed randomly. However, there are some practical scenarios where

IoT devices are located in a crowded area with surrounding obstacles and objects.

In such a complex environment, IoT devices suffer high attenuation and severe

path loss. In this case, the RIS is also installed at the wall of a tall building

to enhance the communication quality by reflecting signals from the UAV to

the IoT devices. Here, we deploy a RIS composed of K elements to enhance

the network performance. The 3D coordinate of the UAV at the time step t is

X t
UAV = (xtUAV , y

t
UAV , z

t
UAV ). In this paper, we consider the fixed attitude of the

UAV at HUAV . The location of the nth IoT devices at time step t is X t
n = (xtn, y

t
n)

with n = 1, . . . , N . The position of the RIS component k ∈ K at time step t is

(xtk, y
t
k, z

t
k). In this paper, we use the wireless downlink power transfer and uplink

information transmission protocol for deploying the UAV and collecting data.

Particularly, we have two phases: wireless power transfer (WPT) and wireless

information transmission (WIT). In the first phase, the downlink is activated to

transfer energy to the IoT devices from the UAV during time span τT. Then, the

WIT phase takes place when the IoT devices transmit information to the UAV

in the uplink during (1− τ)T. We normalise the length of time step to T = 1 for

convenience.

4.2.1 Channel model

We denote the channel gain between the UAV and the RIS, between the RIS and

the nth IoT device, and the direct link from the UAV to nth IoT node at time
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Figure 4.1: An illustration of the system model of UAV-assisted IoT wireless
communications with the support of a RIS.

step t by H t ∈ C1×K , htRIS,n ∈ C1×K , and htn, respectively. The small-scale fading

of the direct link from the UAV to the IoT devices is assumed to be Rayleigh

fading due to the extensive scatters. The air-to-air channel is considered for the

UAV and the RIS link, while the link from the RIS to the IoT devices can be

modelled by the Rician fading channel.

The distance between UAV and the kth element of RIS in time step t is given

by

dtk =
√

(xtUAV − xtk)2 + (ytUAV − ytUAV )2 + (ztUAV − ztk)2. (4.1)

Similarly, we denote the distance between the UAV and the nth IoT device and

between the kth RIS element and the nth IoT node by dtn and dtk,n, respectively.

The channel gain between the UAV and the nth IoT device is given by

htn =
√
β0(dtn)−κ1ĥ, (4.2)

where β and κ1 are the path loss at reference distance 1m and the path loss
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exponent for the UAV and the IoT devices link, respectively; ĥ represents the

small-scale fading modelled by complex Gaussian distribution with zero-mean

and unit-variance CN(0, 1).

Similarly, the channel gain between the UAV and the RIS is an air-to-air

channel dominated by the line-of-sight (LoS) links. Thus, the channel of the

UAV-RIS link in time step t is denoted as follows:

H t =
√
β0(dtk)

−κ2
[
1,e−j

2π
λ
d cos(φtAoA), . . . , e−j

2π
λ

(K−1)d cos(φtAoA)
]T
, (4.3)

where the right term is the array signal from the UAV to the RIS, cos(φtAoA) is

the cosine of the angle of arrival (AoA) from the UAV to RIS; κ2, d and λ are

the path loss exponent for the UAV and the RIS link, the element spacing and

the carrier wavelength, respectively.

The channel gain between the RIS and the nth IoT device following the Rician

fading is expressed as

htRIS,n =
√
β0(dtk,n)−κ3

(√ β1

1 + β1

hLoSRIS,n +

√
1

β1 + 1
hNLoSRIS,n

)
, (4.4)

where the deterministic LoS component is denoted by hLoSRIS,n = [1, e−j
2π
λ
d cos(φtAoD), . . . ,

e−j
2π
λ

(K−1)d cos(φtAoD)] and the non-line-of-sight (NLoS) component is the Rayleigh

fading that follows the complex Gaussian distribution with zero mean and unit

variance; cosφAoD is the angle of departure (AoD) from the RIS to IoT devices;

β1 is the Rician factor, and κ3 is the path loss exponent for the RIS and IoT

devices link.
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4.2.2 Power transfer phase

The achievable signal at the nth IoT device is composed of the direct signal from

the UAV and the reflected signal from the RIS at time step t as

yt1n = (htn +H tΦthtRIS,n)
√
P0x+ %2, (4.5)

where %2 is the noise signal following the complex Gaussian distribution CN(0, α2),

x is the symbol signal from the UAV and P0 is the transmission power at the UAV;

Φt = diag[φt1, φ
t
2, . . . , φ

t
K ] is the diagonal matrix at the RIS, where φtk = ejθ

t
k ,∀k =

1, 2, . . . , K and θtk ∈ [0, 2π] denotes the phase shift of the kth element in the RIS

at time step t.

In the WPT phase, the UAV transfers energy to the IoT devices during time

span τ t at time step t. Thus, the received power at the nth IoT devices at time

step t is given by

ptn = τ tηP0|htn +H tΦtgtn|2, (4.6)

where η is the power transfer efficiency. It is important to note that although we

employ the linear EH model in this paper the non-linear counterpart should have

been adopted in realistic scenarios.

4.2.3 Information transmission phase

We assume that the IoT devices do not have fixed energy sources and use all the

harvested energy for the WIT phase. The signal received at the UAV from the
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nth IoT device is given by

yt2n = (htn +H tΦthtRIS,n)
√
pnun + %2, (4.7)

where un is the symbol signal from the nth IoT device to the UAV. The received

SINR at the UAV from transmission of the nth IoT device at time step t can be

formulated as follows:

γtn =
ptn|htn +H tΦtgtn|2∑N

m 6=n p
t
m|htm +H tΦtgtm|2 + α2

, (4.8)

The sum-rate from the IoT devices at time step t is formulated as follows:

Rt
total =

N∑
n=1

(1− τ t)W log2(1 + γtn), (4.9)

where W is the bandwidth.

Our objective is to maximise the achieved sum-rate performance by optimising

the phase shift matrix Φ at the RIS, the UAV’s trajectory Γ and the EH time τ

as

max
τ,Φ,Γ

N∑
n=1

(1− τ t)B log2(1 + γtn),

s.t. 0 < τ t < 1,

θtk ∈ [0, 2π], ∀k ∈ K,

vt ≤ vmax,

X t
UAV ∈ Z,

(4.10)

where Z represents the flying restricted area in the vertical and horizontal dimen-
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sions; vt and vmax are the UAV’s velocity at time step t and the UAV’s maximum

flying velocity, respectively.

4.3 Hovering UAV for downlink power transfer

and uplink information transmission in RIS-

assisted UAV communications

Besides WPT, the UAV uses most of the energy for its movement. Thus, to

extend the operating time, the UAV is considered to hover at a fixed position at

the centre of the cluster. Firstly, we present the mathematical background of the

DRL algorithm and then we apply the DRL algorithm for solving the sum-rate

maximisation problem in RIS-assisted UAV communications.

4.3.1 The DDPG method

The DDPG algorithm is a hybrid model composed of the value function and

policy search methods. Thus, the DDPG algorithm is suitable for large-scale

action and state spaces. Based on the current policy, the actor function µ(s; θµ)

maps the states to a specific action with θµ being the actor network parameters,

while the critic function Q(s, a) evaluates the quality of the action taken. In the

DDPG algorithm, we use experience replay buffer and target network technique

to improve the convergence speed and avoid excessive calculations.

