Absolute calibration of Fujifilm BAS-TR image plate response to laser driven protons up to 40 MeV

Published in:
Review of Scientific Instruments

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2022, AIP Publishing LLC.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Absolute calibration of Fujifilm BAS-TR image plate response to laser driven protons up to 40 MeV

1) Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
2) Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
3) Extreme Light Infrastructure (ELI-NP), and Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Str. Reatorului No. 30, 077125 Bucharest-Magurele, Romania
4) IGFAE, Universidade de Santiago de Compostela, 27002 Santiago de Compostela, Spain
5) Instituto de Fusion Nuclear, Universidad Politécnica de Madrid, 28040 Madrid, Spain
6) Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
7) LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
8) Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
9) Department of Physics, Jagannath University, Dhaka-1100, Bangladesh
10) Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
11) Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ, United Kingdom
12) Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
13) Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, 64289 Darmstadt, Germany
14) Helmholtz Institut Jena, 07743 Jena, Germany
15) Institute for Quantumoptics, University of Jena, 07743 Jena, Germany
16) GSI GmbH, 64291 Darmstadt, Germany
17) Department of Mathematics and Physics, Shanghai Normal University, Shanghai 200234, China

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range, and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is therefore essential. In this paper, the response of Fujifilm BAS-TR IPs to 1–40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers, in conjunction with CR-39 nuclear track detector to determine absolute proton numbers. While the CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV, using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previous reported calibrations, as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.

I. INTRODUCTION

The use of high power laser drivers is a well established method of generating high energy, short duration bursts of ions. These ion sources have several favourable properties over conventionally accelerated ion beams, such as their shorter bunch duration (ps–ns), high luminarity and low emittance, and high particle number. For these reasons, laser driven proton beams have been investigated for use in various applications, such as radiobiology physics, warm dense matter, fast ignition, and proton radiography.

Much of the initial research was focused on the target normal sheath acceleration (TNSA) mechanism using micron-scale thick targets. TNSA generates an exponentially decaying ion spectrum, and favours the acceleration of high charge-mass ratio ions (such as protons). This mechanism has been demonstrated experimentally to generate protons of up to 85 MeV, however, advances...
in ultrathin target manufacturing have enabled the possibility of using targets in the tens of nm scale thickness, and as such has seen the emergence of new mechanisms, such as radiation pressure acceleration (RPA)\(^{1,13,14}\), and acceleration enhanced by relativistically induced transparency (RIT)\(^{15,16}\). These new mechanisms have extended the highest proton energies achieved thus far to almost 100 MeV\(^{17}\). Current experiments are moving towards the generation of higher energy beams, and modern PW-class laser facilities routinely produce protons several tens of MeV in energy\(^{18}\). Most laser driven ion acceleration experiments make use of a suite of diagnostics to determine the ion dynamics, such as stacks of radiochromic film (RCF), and Thomson parabola spectrometers (TPS) to measure energy spectra of the ions generated in the interaction\(^{19}\). TPS are often employed in laser ion acceleration experiments because they offer higher spectral resolution, as well as the ability to discriminate ion species according to their charge-mass ratio, which is useful considering the multispecies nature of most laser-generated ion beams. The TPS is usually coupled with a particle detector that has been calibrated to determine absolutely the particle number at each energy.

Common detectors coupled with a TPS include CR-39 nuclear track detector, micro-channel plate (MCP) detectors, and image plates (IPs). CR-39 has the advantage that it can detect single particle interactions\(^{20}\), and therefore does not require prior calibration for use as a detector. However, the etching process which makes the ion damage tracks visible can be long, and may not be an efficient detection method when taking many shots in an experimental campaign. MCP detector assemblies in a TPS consist of a microchannel plate, coupled to a phosphor screen. The ion traces which appear on the phosphor screen are then imaged by a camera at the rear of the detector. These detectors are, in contrast to CR-39, much more efficient in experiments with a high shot rate, however the equipment is expensive, delicate (MCPs must be kept continuously under vacuum and operate at high voltages, which means they can be affected by the large electromagnetic pulses (EMPs) generated in high power laser interactions), and there has been comparatively limited research in calibrating these detectors to the many different ion species produced in experiments with high power lasers\(^{21-23}\). Image Plates relying on photo-stimulated luminescence (PSL) are amongst the most popular and reliable detectors used currently for laser driven particle acceleration experiments. This is due to their high dynamic range, low cost as compared to MCPs, relative fast scanning and analysis compared to CR-39, and their ability to be erased with a bright white light source and reused continuously, provided the active phosphor layer remains undamaged.

