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Abstract—Deep neural networks (DNNs) are shown to be vul-
nerable to adversarial attacks—– carefully crafted additive noise
that undermines DNNs integrity. Previously proposed defenses
against these attacks require substantial overheads, making it
challenging to deploy these solutions in power and computational
resource-constrained devices, such as embedded systems and
the Edge. In this paper, we explore the use of voltage over-
scaling (VOS) as a lightweight defense against adversarial attacks.
Specifically, we exploit the stochastic timing violations of VOS to
implement a moving-target defense for DNNs. Our experimental
results demonstrate that VOS guarantees effective defense against
different attack methods, does not require any software/hardware
modifications, and offers a by-product reduction in power con-
sumption.

Index Terms—Adversarial attacks, machine learning, approx-
imate computing, voltage overscaling

I. INTRODUCTION AND RELATED WORK

In the last few years, an increasing number of deep learning
architectures, such as Convolutional Neural Networks (CNNs),
aka Deep Neural Networks (DNNs), have been deployed to
tackling a wide range of complex real-life problems. This
widespread usage covers multifarious applications: Vision,
robotics, speech recognition, natural language processing, fi-
nancial fraud detection, malware detection, etc. Owing to
their proven performance, CNNs have been deployed even
in safety-critical applications such as autonomous vehicles
[1] and security-sensitive applications such as automatic bank
cheque processing [2]. While CNNs development is progress-
ing rapidly, they are shown vulnerable to adversarial attacks—
small perturbations into the input samples can completely fool
the classifier and generate wrong output labels. The conse-
quence of such misprediction can be dramatic. For example,
in self-driving cars, misclassification of stop sign as yield sign
or speed limit sign can claim life or material damage. Until re-
cently, a number of adversarial attacks have been demonstrated
in real-world scenario [3], [4] that pose an alarming threat to
the safety and security aspect of CNN-powered applications.
We use the terms ‘CNNs’ and ‘DNNs’ interchangeably in
the paper. Furthermore, even machine learning based malware
detectors are vulnerable to adversarial attacks [5]–[9].

In the quest for robust DNNs, several defense techniques
have been proposed in the literature that can be grouped
into four main categories as follows: Adversarial Train-
ing (AT) [10]–[12], Input Preprocessing [13]–[15], Gradient

Masking (GM) [16], and Randomization-based Defenses [17]–
[20]. AT proposed to retrain the models with adversarial inputs
in order to detect similar attacks during test time; the technique
works perfectly for known attacks; however, it fails to detect
unknown types of attacks. AT also comes with other challenges
such as generating adversarial samples are compute-intensive
and retraining the models (with adversarial inputs) is time-
intensive, making the solution inefficient. Input preprocessing
based defenses perform some transformations to the inputs
that, in essence, nullify the effect of adversarial perturbations;
the technique functions in a limited settings but is highly
susceptible to white-box attacks where attackers have access
to model’s gradients and the preprocessing units. GM is model
regularization based defense which requires retraining, and
more importantly, the defense has been undermined by the
renowned Carlini & Wagner attack [21]. Randomization based
defenses introduce random noise in the entire DNNs [19]
or in some select layers [17], which stochastically changes
the classifier’s decision boundary, making it a moving target
defense. Such techniques have shown theoretical guarantee
of robustness, but the existing solutions are not implemented
at scale (e.g., Raghunathan et al. [20] evaluate only a tiny
neural network.), nor did they provide any practical source
of random noise. It is important to note that our proposed
defense is closest to the randomization based technique, where
we overcome the aforementioned limitations.