The agent iteratively interacts with the environment by executing the action

at and receiving the response with instant reward rt and the next state st+1. The

tuple of (st, at, rt, st+1) is then stored in a replay bufferD for training the actor and

78



4.3 Hovering UAV for downlink power transfer and uplink
information transmission in RIS-assisted UAV communications

critic network. The buffer D is updated by adding new samples and discarding

the oldest ones due to its finite size setting. After achieving enough samples, the

agent takes a batch G of transitions for training the network. Particularly, we

train the actor and critic network using stochastic gradient descent (SGD) over

a mini-batch G samples.

Let us denote the parameters of the critic network and the target critic network

by θq and θq′ , respectively. The critic network is updated by minimising

L =
1

G

G∑
i

(
yi −Q(si, ai; θq)

)2

, (4.11)

with

yi = ri(si, ai) + ζQ′(si+1, ai+1; θq′)|ai+1=µ′(si+1;θµ′ )
, (4.12)

where the action at time step (i+ 1) can be obtained by running the target actor

network µ′ with the state si+1; θµ′ denotes the parameters of the target actor

network and ζ is the discounting factor.

The actor network parameters are updated by

∇θµJ ≈
1

G

G∑
i

∇aiQ(si, ai; θq)|ai=µ(si)∇θµµ(si; θµ). (4.13)

Moreover, we duplicate the actor network and the critic network after a num-

ber of episodes to create a target actor and a target critic network. It helps reduce

the excessive calculations by using only one network to estimate the target value.

The target actor network parameters θq and the target critic network parameter
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θµ′ are updated by using soft target updates associated with κ � 1, as

θq′ ← κθq + (1− κ)θq′ , (4.14)

θµ′ ← κθµ + (1− κ)θµ′ . (4.15)

For explorations and exploitations purpose, we add a noise process of N(0, 1)

as follows [127]:

µ′(st) = µ(st; θtµ) + ψN(0, 1), (4.16)

where ψ is a hyper-parameter.

4.3.2 Game solving

For the hovering scenario, we formulate the MDP [86] by a 4-tuple < S,A,P,R >.

Then, we formulate a game to solve the problem in (4.10).

• Agent : The UAV’s centralised processor will act as an agent. The agent

interacts with the environment to find an optimal policy π∗ for maximising

the total sum-rate. After training, the action-making schemes will be de-

ployed to the UAV to predict the proper EH time scheduling τ and the RIS

can choose the phase shift matrix Φ.

• State space: The channel is composed of both direct link and the reflective

channel. Thus, we define the state space as

S = {h1 +HΦg1, h2 +HΦg2, . . . , hN +HΦgN}, (4.17)
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In time step t, the UAV has the state st = {ht1+H tΦtgt1, h
t
2+H tΦtgt2, . . . , h

t
N+

H tΦtgtN}

• Action space: The UAV hovers at a fixed position; thus, we optimise the

EH time τ and the RIS’s phase shift Φ. The action space is defined as

A = {τ, θ1, θ2, . . . , θK} (4.18)

At the state st, the UAV takes the action at = {τ t, θt1, θt2, . . . , θtK} and move

to the next state s′ = st+1.

• Reward function: The UAV interacts with the environment to find the

maximum obtained reward. In our work, we formulate the reward function

to obtain the maximum total sum-rate performance as

R =
N∑
n=1

(1− τ t)B log2(1 + γtn) (4.19)

The UAV is hovering at XUAV and chooses the action at based on the achieved

channel state information (CSI). Then, the UAV transfers the energy during τ to

the IoT devices and the RIS controller adjusts the phase shift for each element.

During the remaining time (1− τ), the RIS will not change the phase shift while

the IoT devices transmit information in the uplink to the UAV. It is challenging

since the RIS plays a crucial role in mitigating the interferences. Thus, we need

to find an intelligent scheme for the RIS to maximise the network performance in

the downlink power transfer and uplink information transmission protocol. We

propose a DRL, namely DDPG algorithm, to find an optimal policy for the UAV
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and the RIS.

At time step t, the agent has the information of the channel (4.17) and uses

the actor network to choose the action at (4.18). By executing the action at,

the agent receives the response following the reward function (4.19) from the

environment. The critic action takes part to justify the efficiency of the chosen

action at. After storing enough samples in buffer D, the agent trains the networks

over a mini-batch G by using the SGD with Adam optimiser [139].

In this section, we assume that the UAV is hovering at a fixed position to

reduce the flying energy consumption. It is a trade-off game with the energy and

total achievable sum-rate. In the next section, we propose a joint optimisation of

trajectory, EH time and the phase shift to maximise the network throughput in

a short operation time.

4.4 Joint trajectory, EH time scheduling and

the RIS phase shift optimisation using deep

reinforcement learning

Given a short flying time of the UAV, to maximise total achievable sum-rate,

we propose a joint optimisation scheme between the UAV’s trajectory, EH time

scheduling of IoT, and the RIS’s phase shift. We define the state space and the

reward function as in Section 4.3. We modify the action space as follows:

A = {v, ς, τ, θ1, θ2, . . . , θK} (4.20)
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At the state st, the UAV takes the action at = {vt, ς t, τ t, θt1, θt2, . . . , θtK} and

moves to the next state s′ = st+1. Particularly, the position of the UAV at time

step (t+ 1) is represented as follows:

X t+1
UAV =


xt+1
UAV = xtUAV + vt cos ς t + ∆xt+1

yt+1
UAV = ytUAV + vt sin ς t + ∆yt+1

H t+1
UAV = H t

UAV + ∆H t+1,

(4.21)

where ∆xt+1,∆yt+1, and ∆H t+1 are the environmental noise on the UAV at time

step (t+1). The UAV is flying from the position X t
UAV to X t+1

UAV but still needs to

satisfy the flying zone constraint XUAV ∈ Z. Moreover, the velocity of the UAV

is set to satisfy the requirement v ≤ vmax and the flying angle is set to satisfy a

constraint, ς ∈ [0, 2π].

Our objective is to find the optimal policy π∗ for maximising the expected

reward R. The agent has the local knowledge and interacts with the environment

to receive the reward. The local information is used to formulate the state fol-

lowing (4.17) and then the action is chosen based on (4.18). Base on the received

reward, the agent adjusts the policy π and executes a new action at a new state.

The agent can find a better policy with a better reward by the iterative interac-

tions. After each execution of the action, the UAV will move to a new position

and receive responses from the environment. By interacting iteratively with the

environment, the agent can choose the proper velocity and the flying direction

for the UAV in each time step based on the achieved CSI. Simultaneously, the

EH scheduling τ and the phase shift matrix are also optimised for maximising

network performance. Here, M and T are the number of the maximum episodes
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Algorithm 3 Deep deterministic policy gradient algorithm for joint trajectory
design, EH time and phase shift optimisation in RIS-assisted UAV communica-
tions.

1: Initialise the actor network µ(s; θµ), target actor network µ′ and the critic
network Q(s, a; θq), the target critic networks Q′.

2: Initialise replay memory pool D
3: for episode = 1, . . . ,M do
4: Initialise an action exploration process N

5: Receive initial observation state s0

6: for iteration = 1, . . . , T do
7: Find the action at for the state st

8: Execute the action at

9: Update the reward rt according to (4.19)
10: Observe the new state st+1

11: Store transition (st, at, rt, st+1) into replay buffer D

12: Sample randomly a mini-batch of G transitions (si, ai, ri, si+1) from D

13: Update critic parameter by SGD using the loss (4.11)
14: Update the actor policy parameter (4.13)
15: Update the target networks as in (4.14) and (4.15)
16: Update the state sti = st+1

i

17: end for
18: end for

and time steps, respectively. The details of our DDPG algorithm-based tech-

nique for joint trajectory design, EH time and phase shift matrix optimisation in

RIS-assisted UAV communications are presented in Algorithm 3.