Currently, the majority of experimentally measured IP response calibrations, specifically for the BAS-TR brand most commonly used in ion acceleration experiments, are to low energy protons (\(<3\) MeV)\(^{24-27}\), and there is a significant difference in opinion about the response at these low energies between the different works (up to a factor of 2). In addition, the only works that have a response in energy ranges relevant to current experimental efforts either do not use an absolute reference for determining proton number\(^{24}\), or utilise a conventionally accelerated proton source\(^{28}\). Thus, there exists a gap in the literature for a calibration of IP response to laser-driven protons at energies that are applicable to modern experiments with high power lasers. In this paper, a calibration of the response of BAS-TR IPs to laser driven protons in the energy range 1–40 MeV is presented, using CR-39 detectors as an absolute reference for particle number. A short summary of the previous efforts to calibrate BAS-TR IPs is given, followed by a description of our experimental setup, and a new high energy implementation of an image plate calibration using CR-39 is demonstrated. The new experimentally measured response is compared to the previous works, and a fitting of our data to IP response models presented by other groups is performed, together with an empirical function for extrapolation to high energies.

II. IMAGE PLATES: SIGNAL REGISTRATION AND FADING

IPs are composed of an active phosphor layer on top of a magnetic base. The Fujiﬁlm BAS-SR and BAS-MS brands of image plate also have a protective layer over the active layer, however the BAS-TR, which is the on discussed in this article, does not. The BAS-TR brand is the one most commonly used in laser ion acceleration studies, because there is no loss of data due to lower energy ions stopping in the protective layer before reaching the active layer. The active layer of the BAS-TR brand is composed of 50 \(\mu\)m thick europium doped barium fluoride phosphor, with the chemical formula \(BaFBr_{0.85}Eu_{0.15}\), and at a density of 2.85 g/cm\(^{3}\). When ionizing radiation is incident on the active layer, the above molecule is promoted to an excited, metastable state which can persist for several hours. The state can decay either via spontaneous emission or by stimulated emission when irradiated by light at an appropriate wavelength. Image plate scanners (such as the Fujifilm FLA-5000 used in this paper) use 635 nm, 45 mW laser radiation to stimulate the emission of 400 nm photons, which are detected and recorded in the scanner as a pixel value, known as quantum level (QL). This quantum level must be converted into a PSL value before analysis, according to a formula as given by Fujifilm\(^{29,30}\):

\[
PSL = \left(\frac{R}{100} \right)^2 \times \frac{4000}{S} \times 10^L \left(\frac{0.25}{G-1} - \frac{1}{2} \right),
\]

where \(R\) is the scanning resolution, \(S\) is the scanner sensitivity, \(L\) is the latitude, and \(G\) is the bit depth. In this experiment, these values were \(R = 25\ \mu\text{m}, S = 5000, L = 5,\) and \(G = 16\). It is this PSL value that must
be experimentally calibrated to determine the absolute particle number, as a function of the particles incident energy.

Due to spontaneous decay of the metastable state, the signal intensity on an image plate will fade exponentially over time. This means the PSL signal read on the scanner must be corrected for the time taken between IP irradiation and scanning. Several groups have reported their experimentally determined fading functions for the PSL signal\(^{24,25,29–32}\). The fading curve is characterised by a very fast decay in the first 20–30 minutes after irradiation, which transitions to a slower decay for long wait times. The signal fading must be corrected relative to a given time at which the response function is evaluated. As such, the convention adopted by Refs.\(^{30,33,34}\), will be used for this paper, which used the PSL signal 30 minutes after irradiation, henceforth referred to as \(PSL_{30}\). The function used in this paper to correct the PSL signal measured \(t\) minutes after exposure to \(PSL_{30}\), is\(^{30}\):

\[
PSL_{30} = \left(\frac{30}{t} \right)^{-0.161} PSL(t)
\]

A comparison of the various other fading functions (which each have been converted from their original form to the factor \(PSL(t)/PSL_{30}\) for ease of comparison) is shown in Figure 1. As can be seen, the largest deviations of each function from each other occurs in the early stages after irradiation, thus it is good practice to wait for longer than 30 minutes before scanning the IP, in order to minimise potential errors by comparing results between experiments that could be introduced by the use of a different fading function.