Inspired by [17], [18], our work aims at injecting noise into
the CNN computations to defend against adversarial attacks.
Instead of theoretical noise distributions that are impractical,
we propose a new paradigm in which we leverage stochastic,
hardware-induced noise to enhance DNNs robustness. Specif-
ically, we unprecedentedly propose to use VOS as a defense
against adversarial attacks. VOS is originally explored in the
approximate computing paradigm to reduce computational
complexity and power consumption at the expense of accuracy.
This paper leverages it for a totally new objective, namely
DNNs robustness, where power saving is a by-product gain.
Our defense exploits the stochastic noise injected by VOS-
induced random timing violations. This stochastic behavior
makes the technique a practical moving-target defense; making
the gradient direction estimation very challenging for an
adversary, even with full knowledge of the target model and
the defense mechanism. The contributions of this paper are



summarized as follows.
1) We perform the characterization of VOS-induced com-

putational faults properties on a real CPU. Our results
show that VOS faults are stochastic (i.e., time-variant) and
controllable.

2) We unprecedentedly leverage VOS as a robustness en-
hancement technique for DNNs; we show that hardware-
induced noise can be utilized for securing DNNs in a
practical, easy-to-deploy, and power-efficient manner.

3) With no retraining overhead and by-product gain in power
savings, our method shows promising results under strong
white-box and black-box attack settings.

4) For research reproducibility and to encourage the commu-
nity to further explore this technique, our code is open 1.

II. BACKGROUND

A. Adversarial Attacks

Adversarial examples consist of small perturbations added
to the inputs that can completely fool the victim models.
Considering an example in computer vision, adversarial inputs
are generated by adding visually imperceptible noise to the
original image, which can mislead the classifier and produce
wrong labels. To state it formally, let h(·) be a DNN model
used for m−ary image classification, x an original image as-
signed to ground truth class c = h(x), where c ∈ {1, 2, ...,m}.
The adversarial attack’s goal is to add low amplitude noise to
x to generate a perturbed image x′ that has a different label
from c. The adversarial example can be formally expressed by
the following constrained optimization [22]:

x′ = arg min
x′

D(x, x′), (1)

s.t. c′ = h(x′), c′ ∈ {1, 2, ...,m} \ {c},
D(x, x′) ≤ ε,

Where, ε is the noise budget and D is the visual difference
between x and x′, which is measured using `p − norm as
follows:

D(x, x′) =

(
n∑
i=1

|∆xi|p
) 1

p

; p ∈ {0, 2,∞} (2)

Where, `0 counts the number of pixels with different values
at corresponding locations, `2 measures the Euclidean distance
and `∞ is the Chebyshev distance measuring the maximum
difference for all pixels at corresponding locations. Given a
set of N original images {x1, x2, ..., xN} and their respective
perturbed images {x′1, x′2, ..., x′N}, the success rate of adver-
sarial attack is measured as follows:

Attack success rate =
1

N

N∑
i=1

1
[
h (x′i) 6= h (xi)

]
(3)

1https://github.com/CAMLsec/DNNs-Undervolting

B. VOS Basics

To cope with the end of Moore’s Law and performance
requirements of emerging applications, VOS has been used
in error tolerant applications; it consists of reducing supply
voltage without adapting the operating frequency. In this
section, we discuss the impact of VOS on hardware behavior.

While transistor size shrinks with the new generation
technologies, the effect of process variation becomes more
critical from a digital design perspective. In fact, lower de-
vice dimensions sharpen the circuit sensitivity to variations
such as imperfection of the manufacturing process, random
dopant fluctuation, and variation in the gate oxide thickness.
With reduced transistors dimensions, the standard deviation
of threshold voltage variation (∆Vt) increases since it is
proportional to the square root of the device area [23]:

σ∆Vt
=

A∆Vt√
WL

(4)

where W and L are the width and the length of the device,
respectively, and A∆Vt is characterizing matching parameter
for any given process. This variation in Vt has a direct impact
on the circuit delay, which can be approximated using the
following equation [23]:

dgate ∝
VDD

β (VDD − Vt)α
(5)

where α and β are fitting parameters for a given gate in
a given process. For this reason, in the circuit design phase,
static timing analysis is generally achieved to verify that all
circuit paths meet the timing requirements to produce correct
output regardless of the input combination under given supply
voltage. Scaling down the supply voltage (VDD) from the
nominal operating voltage results in slowing down signals
propagation and thereby creating a timing overhead. If this
process is not accompanied with a corresponding frequency
scaling, timing errors may occur within the circuit results: this
is the case of VOS.