4.5 Proximal policy optimisation technique for

joint trajectory, EH time and the phase shift

optimisation

For the continuous state and action space as in our problem, we propose an

on-policy algorithm, namely the PPO algorithm, for the joint optimisation of

84



4.5 Proximal policy optimisation technique for joint trajectory, EH
time and the phase shift optimisation

trajectory, EH time and the phase shift of the RIS. Instead of training the critic

and actor network, in PPO algorithm, we use a policy network for directly search-

ing for an optimal performance with efficient sampling technique. We define the

policy by π with the parameter θπ. Here, we train the policy and adjust the

parameter to find an optimal policy π∗ by running the SGD over a mini-batch of

G transitions (si, ai, ri, si+1). The policy parameters are updated for optimising

the objective function as follows:

θi+1
π = argmax

θπ

1

G

G∑
i

∇aiL(si, ai; θπ). (4.22)

In the PPO algorithm, the agent interacts with the environment to find the

optimal policy π∗ with the parameter θπ∗ that maximises the reward as

L(s, a; θπ) = E

[
ptθA

π(s, a)

]
, (4.23)

where ptθ = π(s,a;θπ)
π(s,a;θold)

is the probability ratio of the current policy and previous

policy; Aπ(s, a) is the advantage function [140].

Here, if we use only one network for the policy, the excessive modification

occurs during the training stage. Thus, we use the clipping surrogate method as

follows [141]:

Lclip(s, a; θπ) = E

[
min

(
ptθA

π(s, a), clip(ptθ, 1− ε, 1 + ε)Aπ(s, a)
)]
, (4.24)

where ε is a small constant. In this paper, the advantage function Aπ(s, a) [142]
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Algorithm 4 Our proposed approach based on the PPO algorithm for the RIS-
assisted UAV communications.

1: Initialise the policy π with the parameter θπ
2: Initialise the penalty method parameters ε
3: for episode = 1, . . . ,M do
4: Receive initial observation state s0

5: for iteration = 1, . . . , T do
6: Find the action at based on the current state st by following the current

policy
7: Execute the action at

8: Update the reward rt according to (4.19)
9: Observe the new state st+1

10: Update the state sti = st+1
i

11: Collect a set of partial trajectories with G transitions
12: Estimate the advantage function as (4.25)
13: end for
14: Update policy parameters using SGD with a mini-batch B of the collected

samples

θi+1 = argmax
θπ

1

G

G∑
Lclip(s, a; θπ) (4.27)

15: end for

is formulated as follows:

Aπ(s, a) = rt + ζV π(st+1)− V π(st). (4.25)

The policy is then trained by a mini-batch B and the parameters are updated

by

θi+1 = argmax
θπ

E
[
Lclip(s, a; θπ)

]
. (4.26)

The details of our PPO algorithm-based technique for joint trajectory design,

EH time and phase shift matrix optimisation in RIS-assisted UAV communica-

tions are presented in Algorithm 4.
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4.6 Simulation Results

Table 4.1: Simulation parameters in Chapter 4

Parameters Value

Bandwidth (W ) 1 MHz

UAV transmission power 5 W

UAV maximum speed per time step 20 m

UAV’s coverage 500 m

The initial UAV’s position (0, 0, 200)

The RIS’s position (200, 0, 50)

Path-loss parameter κ1 = 4, κ2 = 2, κ3 = 2.2

Channel power gain β0 = −30 dB

EH efficiency η = 0.5

Rician factor β1 = 4

Noise power α2 = −134 dBm

Max number of episodes M = 5000

Max number of time step T = 200

Clipping parameter ε = 0.2

Discounting factor ζ = 0.9

Max number of IoT devices 20

Initial batch size K = 32

In our work, we use the Tensorflow 1.13.1 [138] for implementing our algo-

rithms. We deploy the UAV at (0, 0, 200), the RIS at (200, 0, 50) and assume

d/λ = 1/2 for convenience. All other parameters are provided in Table 4.1. In

order to compare our proposed model with other baseline schemes, in this paper,

we consider the techniques as follows:

• Optimisation with the hovering UAV: the UAV is maintained at a fixed

position at the centre of the cluster (0, 0, HUAV ). We optimise the EH time

τ and the phase shift matrix at the RIS. We use the DDPG algorithm (H-
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DDPG) and the PPO algorithm (H-PPO) for the problem in the hovering

UAV scenario.

• Our proposed model with mobile UAV: For the game formulated as in

Section 4.4, we use the DDPG algorithm (F-DDPG) and the PPO algorithm

(F-PPO) for solving the problem of joint optimisation of trajectory, EH time

scheduling and the phase shift matrix at the RIS.

• Random selection scheme (RSS): The value of Φ is selected randomly

and we use the DDPG algorithm (RSS-HDDPG) for optimising the EH

time τ in the hovering UAV scenario.

• Random EH time (REH): The EH time τ is selected randomly and

the flying path and the phase shift Φ are optimised to maximise the perfor-

mance. We use the DDPG algorithm (REH-DDPG) and the PPO algorithm

(REH-PPO) for optimisation.

• Without RIS: We do not deploy the RIS in this scenario and optimise

the EH time τ in the hovering UAV scenario using the DDPG algorithm

(WithoutRIS-HDDPG), PPO algorithm (WithoutRIS-HPPO).

Firstly, we consider the hovering UAV scenario and compare the performance

versus the different number of IoT devices, N , with the number of RIS, K = 20

in Fig. 4.2. We take the average of over 1000 episodes for each scheme to draw

the figures. When using the H-PPO algorithm, the total expected throughput is

higher than in other schemes, including the ones using the H-DDPG algorithm,

the RSS-HDDPG, WithoutRIS-HDDPG and WithoutRIS-HPPO technique. The

results suggest that with the EH time and the RIS’s reflecting coefficient opti-
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Figure 4.2: The sum-rate performance in the hovering UAV scenario with different
numbers of IoT devices, N .

misation, the PPO algorithm is adequate irrespectively of the number of IoT

devices.

Next, we present the achieved sum-rate of the PPO and DDPG algorithm in

the hovering UAV scenario comparing with the RSS and without RIS case while

the number of IoT devices is fixed at N = 10 in Fig. 4.3. The H-PPO again shows

the effective results with the different number of RIS elements, K. The sum-

rate performance of the H-PPO algorithm improves from 2.0 to 2.8 (bits/s/Hz)

following the increase of the RIS elements. The sum-rate performance of the

H-DDPG algorithm is slightly higher than the ones using RSS and without RIS

schemes. The RIS is a passive reflector; thus, the reflected signal is diverse and

not towards the destinations if we cannot control the coefficient of the RIS and

select the phase shift randomly. Moreover, the PPO and the DDPG algorithm

reach similar results when we only optimise the EH time without the RIS.

89



4.6 Simulation Results

10 20 30 40 50
Number of RIS elements

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Ex
pe

ct
ed

 su
m

-ra
te

 (b
its

/s
/H

z)

H-DDPG
H-PPO
RSS-HDDPG
WithoutRIS-HDDPG
WithoutRIS-HPPO

Figure 4.3: The sum-rate performance in the hovering UAV scenario with varying
number of RIS elements, K.

Furthermore, in Fig 4.4, we investigate the performance while using the PPO

algorithm in the hovering UAV scenario with the different number of RIS ele-

ments, K. When we increase the number of RIS elements K, the performance

is enhanced. The results suggest that the PPO algorithm can handle the large

optimising variables and effective in the hovering UAV scenario.