III. PREVIOUS WORKS ON IP RESPONSE TO MULTI-MEV PROTONS

The response of BAS-TR IPs to protons has been shown before by several groups, using different methods. The measured responses from these works is shown in Fig. 2, where each groups data has been fading corrected to the \(PSL_{30}\) convention, using the fading functions specified in each work. The legend in Fig. 2 indicates the facility used in each work, as well as the method used to determine proton number incident on the IPs (in brackets). Bonnet et al.\(^{25}\) and Freeman et al.\(^{26}\) determined the response using conventional accelerators up to an energy of \(\sim 3\) MeV. Rabhi et al.\(^{28}\) used two conventional accelerators: The CPO facility, where they measured the response of protons in the range 80–200 MeV, and the ALTO-Tandem facility, where for the TR branded IP they only reported the measurement for a single energy, \(\sim 2\) MeV. In the work from Bonnet et al., Rutherford back scattering (RBS) off a tantalum target was used to irradiate the IPs, and a silicon diode detector placed at the opposite backscatter angle to the IP. Due to the nature of Rutherford scattering, the two equal and opposite angles should receive the same average proton flux. Uncertainty using this method is dominated by the systematic error in determining the solid angle subtended by the detector from the target. For the other works employing conventional accelerators, the flux incident on the IP was determined with beam charge/current monitors. In contrast, Maničić et al.\(^{24}\) used laser-driven protons (from the LULI facility) up to an energy of 20 MeV. While the IP response for low energies (up to 2 MeV) was obtained by using CR-39 nuclear track detector, for higher energies, they inferred the proton number incident on the IP from dose measurements on RCF. Dose is typically calculated through the use of a function of the film’s optical density, which itself needs to be calibrated. This method of calculating proton number using RCF introduces an additional source of systematic error in the IP response calculation.

In order to determine the IP response, some groups have fit functions to the experimental data, as in Refs.\(^{24,30,31}\), while others\(^{25,38,39}\) have attempted to create models of the response, based on energy deposited in the active layer by the protons, \(E_{Dep}\). The response of IPs to protons was first modelled by Bonnet et al.\(^{25}\), who directly related the response to the deposited energy by the equation:

\[
PSL/p^+ = \alpha \int_0^w \frac{dE}{dz} \exp \left(-\frac{z}{L} \right) dz,
\]

where \(PSL/p^+\) is the PSL per incident proton immediately after exposure, \(\alpha\) is an experimentally measured sensitivity factor, \(w\) is the thickness of the active layer, \(dE/dz\) is the linear energy transfer (LET) of the protons of energy \(E\), \(z\) is the depth into the active layer, and \(L\) is a characteristic absorption length, dependent...
on the type of IP, scanner, and scanning laser parameters, determined to be 44 ± 4 µm for BAS-TR IPs. The exponential factor is included to account for absorption of the PSL photons in the active layer before they escape and are detected. In order to compute the energy lost by the protons in the active layer, simulations were run using the Monte Carlo SRIM software, which is shown on the right-side y axis in Figure 2. The calculated response using the values of a and L from Ref. 35 is shown as the blue dashed line in Fig. 2. A broad agreement with the experimental data can be seen in the energy range investigated (<3 MeV), however when extrapolating to higher energies the response is significantly underestimated compared to the experimental data reported by Rabhi et al.28 using a conventional accelerator. Lelasseux et al.36 built on the work by Bonnet and that of Birks40 to describe a new function, taking into account saturation of the active medium:

\[PSL/p^+ = \alpha \int_0^w \frac{dE}{dz} \exp \left(-\frac{\gamma}{L} \right) dz, \tag{4} \]

where \(k_B \) is a quenching factor, given by Lelasseux as 0.15 Angstrom/eV for BAS-TR IPs. The sensitivity parameter, \(\alpha \), on the other hand, was estimated by fitting Eq. (4) to the available experimental data. However, it is worth noting that differences in fading conventions between different experimental data sets were not taken into account in their attempt to fit the data in Ref. 38, and as a result likely underestimate the value of \(\alpha \) required for fitting. Nishiuchi et al.39 proposed a model based on Eq. (4), but with a second sensitivity term, \(\alpha_2 \), added in the integrand, which accounts for high-LET radiation:

\[PSL/p^+ = \int_0^w \frac{dE}{dz} \left(\alpha \exp \left(-\frac{\gamma}{L} \right) + \alpha_2 \right) dz. \tag{5} \]

For relatively low-LET radiation, such as protons, the value of this second term is expected to be significantly lower than the first term, and thus, the model reduces to Eq. (4).