III. CHARACTERIZATION OF VOS-INDUCED FAULTS

After explaining the basis of VOS induces computational
faults (Section II-B), we empirically characterize these faults
on a real CPU. The characterization goal is to understand the
fault model of VOS, and verify if the VOS computational
fault have the properties that qualify it to be used as a
randomization based defense for securing DNNs. In particular,
we are interested to know if the VOS-induced faults are:
(1) stochastic: to obfuscate the classifier behavior, and (2)
controllable: to allow balancing the security and accuracy
trade-offs.

In our experiment, we used an Intel Broadwell processor
(model number i7-5557U) running on Ubuntu 16.04 LTS with
stock Linux v4.15. We used the model specific register (MSR)
to control the voltage of the CPU from software [24]–[26]. In
particular, we dynamically scaled voltage through MSR 0x150

(a 64-bit register) where 3-bit (42-40) plain idx locates the
CPU components to apply voltage, and 11-bit (31-21) offset
indicates the requested voltage scaling offset. Encoding the



TABLE I: Examples of faulted multiplication on i7-5557U at
2.2 GHz. Figures in the table are in Hexadecimal format. Op1
and Op2 are the operands of multiplication. Red color in the
VOS result indicates fault location.

Op1 Op2 Op1 × Op2
VOS result

Op1 × Op2
Golden result

0x59a2f277 0xbee4b58 0x042d709da4ae35e8 0x042d704a14ae35e8

0x59a2f277 0xbee4b58 0x0e2d704a14a205e8 0x042d704a14ae35e8

0x59a2f277 0xbee4b58 0x042d704a141735e8 0x042d704a14ae35e8

0x2d18c998 0x749ffff 0x014844ad40d73668 0x0148b6ad40d73668

0x2d18c998 0x749ffff 0x0148b6ad40dc3668 0x0148b6ad40d73668

0x2d18c998 0x749ffff 0x0148b6ade5d73668 0x0148b6ad40d73668

0xffffffff 0x6c4931e 0x0664931df93b6ae2 0x06c4931df93b6ce2

0xffffffff 0x6c4931e 0x06c493adf93b6ce2 0x06c4931df93b6ce2

0xffffffff 0x6c4931e 0x06c4931d103b6ce2 0x06c4931df93b6ce2

voltage offset (with respect to core’s base operating voltage)
using 11-bit signed integer allows us to achieve a step size
of 1/1024 V (about 1 mV), thus allowing a maximum voltage
offset of ±1 V. We set plain idx to 0 to adjust the voltage
of ‘processor core’ and kept CPU frequency at 2.2 GHz. We
observed that too little reduction in voltage does not produce
any fault but too far reduction results in system freezes or
crashes. Thus, to better understand the nature of the faults, we
reduced voltage by a small step size of 1 mV while repeatedly
executing the same instruction with the same operands until a
fault or system freeze occurs. Below, we will show the analysis
of VOS effect on multiplications as well as other operations.

A. VOS effect on multiplication

To study VOS effect on multiplication, we conducted an
experiment where a multiplication operation with the same
operands is executed multiple times. We repeat this experiment
for different sets of operands. Table I shows some selected
results, i.e., for faulty multiplications, from our experiments.
We noticed that reducing the voltage by -103 mV to -145
mV, depending on inputs, was sufficient to generate faults. In
addition, the sign bit of the output was never flipped; the output
sign bit is a simple XOR operation of the operand’s sign bits,
which is far from the critical path of the multiplier circuit.
Moreover, the fault occurred as one to eight (contiguous) bits
and the 8 least significant bits of the output were never flipped,
mainly due to their small propagation delay. Notice in Table I
(column ‘VOS result’) that the fault locations for the same
operands varied non-deterministically. More interestingly, we
found that the pair of operands generating faults in one run
sometimes generate correct results in another run. Thus, the
nature of VOS-induced faults are practically stochastic.