In Fig. 4.5, we compare the total sum-rate in the mobile UAV with the number

of RIS elements K = 20 and different numbers of IoT devices, N . In contrast

with the hovering scenarios, the method based on the F-DDPG algorithm shows

impressive results over other schemes. When using the F-DDPG algorithm, we

can achieve a total throughput of around 3.8 bits/Hz. The F-PPO algorithm is

not good and trapped in an optimal local value. The reason is that the F-PPO

algorithm is an on-policy method and offers less random exploration over the

training.
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Figure 4.4: The performance while using the PPO algorithm in the hovering UAV
scenario with different number of RIS elements, K
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Figure 4.5: The sum-rate performance with different number of IoT devices, N .

We consider the different number of RIS elements K and compare the perfor-

mance of our proposed algorithms with REH schemes and hovering UAV scenario,

as shown in Fig. 4.6. The F-DDPG algorithm-based technique outperforms other
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Figure 4.6: The sum-rate performance with different numbers of RIS elements,
K.

schemes while it reaches around 3.8 (bits/s/Hz). Following the performance us-

ing the F-DDPG algorithm is the ones using the F-PPO algorithm in the mobile

UAV. When we jointly optimise the UAV’s trajectory, IoT’s EH time and RIS’s

phase shift, the achievable sum-rate is significantly increased in comparison with

the case when we optimise only the EH time, RIS phase shift in hovering scenario

and when we consider the optimisation of trajectory and EH time in REH-DDPG,

REH-PPO algorithm.

We compare the performance of the DDPG algorithm with different values of

the discounting factor, ζ in the mobile UAV scenario in Fig. 4.7. When we set

the value of ζ too small, the expected sum-rate only achieved a local optimum.

The higher values of ζ can help the algorithm converge faster because the next

state reward can utilise the previously achieved reward to adjust the network

parameters. Based on the results in Fig. 4.7, we set the value ζ = 0.9 for
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implementing our algorithms.
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Figure 4.7: The performance with different values of the discounting factor, ζ.

4.7 Conclusion

In this chapter, we have introduced a new system model for RIS-assisted UAV

communications with the downlink power transfer and uplink information trans-

mission protocol. By utilising the UAV’s mobility, the flexibility of the RIS, and

the effectiveness of the protocol, the RIS-assisted UAV network is a promising

technique for practical applications. We have proposed two DRL techniques for

jointly optimising the UAV’s trajectory, IoT’s EH time scheduling and the phase

shift matrix of the RIS to maximise the network’s throughput. The results suggest

that the systems learned by the DRL algorithm can deal with dynamic environ-

ments and satisfy some power restrictions and processing time in RIS-assisted

UAV communications. In the future, we plan to extend our work to include a
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distributed model and cooperative communications with multiple UAVs.
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Chapter 5

Reconfigurable Intelligent

Surface-assisted Multi-UAV

Networks: Efficient Resource

Allocation with Deep

Reinforcement Learning

5.1 Introduction

The UAVs are also playing a crucial role in bringing beyond fifth generation (5G)

network to every corner around the world owing to their low-cost production and

flexibility. UAV-assisted wireless networks significantly enhance the network’s

coverage and improve the information transmit efficiency.

Very recently, RIS has emerged as a cutting-edge technology for beyond 5G
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and sixth generation (6G) networks. In particular, a massive number of reflective

elements are intelligently controlled to reflect the received signal toward the desti-

nations. The controller helps the RIS be dynamically adapted to the propagation

environment with the aim to meet different purposes; for example, enhance the

arrival signal and mitigate the interference [50, 59, 60, 101, 114–117]. The RIS

has been recently deployed efficiently due to its low-cost hardware production,

nearly-passive nature, easy deployment, communication without new waves, and

energy-saving nature.

Owing to the intrinsic features of RIS and UAVs, the RIS-assisted UAV com-

munications have been recently considered for enhancing network performance.

Although the high altitude of the UAV significantly strengthens the channel be-

tween the UAV and the users, the connections are sometimes blocked by buildings

or other obstacles in specific scenarios. Thus, the RIS attached to the building

or on a high place is an option to reflect the channel from the UAV to the

users [38,56,57]. Moreover, the data through the RIS will experience fewer inter-

mediate delays and more freshness than when we use a mobile active relay in the

middle. On the other hand, the RIS is easily deployed and effective in reducing

power consumption.

DRL algorithms have emerged as a powerful method for an embedded op-

timisation and instant decision-making model in wireless networks. The DRL

methods have been used for device-to-device (D2D) communication [27,28], UAV-

assisted networks [18], and RIS-assisted wireless networks [131]. Inspiring by the

impressive results, in this paper, we use the DRL algorithm to enable the UAVs

to choose the proper power level and the RIS to adjust the phase-shift matrix to

maximise the reward. The neural networks are trained in the offline phase and
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then deployed in the terminal devices or controllers. Thus, the proper actions can

be chosen in milliseconds or instants in a centralised and decentralised manner

to obtain an optimal performance in the multi-UAVs-assisted networks with the

support of RIS.

In this chapter, we propose efficient DRL algorithms by jointly optimising the

power allocation of the UAV and the RIS’s phase-shifts for maximising the EE

performance. The DRL approaches bring a flexible and autonomous ability to

UAVs and RIS. With trained neural networks, the UAVs and RIS can choose a

proper action without delay. Furthermore, continuous learning with up-to-date

data by interaction with the environment helps the UAVs and RIS to adapt to

the dynamic environment. In this chapter, we exploit the efficiency of DRL tech-

niques in multi-UAV-assisted wireless communications with the support of RISs.

Particularly, we conceive a wireless network of multi-UAVs supported by an RIS.

Each UAV is deployed for serving a specific cluster of UEs. Due to the severe

shadowing effect, the RIS is used to enhance the received signal’s quality at the

UEs from the associated UAV and to mitigate the interference from others. Next,

the EE problem is formulated for the downlink channel with the power restric-

tions and the RIS’s requirement. To optimise the EE network performance, we

propose a centralised DRL technique for jointly solving the power allocation at

the UAVs and phase-shift matrix of the RIS. Then, a parallel learning is used

for training each element in our model to be intelligent and to reduce the delay

when transmitting the action between UAV and the RIS. Then, to improve the

network performance, we introduce the proximal policy optimisation (PPO) algo-

rithm with a better sampling technique. Finally, through the numerical results,

we demonstrate that our proposed methods efficiently solve the joint optimisa-
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tion problem with the dynamic environmental setting and time-varying CSI and

outperform the other benchmarks.

The remainder of this chapter is organised as follows. We present the system

model and problem formulation for the energy-efficient multi-UAV-assisted wire-

less communications with the support of the RIS in Section 5.2. The centralised

DDPG approach for joint optimisation of power allocation and phase-shift in

multi-UAV-assisted wireless networks is introduced in Section 5.3. We propose

parallel learning for our approach to reduce delay in Section 5.4. Moreover, the

PPO algorithm is proposed for solving both centralised and decentralised learning

in Section 5.5. Numerical results are illustrated in Section 5.6 while the conclusion

and future works are presented in Section 5.7.

5.2 System Model and Problem Formulation

We consider a downlink multi-UAV wireless network assisted by one RIS. Each

UAV is equipped with a single antenna for serving a specific cluster of users (UEs),

in which it is assumed N UAVs corresponding to N clusters of UEs, where each

cluster consists of M single-antenna UEs. The UEs are randomly distributed in

the coverage C from the centre of each cluster. The channel between the UAV

and UEs is blocked by the building, wall and concretes. Thus, we deploy an RIS

with K elements for supporting the information transmission from the UAVs to

the UEs.
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5.2.1 System Model

We assume that the coordinate of the nth UAV and mth UEs in the nth cluster at

the time step t are X t
n =

(
xtn, y

t
n, H

t
n

)
and X t

mn = (xtmn, y
t
mn), with n = 1, . . . , N

and m = 1, . . . ,M . We consider that the UAVs hover at fixed altitude at the

centre of the cluster. The RIS is attached to the building or a high location at

(xt, yt, zt), respectively.