While there is broad agreement between previous efforts to calibrate BAS-TR IPs both theoretically and experimentally, there still exists some uncertainty in the true response, and different works deviate from one another. First, the experimental data for low energies has a significant (up to factor of 2) variation, which makes the attempt to make a reliable fit by the theoretical models difficult. Secondly, there is a significant gap in experimental data in the 10s of MeV range, while the data points between 5–20 MeV are obtained by a less accurate method and 80–200 MeV were obtained using conventional accelerator rather than laser-driven protons. As a result, a coherent and absolute calibration of the IP response over a broad energy range is missing, which is necessary to both corroborate experimental data and to fine tune parameters of the response models. An absolute calibration of IP response to laser driven protons in the range of energies most relevant to current experiments is obtained by deploying CR-39 in different configurations with the IP, as discussed below.

IV. EXPERIMENTAL SETUP

The data shown in this paper was collected from three experimental campaigns, two at the petawatt target area of the Vulcan laser system, located at the Central Laser Facility in the UK, and the third at the TARANIS laser system, situated in Queen’s University Belfast. The campaigns were primarily focused on laser driven ion acceleration from thin foils, however a limited number of IP calibration shots were performed in each case. The Vulcan laser pulse of 600–900 fs duration and ∼190 J energy on target was focused using an f/3 off-axis parabola, to a spot of ∼5 µm full width at half maximum (FWHM) diameter, after reflection off a plasma mirror. Using these values, a peak on target intensity of \((3–5) \times 10^{20} \) W/cm² was estimated in both campaigns at Vulcan. The pulse was focused at near-normal incidence onto plastic (CH) targets, ranging from 50 nm up to 10 µm in thickness, accelerating the carbon and protons present to high energy. The TARANIS laser system delivered pulses ∼600 fs in duration, at intensities on the order of 10^{19} W/cm², onto...
\(\sim 10 \mu \text{m} \) thick Al targets, producing protons at energies of several MeV. For the IP calibration, Thomson parabola spectrometers, coupled with an IP as the primary particle detector were used. A schematic of the experimental setup at these campaigns is shown in Figure 3(a), and a description of the details of each experiment is listed in Table I, with each experiment assigned a number from 1–3 for referencing later. TPS are spectrometers which use magnetic and electric fields to separate charged particles according to their energy, as well as their charge-mass ratio \((q/m)\). The ions form a parabolic trace along the detector plane, with their \(x\) and \(y\) positions with respect to zero deflection determined by (6) and (7).

\[
y = \frac{q}{mv_z}B_0L_B \left(\frac{L_B}{2} + D_B \right), \tag{6}
\]

\[
x = \frac{q}{mv_z}E_0L_E \left(\frac{L_E}{2} + D_E \right), \tag{7}
\]

where \(q\) is the ion charge, \(m\) is the mass, \(v_z\) is the velocity, \(B_0\) and \(E_0\) are the magnetic and electric field strengths, respectively, and \(L_B\), \(L_E\), \(D_E\), and \(D_B\) are the distances as defined in Figure 3(b). Thus, the vertical distance on the detector above the zero point will determine the energy of the ion, the PSL value of which can be easily extracted. In order to determine the number of protons at that point, CR-39 can be used in conjunction with the IP. CR-39 is a solid state detector that, when etched in a sodium hydroxide (NaOH) bath for a certain time, will display the ion damage tracks that are then visible through a microscope\(^{20,42}\), and can be counted manually or by using image analysis software.

The visibility of the etched pits in CR-39 depends on the LET of the particle entering it, and due to the nature of the Bragg peak that is characteristic of ion stopping in matter, most of the ions kinetic energy is lost at the end of its trajectory. Thus, ion damage tracks in CR-39 are usually only visible if the ion fully stops inside the material. For the 1 mm thick CR-39 used in this work, protons below \(\sim 10\) MeV stop inside the detector. Therefore, for protons of energies below 10 MeV, a slotted piece of CR-39 was placed in front of the IP in experiments 1 and 2, as used in Refs.\(^{22,23,27,30,43}\) and shown in Fig. 3(c). In this case, the PSL values immediately adjacent to the edges of the CR-39 slots could be integrated across the proton trace. The proton pits at the CR-39 edge would then be binned into areas of the same size as the sampling interval on the scanned IP (25 \(\mu\)m), and integrated across the slot edge. This enables a direct comparison between PSL and the number of pits counted at the slot edges, to provide a value of the PSL per incident proton at that energy. This technique has been used in the past successfully for the calibration of low energy (<0.2 MeV) protons\(^{27}\), as well as deuterium\(^{30}\), carbon\(^{27,33}\), titanium\(^{34}\), and gold\(^{44}\) ions.