Although from circuit perspective, under a given voltage,
for the same dopant fluctuation, and thermal condition, the
timing violation should be systematic, the stochastic faults
behavior is because of the critical path being input dependent.
In other words, different sets of operands may lead to different
critical-path lengths for a given operation. In addition, the tem-
perature’s impact on voltage threshold and delay varies with
the voltage [27], [28]. Hence, by considering on-chip thermal

variability, timing violations are stochastically impacted by
temperature.

After empirically observing that the VOS-induced faults
are stochastic, we check whether the faults are controllable.
Therefore, we setup an experiment such that multiplications
are repeatedly executed until a fault occurs. Figure 1 shows the
number of iterations, i.e., multiplications, needed to observe
the first fault for different voltage offsets, i.e, while scaling
the voltage down. The result shows that nominal reduction in
voltage requires higher number of iterations while aggressive
voltage reduction requires fewer number of iterations; the
probability of computational faults decreases while scaling
the voltage up and vice versa. Thus, demonstrating that VOS
induced faults are controllable.
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Fig. 1: Number of multiplications required to observe a
single computational fault vs. necessary voltage offset from
nominal − Vdd on i7-5557U at 2.2 GHz

B. VOS effect on other operations

Likewise multiplication instructions, we conducted the same
experiments on other instructions including addition, subtrac-
tion, bit-wise AND, OR, and Shift operations. However, the
results did not show any faults for these operations while
scaling the voltage down. The reason for not having faulty
results for those operations is that their circuit implementation
is simple, thus, requiring smaller propagation delay compared
to multiplication operations.

IV. THREAT MODEL

In this section, we explain the threat model against which
the robustness of DNN models is evaluated. For this purpose,
we consider two attack scenarios such as Black-box attack and
White-box attack as described below.
Black-box attack. In this setting, we assume the attacker
has access only to the input/output of the victim classifier
(which is our defender classifier) and has no information about
its internal architecture. For this family of attacks, we use
HopSkipJump (HSJ) [29], which is one of the most recent and
powerful black-box attacks. HSJ is a decision-based iterative
attack that does not require the victim model’s gradients.
Instead, it relies on the final output of the target model,
estimates the gradients, and approximates gradient direction
based on the binary information at the decision boundary.
White-box attack. In white-box setting, the attacker has total
access to the victim’s internal model. This includes inputs,
outputs, model architecture, parameters and hyper-parameters,
gradient, etc. Notice that since this attack model does not



consider any constraints on the attacker’s knowledge nor
access, it is more difficult to defend against. The attacker’s
goal is to utilize the knowledge of the internal model of the
victim CNN to systematically create adversarial attacks. For
this setting, we use Carlini & Wagner (C&W ) attack [21]
and Projected gradient descent (PGD) attack [30].
(1) C&W : It is one of the most powerful state-of-the-art
gradient-based adversarial attacks, which generates adversarial
samples based on the following optimization problem:

minimize
δ

‖δ‖2 + c · `(x+ δ) s.t. x+ δ ∈ [0, 1]n

Where ‖δ‖2 is the `2 measure of the smallest perturbation
that can change the model’s prediction output and `(·) is the
loss function, which captures the difference between current
iteration and the objective of the attack as defined below:

`(x) = max(maxi 6=t{Z(x)} − Z(x)t − κ)

Where Z(x) is the logits before applying softmax function,
t is the target label, and κ is the class confidence.
(2) PGD: It is the strongest iterative variant of Fast Gradi-
ent Sign Method (FGSM) attack [10], where the adversarial
example is generated as follows.

xt+1 = PSx(xt + α · sign(∇xLθ(xt, y)))

Where L(·) is the loss function, θ is the set of model
parameters, ∇ is the gradient of loss, PSx

is a projection
operator projecting the input into the feasible region Sx and
α is the amount of added noise in each iteration. Over
the iterations, PGD attack tries to find the perturbation that
essentially maximizes the loss on a given input while keeping
the size of perturbation smaller than the specified amount. We
summarize these attack methods in Table II.