Figure 5.1: System setup.

The distance between the nth UAV and the RIS panel in time step t is denoted

by

dtn =
√

(xtn − xt)2 + (ytn − yt)2 + (H t
n − zt)2. (5.1)

Similarly, the distance between the RIS panel and the mth UEs in the nth
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cluster is written as

dtnm =
√

(xt − xtnm)2 + (yt − ytnm)2 + (zt)2. (5.2)

Due to the high shadowing and severe blocking effect, the direct links between

UAVs and UEs do not exist and therefore it is only considered the alternative

paths (reflected links) via RIS’s reflection. The links between the UAVs and the

RIS are modelled as air-to-air (AA) channels whereas the link between the RIS

and the UEs is assumed to follow air-to-ground (AG) channel. Following the AA

channel model, the channel gain between the nth UAV and the RIS in time step

t is formulated as

H t
n,RIS =

√
β0(dtn)−κ1

[
1, e−j

2π
λ
d cos(φtAoA), . . . , e−j

2π
λ

(K−1)d cos(φtAoA)
]T
, (5.3)

where β0 is the channel gain at the reference distance d0, κ1 is the path loss expo-

nent for the UAV-RIS link, d is element spacing, and λ is the carrier wavelength;

the right term of (5.3) is the signal from the nth UAV to the RIS, cos(φtAoA) is

the cosine of the angle-of-arrival (AoA).

According to the AG channel model, the channel gain between the RIS and

the mth UE in the nth cluster can be written as

htRIS,nm =
√
β0(dtnm)−κ2

(√
β1

1 + β1

hLoSRIS,nm +

√
1

β1 + 1
hNLoSRIS,nm

)
, (5.4)

where the deterministic LoS component is denoted by

hLoSRIS,nm =
[
1, e−j

2π
λ
d cos(φtAoD), . . . , e−j

2π
λ

(K−1)d cos(φtAoD)
]

and the non-light-of-sight
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(NLoS) component is modelled as complex Gaussian distribution with a zero-

mean and unit-variance CN(0, 1); cos(φAoD) is the angle of departure (AoD) from

the RIS to the mth UE in the nth cluster; β1 and κ2 are the Rician factor and

the path loss exponent for the RIS-UEs link, respectively.

The signal from the UAV to UEs is reflected by the RIS. Thus, the received

signal at the mth UE in the nth cluster at time step t can be written as

ytnm = H t
n,RISΦthtRIS,nm

√
Pnxn +

N∑
l 6=n

H t
l,RISΦthtRIS,lm

√
P t
l xl + eta, (5.5)

where H t
n ∈ C1×K is the channel gains array from the nth UAV to the RIS, η is

the power noise signal following the complex Gaussian distribution with power α2;

Pn and xn are the transmit power and the symbol signal sent from the nth UAV,

respectively; Φt = diag[φt1, φ
t
2, . . . , φ

t
K ] is the diagonal matrix at the RIS, where

φtk = ejθ
t
k ,∀k = 1, 2, . . . , K with θtk ∈ [0, 2π] is the phase-shift of the kth element

in the RIS at time step t. In this chapter, we consider a broadcast scenario where

the signal from the n ∈ Nth UAV, xn is different from the signal from the l ∈ Nth

UAV, xl.

5.2.2 Problem Formulation

In this work, we consider a downlink communications where signal from the UAV

is dedicated to a designated UE in the associated cluster. In other words, the

mth UE in the nth cluster receives the information from the nth UAV while

the signals from other UAVs are considered as interference. Thus, the received

signal-to-interference-plus-noise-ratio (SINR) at the mth UE in the cluster n at
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time step t can be formulated as follows:

γtnm =
P t
n|H t

n,RISΦthtRIS,nm|2∑N
l 6=n P

t
l |H t

l,RISΦthtRIS,lm|2 + α2
. (5.6)

The throughput at the mth UEs in the nth cluster at time step t is written

as

Rt
nm = W log2(1 + γtnm), (5.7)

where W is the bandwidth. The total throughput at time step t is cumulative

from the UEs of all clusters and it can be expressed by

Rt
total =

N∑
n=1

M∑
m=1

Rt
nm, (5.8)

and the total power consumption is given by

Ptotal =
N∑
n=1

Pn + PK + Pc, (5.9)

where PK and Pc are the power consumption at the RIS and the power circuit at

the UAV, respectively.

Our objective is to maximise the EE of all UEs by jointly optimising the

transmit powers at the UAVs and the phase-shifts at the RIS. In each time step

t, each UAV will choose the proper power and each RIS’s element will choose

the phase-shift value depending on the local information that each component

receives from the environment. The optimisation problem of maximising the EE

of all UEs subject to the transmit power at UAVs and phase-shifts of RIS can be
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formulated as

max
P,Φ

∑N
n=1

∑M
m=1R

t
nm∑N

n=1 Pn + PK + Pc

s.t. 0 ≤ Pn ≤ Pmax,∀n ∈ N,

θk ∈ [0, 2π], ∀k ∈ K,

(5.10)

where P = {P1, . . . , PN} and Pmax are the vector of power and the maximum

information transmission power at the UAVs, respectively. To solve the EE max-

imisation problem, we propose two DRL algorithms for centralised approach and

then the parallel learning distributed approach is introduced for practical appli-

cations.

5.3 Centralised Optimisation for Power Alloca-

tion and Phase-shift Matrix

In the centralised approach, we assume that the information is processed at a

central point (e.g., cloud server) and the next action for each element in the

system will be transferred at the beginning of each time step. Thus, for jointly

optimising the power allocation at the UAVs and the phase-shift matrix at the

RIS, we consider the central processing point as an agent. The optimisation

problem can be formulated by the MDP < S,A,P,R, ζ >. Particularly, with our

centralised optimisation, we formulate the game as follows:

• State space: The agent interacts with the environment for maximising the

EE performance. Thus, the agent only has knowledge about the local in-
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formation, e.g., the reflected channel gains. In this chapter, we assume that

the UAV and RIS have a perfect channel estimation model. The CSI at the

UAV and RIS are the same and defined by the combination of the channel

from UAV to RIS, RIS phase shift matrix and RIS to UEs. The state space

is defined as follows:

S ={H1,RIS Φ hRIS,11, H1,RIS Φ hRIS,12,

. . . , Hn,RIS Φ hRIS,nm, . . . , HN,RIS Φ hRIS,NM}.
(5.11)

• Action space: With the downlink transmission in the RIS-assisted multi-

UAV networks, we optimise the power allocation at UAVs and phase-shift

matrix at RIS. Thus, the action space is defined as follows:

A = {P1, P2, . . . , PN , θ1, θ2, . . . , θK}. (5.12)

The agent takes the action at = {P t
1, P

t
2, . . . , P

t
N , θ

t
1, θ

t
2, . . . , θ

t
K} at the state

st and moves to the next state s′ = st+1.