For the calibration of higher energy protons, it would not be possible to use CR-39 in front of the IP. Therefore, in Experiment 3 CR-39 were used behind the IP with a suitable thickness of iron or copper filter in between, as shown in Fig. 3(d). The filter reduces the energies of the transmitted protons to below 10 MeV, in order for them to stop in the CR-39 and be visible after etching. The range of energies which could be detected at the IP was determined through SRIM simulations.

The minimum and maximum energies shown in Table II determine the energy range of protons which will show up in CR-39 after etching, resulting in a “streak” of pits that aligns with a small section of the proton trace on the IP. The CR-39 was etched in a NaOH solution at a concentration of 6.5 mol/kg at 85°C for up to 80 minutes, and the pits counted on both the front and back surfaces. An image of the streak of proton pits on a CR-39 is shown in Fig. 5 along with the image of the IP from the same
The proton streaks on CR-39 were all binned into approximately equal sized sections, 600–800 μm long and ~350 μm wide (the full trace width). Lateral straggling of the protons while passing through the IP-filter assemblies was determined using SRIM to be ~10 μm at the lowest energies (in the case of the 250 μm Cu filter), to ~90 μm at the highest energy (2500 μm Fe). Therefore the straggling can be considered to be small compared to the size of the bins, as well as the energy resolution of the TPS, which is determined by the TPS geometry and pinhole diameter \(^{45}(250 \text{ μm}).\) Fig. 4 shows the outputs from SRIM for protons passing through an image plate and 1250 μm Cu filter. The lateral straggle of protons that reach the front surface of the CR-39 is measured to be ~70 μm. This value is in line with the measured increase in trace width between the IP and CR-39 pit streak shown in Fig. 5. Knowing the minimum proton energy reaching the front surface of the CR-39, and the maximum energy stopping at the rear surface, one can, using Eqs. (6) and (7), calculate the central energy of each bin in the CR-39, and its corresponding energy bandwidth from the bin width. The PSL signal on the IP was then integrated (after background subtraction) across each energy range calculated for the bins, as shown in Fig. 5(c), and divided by the number of pits, to give the PSL per proton for that energy bin.

TABLE I. Details of the three experiments described in this paper, including the laser system used, peak intensity \((I_0),\) and types of target shot, together with the energy range of protons investigated for the IP calibration and the detector assembly setup in each.

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Laser system</th>
<th>(I_0) (W/cm(^2))</th>
<th>Target</th>
<th>Proton energy range (MeV)</th>
<th>Calibration method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TARANIS</td>
<td>(\sim 10^{19})</td>
<td>10 μm Al</td>
<td>1.5–2.1</td>
<td>Slotted CR-39 + IP</td>
</tr>
<tr>
<td>2</td>
<td>Vulcan</td>
<td>((3 - 5) \times 10^{20})</td>
<td>10 μm CH</td>
<td>3.6–10.6</td>
<td>Slotted CR-39 + IP</td>
</tr>
<tr>
<td>3</td>
<td>Vulcan</td>
<td>((3 - 5) \times 10^{20})</td>
<td>50 nm CH</td>
<td>13.2–40.3</td>
<td>IP + filter + CR-39</td>
</tr>
</tbody>
</table>

TABLE II. Filters used for the calibration of high energy protons, and the lower and upper limits of the proton energies (before filtration) which allow observation of the pits in the CR-39 after etching, as determined through SRIM.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Min Energy</th>
<th>Max Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 μm Cu</td>
<td>13.2</td>
<td>17.6</td>
</tr>
<tr>
<td>500 μm Cu</td>
<td>17.6</td>
<td>21.3</td>
</tr>
<tr>
<td>1250 μm Cu</td>
<td>27.4</td>
<td>30.2</td>
</tr>
<tr>
<td>2500 μm Fe</td>
<td>38.1</td>
<td>40.3</td>
</tr>
</tbody>
</table>

V. EXPERIMENTAL RESULTS

The calculated response of the IP for the high energy protons from Experiment 3 is plotted in Fig. 6, alongside the low energy data obtained in Experiments 1 and 2 using the slotted CR-39. In Figure 6(a), the data is plotted with data from previous works\(^{24–26,28}\) (also shown in Fig. 2). It can be seen that there is a good agreement overall between data sets, with the trends laid out by the other works. In the low energy (few-MeV) range, our data fits best with that of Mančić et al.\(^{24}\) who is the only other group using CR-39, and laser-driven protons. However, at higher energies the data from Mančić shows some large deviations compared to our measured response. As mentioned above, this could be due to the fact that Mančić et al.\(^{24}\) deduced the proton numbers for energies above 2 MeV from dose measurements on RCF, which may have introduced an additional source of systematic errors to the response. The consistency in the trend of our data points over a wide range of energies from 1–40 MeV suggests a more reliable IP response for protons that can be extended to higher energies in line with the data points given by Rabhi et al.\(^{28}\).