TABLE II: Summary of the used attack methods. Notice that
the strength estimation (out of 5 stars) is based on [31].

Method Category Perturb. Norm Learning Strength

C&W Gradient-based `2, `∞ Iterative *****

PGD Gradient-based `2, `∞ Iterative ****

HSJ Decision-based `2, `∞ Iterative *****

V. PROPOSED APPROACH

In this work, we use hardware-induced noise, specifically
through VOS, to defend DNNs against adversarial attacks. The
rationale behind choosing VOS is as follows:
(i) It injects stochastic behavior: Injecting random noise’s
positive impact on DNNs robustness has been proven theo-
retically in [17], [18]. However, none of the related work has
shown a practical and controllable source of randomness that
does not require high overhead and considerable complexity.
One of the fundamental properties of VOS is that the induced
timing violations are stochastic, as explained in Section III.

We leverage these properties as a natural and easy to deploy
source of random noise inside convolution layers.
(ii) Stochastic noise is controllable: While injected random
noise can be used to improve the robustness of DNNs [17],
[18], if the injected noise can’t be controlled, i.e., bounded,
the noise would drastically decrease the classifier accuracy on
clean input, i.e., not adversarial, as we show later in Figure 9.
Nonetheless, as we showed in Section III, the VOS induced
computational faults are controllable, which enables us to
balance the accuracy and security trade-offs.
(iii) Easy to deploy: VOS deployment does not include any
specific changes to the underlying hardware nor to the running
software, except for varying the supply voltage. It is also
model-agnostic and does not require retraining the model,
nor does it require fine tuning parameters or changing hyper-
parameters. These properties make it highly practical and
represent a drop-in solution, contrasting with prior techniques,
which require high overheads. Moreover, VOS can be used
on DNNs hardware accelerators in System-on-Chips without
impacting other components reliability, especially if they are
not fault-tolerant.
(iv) It reduces energy consumption: The very essence of
VOS is reducing supply voltage without adapting frequency.
It thereby comes with a high energy consumption reduction
because of the super-linear dependence of both dynamic and
leakage power on the supply voltage as follows:

P = αCV 2
DDf + VDDIleakage (6)

Where α is the activity factor, C is the total capacitive load,
f is the frequency, Ileakage is the leakage current, VDD is the
supply voltage, and P is the total power consumption.

To model the impact of VOS on a large-scale system such
as a DNN, we utilized the VOS induced computational faults
characterization results shown in Section III. In particular,
based on the computational fault model generated through
our characterization, stochastic errors will be injected in
multiply-accumulate (MAC) computations. To implement this,
we modify the PyTorch platform to integrate MAC behavior
under a given fault probability, thereby simulating convolution
layers under VOS. We simulate the impact of VOS on CNNs
inference by selecting the corresponding timing error rate to
be injected at runtime.

Terminology. In the remainder of the paper, we call
exact model: a conventional trained CNN model and
approximate model: a model where we apply VOS at
inference.

VI. SECURITY EVALUATION

This section first describes the experimental setup. Subse-
quently, we present the robustness evaluation of the proposed
defense against both black-box and white-box attacks.
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A. Experimental Setup