• Reward function: Our objective is to maximise the EE performance; thus,

we formulate the reward function as

R =

∑N
n=1

∑M
m=1R

t
nm∑N

n=1 Pn + PK + Pc
. (5.13)

After formulating the EE game, we proposed a DRL algorithm for the agent to

interact with the environment to find the optimal policy π∗. Deep deterministic

policy gradient (DDPG) is a hybrid model composed of the actor part based on
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value function and the critic component based on the policy search. In the DDPG

algorithm, we use experience replay buffer and target network techniques to im-

prove the convergence speed and avoid excessive calculation. In the experience

replay buffer, we use a finite size of a memory size B to store the executed tran-

sition < st, at, rt, st+1 >. After collecting enough samples, we randomly select a

mini-batch D of transitions from buffer B for training the neural networks. The

memory B is set to a finite size for updating the new sample and discarding the

old ones. Otherwise, we use target networks for the critic and actor network when

calculating the target value.

We denote the critic network as Q(s, a; θq) with the parameter θq and the

target critic network as Q′(s, a; θq′) with the parameter θq′ . Similarly, we initialise

the actor network µ(s; θµ) with the parameter θµ and the target actor network

µ′(s; θµ′) with the parameter θµ′ . We train the actor and critic network using the

stochastic gradient descent (SGD) over a mini-batch of D samples. The critic

network is updated by minimising

L =
1

D

D∑
i

(
yi −Q(si, ai; θq)

)2

, (5.14)

with the target

yi = ri(si, ai) + ζQ′(si+1, ai+1; θq′)|ai+1=µ′(si+1;θµ′ )
. (5.15)

The actor network parameters are updated by

∇θµJ ≈
1

D

D∑
i

∇aiQ(si, ai; θq)|ai=µ(si)∇θµµ(si; θµ). (5.16)
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The target actor network parameters θq and the target critic network param-

eters θµ′ are updated by using soft target updates as follows:

θq′ ← κθq + (1− κ)θq′ , (5.17)

θµ′ ← κθµ + (1− κ)θµ′ , (5.18)

where κ is a hyperparameter between 0 and 1.

In the DDPG algorithm, the deterministic policy is trained in an off-policy

way; thus, for explorations and exploitations purpose, we add a noise process of

N(0, 1) as follows [127]:

µ′(st; θtµ′) = µ(st; θtµ) + ψN(0, 1), (5.19)

where ψ is a hyperparameter. The details of our DDPG algorithm-based tech-

nique for joint power allocation and phase-shift matrix optimisation in RIS-

assisted UAV communications are presented in Algorithm 5, where E and T

denote the number of the maximum episode and time step, respectively.

In Algorithm 5, the agent interacts with the environments to maximise the

obtained reward (5.13). In time step t, the agent has a local information of

channel model st ∈ S. At the state st, the agent chooses the action at ∈ A by

the actor networks. By executing the action at in the environment, the agent

obtains a response following the reward function (5.13). Then, the critic and

actor network parameters are updated by training a mini-batch of D transitions

by stochastic gradient descent with Adam optimiser [139].
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Algorithm 5 Centralised optimisation for joint power allocation and phase-shift
matrix in RIS-assisted UAV communications.

1: Initialise the critic network Q(s, a; θq) and the target critic networks Q′

2: Initialise the actor network µ(s; θµ) and the target actor network µ′

3: Initialise replay memory pool B
4: for episode = 1, . . . , E do
5: Initialise an action exploration process N

6: Receive initial observation state s0

7: for iteration = 1, . . . , T do
8: Execute the action at obtained at state st

9: Update the reward rt according to (5.13)
10: Observe the new state st+1

11: Store transition (st, at, rt, st+1) into replay buffer B

12: Sample randomly a mini-batch of D transitions (si, ai, ri, si+1) from B

13: Update critic parameter by stochastic gradient descent using loss func-
tion in (5.14)

14: Update the actor policy parameter in (5.16)
15: Update the target networks as in (5.17) and (5.18)
16: Update the state st = st+1

17: end for
18: end for

5.4 Parallel DRL for Joint Power Allocation and

Phase-shift Matrix Optimisation

In practical applications, when we process all the data in a centralised manner,

the information of the UAV’s power and the RIS’s phase-shift for the next action

need to transfer at the beginning of each time step. The delay will occur and

make the system unable to deal efficiently with the dynamic environment. Thus,

we propose a parallel DRL (PDRL) technique for joint power allocation and

phase-shift matrix optimisation. As the definition of the DRL model, the agents

do not know the environmental factor. Thus, in our system, the nth UAV has

no knowledge of the power of the mth UAV and the diagonal matrix at the RIS.
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Similarly, the RIS controller does not know about the transmit power at the UAV.

To make the UAV and the RIS work cooperatively, we consider a multi-

agent learning for our system. In particular, each UAV acts as an agent and

the RIS is a separated agent. For all the agents, we define the state space as

S = {H1,RIS Φ hRIS,11, H1,RIS Φ hRIS,12, . . . ,

Hn,RIS Φ hRIS,nm, . . . , HN,RIS Φ hRIS,NM} with respect to the channel state in-

formation, i.e., the compound of channel gains and phase-shifts of RIS. The UAV

and the RIS process independently, thus, the action space for the nth UAV agent

is the transmit power An = {Pn} and for the RIS agent is the phase-shift matrix

ARIS = {θ1, θ2, . . . , θK}. With the rewards function, we rely on (5.13).   
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Figure 5.2: A multi-agent learning for the RIS-assisted wireless networks

In Algorithm 6, with the parallel learning, we have N + 1 policy for the N

UAVs and 1 policy for the RIS in the P-PPO algorithm. In time step t, the nth

UAV decides the transmit power Pn and the RIS chooses the proper phase-shift

matrix Φt at the state st for maximising the EE performance. In particular, our
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parallel model is described as in Fig. 5.2. The UAV and the RIS have the local

information and interact with the environment to search for an optimal policy

π∗. The agents at each time step choose and execute the action toward the

environment. Then, the environment will respond by a value of reward toward

the agents. Based on the response, the agents adjust the value of parameters in

the action-chosen scheme for finding an optimal policy π∗. The details of our

proposed techniques for joint optimisation of power allocation at the UAV and

phase-shift matrix at the RIS are described in Algorithm 6. The agent N + 1

represents the RIS controller.

Algorithm 6 Parallel learning for joint power allocation and phase-shift matrix
in RIS-assisted UAV communications.

1: for Agent $ = 1, . . . , N,N + 1 do
2: Initialise the critic network Q$(s, a; θq), the target critic networks Q′$ and

actor network µ$(s; θµ), target actor network µ′$ for the agent $
3: Initialise replay memory pool B$ for the agent $
4: end for
5: for episode = 1, . . . , E do
6: Initialise an action exploration process N

7: Receive initial observation state s0

8: for iteration = 1, . . . , T do
9: for Agent $ = 1, . . . , N,N + 1 do

10: Execute the action at$ obtained at state st

11: Update the reward rt$ according to (5.13)
12: Observe the new state st+1

$

13: Store transition (st$, a
t
$, r

t
$, s

t+1
$ ) into replay buffer B$

14: Sample randomly a mini-batch of D transitions (si$, a
i
$, r

i
$, s

i+1
$ )

from B$

15: Update critic parameter by SGD using the loss (5.14)
16: Update the actor policy parameter (5.16)
17: Update the target networks as in (5.17) and (5.18)
18: Update the state st$ = st+1

$

19: end for
20: end for
21: end for
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5.5 Proximal Policy Optimisation for Centralised

and Decentralised Problem.