One can use the models described by the other groups (Eqs. (3) and (4)), and a least squares fitting to our data to find new values of the sensitivity parameter, \(\alpha.\) From the Bonnet model, Eq. (3), the value of the sensitivity (and associated one standard deviation error) was determined to be \(\alpha = 0.41 \pm 0.01 \text{ PSL/MeV}.\) This is in agreement with the same value determined by Rabhi et al.\(^{28}\) \((\alpha = 0.4 \pm 0.04 \text{ PSL/MeV})\), however differs significantly to what was calculated by Bonnet \((\alpha = 0.247 \pm 0.007 \text{ PSL/MeV})\). This is most likely due to the small energy range investigated by Bonnet, which their model...
fits reasonably well, but deviates from the observed true response at high energies.

From the model described by Lelasseux et al., using their value for $kB = 0.15$ Å/eV, the least squares fitting gave a value of $\alpha = 0.5 \pm 0.01$ PSL/MeV. However, the fitting of this curve did not match well with our lower energy data. In order to improve the accuracy of the model, a least squares fitting was performed while varying both α and kB. This gave a new set of values of the model parameters as $\alpha = 0.44 \pm 0.02$ PSL/MeV, and $kB = 0.04 \pm 0.03$ Å/eV. Our new value of kB is significantly smaller than that originally proposed by Lelasseux, and has a large relative error, which suggests that the contribution of phosphor quenching to the IP response can be lower than originally anticipated. The curves generated by these new values are shown in Fig. 6(b), showing a good agreement between the models and our experimental data.

Using these models require running Monte Carlo simulations to determine proton energy deposition in the active layer. In lieu of this, one may prefer using a best fit function to the data shown in Fig. 6(b), which gives two power laws with different energy limits:

$$ PSL_{30}/p^+ = \begin{cases}
0.151 E_p^{0.6} & (E_p < 1.6 \text{ MeV}) \\
0.284 E_p^{-0.75} & (E_p \geq 1.6 \text{ MeV})
\end{cases} ,$$

where E_p is the proton energy given in MeV. As there are no experimental data for energies below 1.6 MeV (corresponding to the peak in energy deposition in the active layer — see Fig. 2), the response equation was determined by fitting to the data reported by other works (down to 0.5 MeV), shown in Fig. 6(a), while ensuring a smooth transition between the two parts of Equation (8) at 1.6 MeV.

VI. CONCLUSIONS

The response of Fujifilm BAS-TR image plates to laser-driven protons has been absolutely calibrated up to 40 MeV, the range of energies relevant to current research activities using petawatt-class lasers. Proton numbers were determined using CR-39 nuclear track detectors across the entire energy range, using slotted CR-39 placed in front of the IP for low (<10 MeV) energies, and placed behind the IP with various Fe and Cu filters for high energies. The response, which is in broad agreement with previous works, has been described in terms of the existing models and an empirical fitting as a function of the incident proton energy has been deduced. As the BAS-TR brand of IP is a very popular detector employed, for example, in Thomson parabola spectrometers, this calibration will prove useful in determining accurately proton spectra from future high power laser acceleration experiments.
ACKNOWLEDGMENTS

The work has been supported by EPSRC (grant EP/K022415/1, EP/J002550/1-Career Acceleration Fellowship held by S.K., EP/L002221/1, EP/K022415/1, EP/J500094/1, and EP/I029206/1). S.Z. acknowledges support by the Chinese Scholarship Council. The authors also acknowledge support from the staff and the target fabrication group at the Central Laser Facility, and G.N. for operating the TARANIS laser in Queen’s University Belfast.

Target protons

Laser

(a)

(b)

(c)

CR-39

Filter

(d)

zero point

p

+ p

Image plate

CR-39

IP

p+

zero point

IP
Zero point

300 \pm 25μm

350 \pm 50μm