For all our experiments, we use the open source machine
learning framework PyTorch [32] running on a server, which
comprises Intel Broadwell Xeon E5 processor with 16 cores
and 512 GB RAM.
Attack configurations: We run the `2 and `∞ configuration
of C&W, PGD, and HSJ attacks. We implement these attacks
using Adversarial Robustness Toolbox (ART) [33] in PyTorch.
Benchmark networks: We consider the following networks in
our evaluation: (a) LeNet-5 CNN with MNIST dataset [34],
which is a collection of 70, 000 gray scale images (60,000
for training and 10, 000 for testing). MNIST comprises 10
classes corresponding to 10 digits. The architecture of LeNet-
5 has three convolutions (CONV) layers and two fully con-
nected (FC) layers. (b) AlexNet image classification CNN
with CIFAR-10 dataset [35], which contains a total of 60, 000
color images representing 10 different classes; for each class,
it has 5000 training images and 1000 testing images. AlexNet
consists of five CONV layers and three FC layers. (c) ResNet-
18 with CIFAR-100 [36], which is a deeper CNN architecture
used with more challenging dataset compared to the previous
two CNNs and datasets. ResNet-18 has 17 CONV layers and
one FC layer, and CIFAR-100 is a collection of 60, 000 color
images representing 100 classes.
Exact models: After normalizing the dataset, we train the
exact model of LeNet-5, AlexNet, and ResNet-18 using a
normalized MNIST, CIFAR-10, and CIFAR-100 datasets re-
spectively.
Approximate models: We use the same trained CNNs of the
exact models for their respective approximate models. The
difference is that approximate models are implemented using
controllable stochastic fault injection in the CONV layers. The
error rate is accordingly fixed to the VOS level.
Evaluation framework: For robustness evaluation under
VOS, we elaborate an exploration framework that we outline in
Figure 2. We refer to the exact model and approximate models
as hexact(·) and happrox(·), respectively in Figure 2. Once
the models are trained, we proceed to generating adversarial

attacks, namely C&W, PGD, and HSJ attack, targeting the
exact model and approximate model. These attacks produce
adversarial examples: xadv . It is to be noted that every
VOS level, i.e., fault rate, corresponds to a separate model-
under-test since it has its specific behavior. We generated
adversarial attacks on approximate models for various fault
rates: fr ∈ {10−6, 10−5, 10−4, 10−3}. To accurately report
the experimental results for the approximate models, since
their behaviour is stochastic, we repeat the experiments 10
times and reported the mean and standard deviation. In all
attack variants where the ART toolbox provides the parameter
ε, we vary ε and measure the classification accuracy of the
exact model and approximate models.

B. Resilience against white-box attacks

In this section, we show the security analysis of CNNs under
white-box attacks, particularly, using the powerful C&W and
PGD attacks with `∞ and `2 variants.

Figure 3, shows the classification accuracy of the exact
model and approximate models of the LeNet-5, AlexNet, and
ResNet-18 CNNs under `∞ C&W attack while varying ε.
For LeNet-5 (Figure 3-(a)), the exact model (hexact) yields
very high classification accuracy (around 99%) when ε is
very low (0.01). However, while we increase ε, the exact
model accuracy decreases until it is nearly totally fooled after
ε = 0.4. Most importantly, approximate model fr = 10−4

maintains a high detection accuracy of about 78.06% while
varying ε (even when the exact model is totally fooled, ε =
0.4), which provides considerable robustness. Interestingly,
this observation holds for AlexNet (Figure 3-(b)) and ResNet-
18 (Figure 3-(c)) for approximate model fr = 10−5 as they
maintain a classification accuracy of 77.75% and 68.01%,
respectively.

Figure 4 shows the robustness for `2 C&W; we cannot vary
ε for this attack since the ART toolbox does not provide this
parameter. In particular, the ART toolbox generates adversarial
samples for a fixed epsilon, which totally fools the exact
model of LeNet-5, and the exact model accuracy of AlexNet
and ResNet-18 drops to about 10%. Interestingly, approximate
model fr = 10−5 yields the highest accuracy (with 82.51%
for LeNet-5, 81.09% for AlexNet and 66.04% for ResNet-18)
across all models for `2 C&W.