Instead of using a hybrid model for continuous action space as in the DDPG algo-

rithm, we propose an on-policy algorithm, namely proximal policy optimisation

(PPO), with an efficient learning technique to achieve a better performance. In

the PPO algorithm, we compare the current policy and obtained policy to find

maximisation of the objective function as

L(s, a; θ) = E

[
π(s, a; θ)

π(s, a; θold)
Aπ(s, a)

]

= E

[
ptθA

π(s, a)

]
,

(5.20)

where ptθ = π(s,a;θ)
π(s,a;θold)

denote the probability ratio and Aπ(s, a) = Qπ(s, a)−V π(s)

is an estimator of the advantage function defined in [140]. We use SGD for

training networks with a mini-batch D to maximise the objective. Thus, the

policy is updated by

θt+1 = argmaxE
[
L(s, a; θt)

]
. (5.21)

In this work, we use the clipping method function clip(ptθ, 1 − ε, 1 + ε) for

limiting the objective value to avoid the excessive modification as follows [140]:

LCLIP(s, a; θ) = E

[
min

(
ptθA

π(s, a), clip(ptθ, 1− ε, 1 + ε)Aπ(s, a)
)]
, (5.22)

where ε is a small constant. We use the upper bound with 1 + ε when the
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advantage Aπ(s, a) is positive. In this case, the objective is equal to

LCLIP(s, a; θ) = min

(
π(s, a; θ)

π(s, a; θold)
, (1 + ε)

)
Aπ(s, a). (5.23)

While the advantage Aπ(s, a) is positive, the minimum term puts a ceiling

on the increased objective. Once π(s, a; θ) > (1 + ε)π(s, a; θold), the objective is

limited by (1+ε)Aπ(s, a). Similarly, when the advantage is negative, the objective

can be written as follows:

LCLIP(s, a; θ) = max

(
π(s, a; θ)

π(s, a; θold)
, (1− ε)

)
Aπ(s, a). (5.24)

When the advantage is negative, if π(s, a; θ) decreases the objective will in-

crease. Thus, the maximum term puts a ceiling and once π(s, a; θ) < (1 −

ε)π(s, a; θold), the objective is limited by (1− ε)Aπ(s, a). These clipping surrogate

methods restrict the new policy not going far from the old policy.

Furthermore, we use an advantage function Aπ(s, a) as follows [142]:

Aπ(s, a) = rt + ζV π(st+1)− V π(st) (5.25)

The PPO algorithm is an on-policy algorithm where the UAVs’ power level

and the RIS’s phase-shift matrix value are chosen by running the current policy

π(s, a; θ) to maximise the EE performance in (5.13). In our paper, we use the

clipping method in (5.22). For each iteration in the PPO algorithm, a set of

trajectory D = {τi} are collected by running the current policy π(s, a; θ) in the

environment. Then, the policy parameters are updated by running SGD with

Adam optimiser.
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We deploy the centralised and parallel learning based on the PPO algorithm,

namely, centralise PPO (C-PPO) and parallel PPO algorithm (P-PPO). In the

C-PPO algorithm, a policy π(s, a; θ) is used and trained to maximise the EE

performance while we have N + 1 policy for the N UAVs and for the RIS in the

P-PPO algorithm.

5.6 Simulation Results

For implementing our algorithms, we use the Tensorflow 1.13.1 [138]. In our

paper, we consider a scenario with 3 UAVs, N = 3 to serve 3 clusters at the

fixed location (0, 0, 200), (200, 300, 200), (400, 0, 200). In each cluster, the number

of UEs is set up to 10. Moreover, we assume d/λ = 1/2 for convenience. The

total power consumption at the RIS and non-transmit power of UAV is set to

PK+Pc = 4W. For the neural network setting, we run the algorithm with different

value of parameters and choose the the best performance with the learning rate

lr1 = 0.001 and lr2 = 0.002 for the actor and critic network in the DDPG

algorithm, respectively. In the PPO algorithm, we use learning rate lr = 0.00001.

Other parameters are provided in Table 5.1. In this section, the four proposed

schemes in previous sections are summarised as follows:

• Our centralised DDPG algorithm (C-DDPG): As we explained in

Section 5.3, we use the DDPG algorithm for jointly optimising the transmit

power of the UAV and the phase-shift matrix of the RIS in a centralised

manner.

• Parallel learning for the DDPG method (P-DDPG): We consider

113



5.6 Simulation Results

parallel learning to help to reduce the information transmission delay and

errors while ensuring the network performance.

• Our centralised PPO algorithm (C-PPO): Instead of using the DDPG

algorithm, we use the PPO algorithm for solving the centralised problem.

• Parallel learning for the PPO algorithm (P-PPO): We also deploy

the PPO algorithm for parallel learning in our joint power allocation and

phase-shift matrix optimisation in multi-UAV and RIS-assisted wireless net-

works.

In addition, to highlight the advantage of our proposals, we also compare our

four proposed methods with the following schemes:

• Max power transmission (MPT): We use the maximal transmit power

at the UAV and optimise the phase-shift of the RIS by using the PPO

algorithm.

• Random selection scheme (RSS): We select randomly the phase-shift

at the RIS and optimise the transmit power at the UAV.

Our proposed approaches achieve a better performance in comparison with

MPT and RSS methods. Moreover, by using the neural networks, the processing

time is small and the UAVs and RIS can choose the power allocation and phase-

shift matrix immediately in milliseconds. Particularly, in Fig. 5.3, we show the

EE performance of our proposed method in both centralised and decentralised

learning with M = 10 and K = 20. The methods based on parallel learning reach

the best results with the P-PPO algorithm. It is are higher than the ones using

the C-DDPG and C-PPO algorithm in the centralised learning. The reason is
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Table 5.1: Simulation parameter in Chapter 5

Parameters Value

Bandwidth (W ) 1 MHz

UAV transmission power 5 W

UAV’s coverage 500 m

The RIS’s position (500, 500, 30)

Path-loss parameter κ1 = 2, κ2 = 2.2

Channel power gain β0 = −30 dB

Rician factor β1 = 4

Noise power α2 = −134 dBm

Discounting factor ζ = 0.9

Max number of UEs 30

Initial batch size D = 32

that the P-PPO algorithm uses parallel learning and efficient sampling techniques.

In the parallel learning, the optimisations at the UAVs and RIS are small-scale.

The UAVs can choose the proper power and the RIS can choose the value of

phase shift independently. Moreover, in the DDPG algorithm, we need to use a

variable to make randomness to the action for exploration and exploitation. The

performances are also affected by the initial parameter of the networks and the

random walk model of users. Thus, the EE of the C-PPO algorithm and P-DDPG

algorithm may be stuck in local optimal. The convergence of the P-PPO is fastest

and following by the P-DDPG algorithm. As can be observed from this figure our

proposed scheme with joint optimisation using the DRL techniques outperform

the other approaches using the MPT and RSS methods.

In Fig. 5.4, the EE performance of our methods in comparison with other

baseline schemes is presented with the different number of UEs in each cluster,

M , for the number of RIS elements K = 20. Again, the P-PPO method shows
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Figure 5.3: The EE with M = 10 and K = 20.

better EE performance than the centralised C-PPO and the ones using the C-

DDPG algorithm. The MPT and RSS methods are less effective for the joint

power allocation and phase shift matrix optimisation in the UAV-assisted wireless

network with the support of the RIS.

In Fig. 5.5, we plot the EE performance versus the number of the RIS elements

(K) when the number of UEs in each cluster equals to ten (M = 10). We

achieve the best EE performance with the P-PPO algorithm despite the value

of K. When the number of RIS elements becomes higher (e.g., K > 25), the

methods based on the C-PPO algorithm are more effective than the ones using

the DDPG algorithm. In contrast, for a smaller value of K, the methods based on

the C-DDPG algorithm are better than the centralised learning with the C-PPO

algorithm. For all values of K, the best performance can be achieved with P-PPO

algorithm, which demonstrates the fact that the P-PPO algorithm is stable and

practical for every environmental setting under the joint optimisation of power
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Figure 5.4: The EE versus the number of UEs in each cluster, M .

allocation at UAVs and the phase-shift matrix at RIS.
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Figure 5.5: The EE versus the number of the RIS elements, K.

The EE performances of the DDPG algorithm versus episodes for different

number of RIS elements using the centralised learning and parallel learning are
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shown in Fig. 5.6 and Fig. 5.7, respectively. With the higher number of RIS

elements, the performance increase while the convergence rate is still similar for

both centralised and parallel approaches. The result converges after about 600

episodes when the exploration is set to 3 and ψ = 0.99995. Thus, depending on

the specific purpose, we can deploy the configurable RIS with fast learning.
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Figure 5.6: The EE of the C-DDPG algorithm with different number of the RIS
elements, K.

Similarly, the EE performance of PPO algorithm versus episodes for differ-

ent number of RIS elements using the centralised learning and parallel earning

are plotted in Fig. 5.8 and Fig. 5.9, respectively. While the performance using

centralised approach (C-PPO) is unstable and takes around 800 episodes for con-

vergence, the parallel approach (P-PPO algorithm) shows a solid performance

even when increasing the number of the RIS elements. The convergence for P-

PPO is still stable and even faster with the higher number of RIS elements. We

need only about 200 episodes for convergence. Furthermore, we use neural net-
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Figure 5.7: The EE of the P-DDPG algorithm with different number of the RIS
elements, K.

works for the DDPG and PPO algorithm; thus, the system can be easily deployed

after training and the agent can choose the action immediately.
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Figure 5.8: The EE of the C-PPO algorithm with different number of the RIS
elements, K.
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Figure 5.9: The EE of the P-PPO algorithm with different number of the RIS
elements, K.

5.7 Conclusions

In this chapter, we have proposed multi-UAV networks supported by a RIS panel

to enhance the network performance. To maximise the EE of the considered

networks, the transmit power at the UAV and the phase-shift matrix at the RIS

were jointly optimised by using the DDPG method and PPO technique in a

centralised approach. Moreover, to reduce the network’s delay and the power for

exchanging the information, we proposed parallel learning for the optimisation

problem. The results suggested that we can deploy the DRL algorithms for

the real-time optimisation with impressive results compared to other baseline

schemes. For the future work, we will improve the model with multiple RIS

panels and cooperative communications with a fully autonomous ability in the

futures.
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Chapter 6

Conclusions and future work

6.1 Summary of the thesis

In this chapter, we highlight key points and major contributions of this thesis. We

then present some potential research directions of transfer learning, UAV-assisted

communications and RIS-aided networks.

6.1.1 UAVs and RIS-assisted Wireless Communications

In Chapter 1, we have introduced the potential benefits with applications and

existing challenges of the UAVs and the RIS in wireless communications. We

have also presented the research motivation of using DRL algorithms for solving

complex problems in real-time optimisations.

6.1.2 Literature Review

In Chapter 2, we have presented a literature review of resource optimisation in the

UAV-assisted wireless communications and the phase shift matrix optimisation

in the RIS-aided networks. We have also introduced an overview of applications

of the DRL algorithms in wireless communications.
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6.1.3 3D UAV Trajectory and Data Collection Optimisa-
tion via Deep Reinforcement Learning

In Chapter 3, we have studied the 3D trajectory optimisation in data collection

mission of UAV-assisted wireless communications. The DQL and dueling DQL

algorithm with a low computational complexity have been presented to maximise

the achieved sum-rate while minimising the moving path of the UAV to reach

the landing dock. Our simulation results showed the efficiency of our techniques

both in simple and complex environmental settings.

6.1.4 RIS-assisted UAV Communications for IoT with Wire-
less Power Transfer Using Deep Reinforcement Learn-
ing

In Chapter 4, we have proposed a novel framework for deploying the UAV in

RIS-assisted wireless communications with the downlink power transfer and up-

link information transmission protocol. We have proposed two DRL techniques

for jointly optimising the UAV’s trajectory, IoT’s EH time scheduling and the

phase shift matrix of the RIS to maximise the network’s throughput. The results

suggest that the systems learned by the DRL algorithm can deal with dynamic

environments and satisfy some power restrictions and processing time in RIS-

assisted UAV communications.

6.1.5 Reconfigurable Intelligent Surface-assisted Multi-UAV
Networks: Efficient Resource Allocation with Deep
Reinforcement Learning

In Chapter 5, we have presented a novel framework for RIS-assisted multi-UAV

networks. We have proposed an efficient DRL method for the resource allocation
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problem to maximise the EE by using the DDPG method and the PPO technique

in a centralised approach. Moreover, to reduce the network’s delay and the power

for the information exchange, we proposed parallel learning for the optimisation

problem. The results suggested that we can deploy the DRL algorithms for real-

time optimisation with impressive results compared to other baseline schemes.

6.2 Open Problems and Future Works

There are still many open problems that must be investigated in the future.

6.2.1 Multi-UAV Deployment and Trajectory Optimisa-
tion

For the multi-UAV networks, there are several key problems. First, there is a

need to reduce the delay in the information transmission between UAVs. We can

encourage each UAV to cooperate in distributed learning and avoid disruption.

Secondly, the resource management and trajectory design in the multi-UAVs-

assisted wireless networks is still challenging while we need to minimise the total

flying path and energy consumption.

6.2.2 Resource Managements in Multi-RIS-aided Wire-
less Networks

In terms of open problems in multi-RIS networks, there is a need for new so-

lutions to deploy multiple RISs cooperatively and effectively to achieve optimal

performance. In this regard, key problems include: 1) developing robust RIS for

massive users node scenarios, 2) designing dynamic and active RISs for improv-

ing the signal quality, 3) proposing a new framework for cooperating multi-RISs,

4) designing a framework for utilising the RIS in other emerging research areas,
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such as UAV-aided communications, mobile edge computing, ultra-reliable and

low latency communications

6.2.3 Performance Analysis

There is a need for tractable presentation for the trade-off performance between

the energy consumption and sum-rate in the UAV and RIS-assisted network. In

addition, more analysis needs to be done to represent the trade-off between the

flying energy consumption and EE in the UAV-enable networks. Finally, the

performance evaluation of the multi-RISs needs to be analysed. For example,

there is a need to study the deployment of the RISs and the number of elements

in each RIS impact the performance of the total throughput and latency.

6.2.4 Transfer Learning and Meta Learning in Wireless
Communications

There is a huge potential solution for using transfer learning and meta learning

in wireless communications for improving the learning process. The essence of

transfer learning is using the pre-trained model and knowledge to a new sce-

nario. There are numerous benefits of using transfer learning in comparison to

the conventional approaches in wireless communications, such as 1) enhancing

quality and quantity of training data, 2) Speeding up the learning process, 3)

Reducing computing demands in the training process, 4) mitigating communica-

tion overhead, and 5) protecting data privacy [143]. Another potential approach

is meta-learning, which refers to learning algorithms that learn from the output

of other learning algorithms to rapidly adapt to a new environment with a few

training samples. Both transfer learning and meta learning are potentially useful
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in supporting the UAV-enabled wireless communications when the UAV will in-

stantly have knowledge of optimal solutions of resource management, deployment

and trajectory in new scenarios. They are also significantly effective in the RIS-

assisted networks while the environment changes with a new user or a new RIS.

The pre-trained model or other model output will help the RIS rapidly adjust

the phase shift matrix to reach the optimal performance.
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