Again, Figure 5 shows the robustness results against `∞
PGD attack. This is the only attack variant where minimal
VOS-induced faults, i.e., fr = 10−6, achieves the maximum
robustness across all models. Specifically, the approximate
model fr = 10−6 on LeNet-5, AlexNet, and ResNet-18 shows
the robustness of about 94%, 83% and 66%, respectively.

Similarly, Figure 6 shows the robustness against `2 PGD
attack, where approximate model fr = 10−4 achieves the
highest accuracy of about 88% for LeNet-5. For AlexNet and
ResNet-18, approximate model fr = 10−5 performs the best
with about 81% and 67% accuracy, respectively.

Although white-box setting is the strongest attack scenario
since the adversary has access to model gradients, our ap-
proach can guarantee significantly high robustness across all
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Fig. 4: Robustness against `2 C&W attack.
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Fig. 5: Robustness against `∞ PGD attack.

attack variants (from `2 to `∞ of C&W and PGD), across all
models (from shallow to deep), and across all datasets (from
easy to challenging) considered.

C. Resilience against black-box attacks

Unlike white-box attacks, in HSJ black-box attack, the
adversary do not have access to the noise budget. Thus, we
run the HSJ attack with the default configuration, which uses
40 iterations with `2 norm and 100 iterations with `∞ norm.
Figures 7 and 8, shows classification accuracy of the exact
model and approximate models of the LeNet-5, AlexNet, and
ResNet-18 CNNs under `∞ HSJ and `2 HSJ, respectively. For
the exact model, all results (figures) show that they are almost
totally fooled as their detection accuracy is close to zero.
For LeNet-5 (Figures 7-(a) and 8-(a)), approximate model
fr = 10−4 is the most robust, yielding an average of 79.63%
and 81.59% accuracy, respectively. For AlexNet (Figure 7-(b)
and 8-(b)), approximate model fr = 10−5 shows the highest

robustness with 77.69% and 79.58% accuracy, respectively.
For ResNet-18 (Figures 7-(c) and 8-(c)), approximate model
fr = 10−5 shows the highest robustness with 65.04% and
66.32% accuracy, respectively.

An interesting observation is that AlexNet performs the best
at fault rate of 10−5 but LeNet-5 at fault rate of 10−4; this is
because of the fact that we inject faults after each convolution
(CONV) layer, and AlexNet has 5 CONV layers while LeNet-
5 has only 3 CONV layers. Out of 5 CONV layers, AlexNet
receives substantial stochastic noise even for lower fault rates,
while LeNet-5 requires greater fault rates to reach the same
saturation out of 3 CONV layers.
Insight: From the comparison of black-box and white-box
settings, we notice an interesting counter-intuitive property.
In fact, we recorded higher robustness under white-box than
black-box setting. This is counter-intuitive since the former
is theoretically stronger than the latter, at least from the
attacker’s knowledge perspective. We believe that this is due
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to the impact of VOS on the actual gradient. In fact, the
gradient ∇x, which is the derivative of logits with respect to
input, is impacted by the internal computation stochasticity, in
every single attack generation iteration. However, the black-
box does not have access to the internal feature maps and is,
by consequence, less impacted by the internal stochasticity. It
is more impacted by the variations in the output, which appear
more clearly with the higher error rates.

VII. ACCURACY, SECURITY AND POWER TRADE-OFF

When evaluating a defense for DNNs, it is important to
evaluate the baseline accuracy of the protected models (under
benign input) besides their security (under adversarial input)
since there is no point of using a robust model against
adversarial attacks that performs poorly when classifying clean
input (which is the case that you expect most of the time).
Therefore, after evaluating the security aspect of VOS, in this
section, we will study the impact of VOS on the baseline
accuracy of the models. In addition, we will evaluate the
impact of VOS on power consumption.

Baseline accuracy: Figure 9 presents the model baseline
accuracy under different VOS levels, compared to the corre-
sponding exact (unprotected) CNNs. Interestingly, the baseline
accuracy of the approximate models are very comparable
to the accuracy of the exact model when the computational
faults rates are not very aggressive. In contrast, when the
computational faults rates are more aggressive (e.g., fr =
10−3), the baseline accuracy of the approximate models drops
significantly. Nonetheless, by analysing the security results,
the faults rates that achieves the highest robustness resulted in
2.65%, 2.67%, and 2.88% accuracy loss for LeNet-5, AlexNet,
and ResNet-18, respectively. In this case, the accuracy drop
can be seen as the cost for security.

Power savings: An interesting property of using VOS as a
defense is that it naturally offers power savings since we are
reducing the supply voltage. To demonstrate the power sav-
ing advantage, we implement a multiply-accumulate (MAC)
circuit at 45 nm technology with PTM [37] using Keysight
Advanced Design System (ADS) platform and run Monte
Carlo simulations under VOS considering process and thermal
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variation. This allows us to evaluate the computational faults
rate as a function of VOS level. Figure 11 shows the dynamic
power savings corresponding to the multiplier accuracy loss.
The results demonstrated that a considerable power gains come
with down-scaling the supply voltage.
Trade-off: Our results show that a tradeoff between accuracy
and robustness with by-product power savings could be found,
thereby ensuring robust models with low accuracy cost and by-
product power savings. An example of possible “sweet-spots”
that can be found for a CNNs is given in Figure 10 for Alexnet
under HSJ attacks. We could not include all tradeoff results
for all networks due to the space limitation. Nonetheless, the
example shows that a quick exploration can be done for a
given CNN to achieve the highest possible robustness with
the lowest possible accuracy drop.
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Fig. 11: MAC timing error rates and corresponding power
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VIII. RELATED WORK

With the emergence of different adversarial attacks that
target DNNs, researchers proposed several defenses that can

be grouped into the following categories:
Adversarial Training (AT). Goodfellow et al. [10] proposed to
train the model with adversarial samples to harden it against
adversarial attacks. Subsequent related methods combined AT
with other techniques such as cascade adversarial training [11]
and principled training [12]. While AT is efficient on known
attacks, it cannot detect new attack strategies, and generating
adversarial samples (for training) is computation-intensive and
requires additional time for model fitting [38].
Input Preprocessing. Input preprocessing depends on apply-
ing transformations to the input to remove the adversarial
perturbations [13]–[15], [39]. Nonetheless, these defenses are
vulnerable to white-box attack, where the attackers have access
to the gradient, including the preprocessing unit. This is
because of the fact that, given the knowledge of gradients and
transformations, attackers are able to reverse the preprocessing
and thus restore malicious perturbations.
Gradient Masking (GM): GM can be traced back to de-
fensive distillation [16] that uses gradient masking and model
regularization. This technique has been undermined by Carlini
& Wagner attack [21]. In [40], authors proposed to regularize
the gradient input by penalizing variations in the model output
with respect to changes in the input during the training of
differentiable models. Nonetheless, GM requires re-training
and gives a false sense of security, as shown in [41].
Randomization-based defenses. These techniques are the
closest to our work [17]–[20]. Liu et al. [19] suggest to
randomize the entire DNN and predict using an ensemble of
multiple copies of the DNN. Lecuyer et al. [17] also suggest to
add random noise to the first layer of the DNN and estimate the
output by a Monte Carlo simulation. These techniques offer
a bounded theoretical guarantee of robustness. Furthermore,
a concurrent work showed that VOS helps securing malware
detectors against evasion attacks [7], [42]. Finally, Guesmi et
al. [43] demonstrated that data-dependent noise injection can
help the robustness of DNNs against adversarial attacks.

IX. CONCLUSION

This work utilizes, for the first time, VOS to enhance DNNs
security under adversarial attack settings. The randomness
generated by stochastic timing violations is hereby leveraged
as a practical defense mechanism that transforms CNNs into
moving targets. We believe that this finding advances the
state of the art, especially for embedded systems and Edge-
dedicated machine learning applications. In fact, in addition to



its security advantages, our method comes with a by-product
power saving.
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