Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO$_3$-Type Phase of FeTiO$_3$

Published in:
Physical Review Letters

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2009 The American Physical Society

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Multiferroics are materials in which seemingly contradictory ferroic properties, e.g., magnetism and polar order, coexist [1,2]. Magnetic ferroelectrics for which the different ferroic orders couple, either macroscopically through interfacial magnetostriction [3,4] or microscopically via exchange striction [5], may be promising materials for applications in memories, sensors, actuators, and other multifunctional devices. They also offer a rich opportunity to study fundamental aspects of spin-lattice coupling. In the case of bulk materials, several neutron diffraction studies point to a spiral magnetic state as an essential ingredient for coupling between magnetism and ferroelectricity [5–7]. Phenomenological [8] as well as first-principles explanations [9] of the connection between ferroelectricity and weak ferromagnetism below ~120 K. These results validate Fennie’s predicted coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

DOI: 10.1103/PhysRevLett.103.047601

PACS numbers: 77.84.−s, 75.30.Et, 77.80.−e, 81.40.Vw
The conversion of light at a frequency optical second harmonic generation (SHG), which involves the 11-BM-B beam line at the APS. The SXRD data were collected at 298 K on x-ray diffraction (SXRD) data were refined with the Rietveld method using the published crystal structure of FeTiO₃-II [16] as a starting point. Details can be found in the supplementary material [17].

We have explored the polar properties of FeTiO₃-II using piezoresponse force microscopy (PFM) and optical second harmonic generation (SHG): both techniques indicate that FeTiO₃-II is ferroelectric at room temperature. We note that dielectric tangent losses of ~1.18 (1 MHz) at room temperature prevented direct electrical polarization hysteresis measurements. At 100 K, the losses reduce to ~0.027 at 1 MHz, but saturated loops could not be obtained indicating that the coercive field exceeds the ±15 kV/cm we were able to apply.

Out-of-plane PFM imaging has been used to confirm the detailed ferroelectric domain configuration at the nanoscale [18,19]. The amplitude images in Fig. 1(b) show the varying degrees of alignment of polarization vectors to the surface normal in each domain, and reveal the various distributions of polarization vectors. The phase images [Fig. 1(c)] sample the direction of polarization vectors showing the expected mixture of up (dark contrast) and down (bright contrast) polar domains.

A stationary-tip piezoresponse hysteresis loop obtained by applying 0.5Vrms to the tip while sweeping the dc voltage from −10 V to 10 V to the bottom electrode with frequency of 41.7 mHz is shown in Fig. 1(d). Although strong imprint of the loop, which could be due to the strong bias field created by unswitched polarization beneath the grain of interest, is apparent along both the electric field and piezoelectric coefficient axes, this measurement is sufficient to demonstrate a reversible polar response and therefore ferroelectricity. It is important to note that spatial variation of electromechanical properties was observed. This indicates that these samples are not fully homogeneous, which is not unexpected for this stage of synthesis development.

Ferroelectricity is further established in FeTiO₃-II via optical second harmonic generation (SHG), which involves the conversion of light at a frequency \(\omega \) (electric field \(E^\omega \)) into an optical signal at a frequency \(2\omega \) by a nonlinear medium through the creation of a nonlinear polarization \(P_{2\omega}^{\omega} = d_{ijk} E_{i}^{\omega} E_{j}^{\omega} E_{k}^{\omega} \), where \(d_{ijk} \) represents the nonlinear optical tensor coefficients (not to be confused with the piezoelectric tensor). Optical SHG mapping was performed with a fundamental wave generated from a tunable Ti:sapphire laser with 65-fs pulses of wavelength 800 nm incident normal to the sample surface. Two-dimensional mapping of the signal was done using a WITec Alpha 300 S confocal microscope.

While the stabilized LiNbO₃ phase of FeTiO₃ shows a strong SHG contrast [Fig. 2(a)], no signal was observable in the ilmenite phase [Fig. 2(b)]. These results confirm that the high-pressure phase is polar while the ilmenite phase is nonpolar. The spatial variation of the SHG signal shown in Fig. 2(a) can arise from differently oriented polycrystallites as well as multidomain structure. The SHG hysteresis loops at different spots on the sample were measured using electrodes applied on opposite edges of the sample while probing the top surface. A representative measurement is shown in Fig. 2(c), and has the “butterfly” shape characteristic of the response of a ferroelectric. We reasonably exclude effects such as electric-field induced SHG (EFISH) as insignificant, since no such effects are seen in the compositionally similar Ilmenite phase under an electric field. The corresponding polarization hysteresis loop shown in Fig. 2(c) can be derived from the SHG intensity vs electric-field data as follows: the SHG intensity is proportional to the fourth order nonlinear optical susceptibility tensor in the paraelectric phase. Though points 1 and 3 in Fig. 2(c) of the butterfly loop correspond to the field axis crossings of the polarization hysteresis loops, the SHG intensity is not exactly zero at these minima, due to an incomplete cross cancellation of the SHG intensity between antiparallel domains in the area of the sample being probed. Thus, in going from the SHG intensity to the switchable polarization loops, we first subtract a baseline intensity corresponding to a linear extrapolation between two minima (1 and 3), followed by taking the square root of the intensity, and finally switching the sign of the result only for the segment of the butterfly loop 1-2-3 in Fig. 2(c). This yields a polarization hysteresis loop that is proportional to the net switchable polarization.
within the probe region, and clearly confirms the presence of ferroelectricity at room temperature. Additionally, the SHG intensity was observed down to 5 K, indicating that the FeTiO$_3$-II is polar in the low temperature regime. Thus switchability has been clearly established, the critical proof for ferroelectricity given the polar crystal structure. The magnitude of saturated polarization remains to be determined.

The dc SQUID magnetization data measured in 1 kOe (see supplementary material [17]) yield a linear $\chi^{-1} \propto T$ for $150 \, K < T < 250 \, K$. The extracted $p_{\text{eff}} = 5.6 \mu_B$/Fe is consistent with that reported for ambient-pressure ilmenite ($p_{\text{eff}} = 5.62 \mu_B$/Fe [20]). A measured $\theta_W = -248 \, K$ agrees well with the first-principles predicted value of $-305 \, K$ [21]. We note that θ_W and T_N for ilmenite are 23 K and 55 K, respectively [22], demonstrating a substantially modified magnetic exchange among Fe$^{2+}$ ions in the high pressure phase.

Figure 3(a) compares the ac magnetic susceptibility of an ilmenite sample to that of FeTiO$_3$-II. The antiferromagnetic transition of ilmenite at $\sim 55 \, K$ is replaced by a sharp cusp at $T = 110 \, K$. We also find a clear anomaly in the heat capacity [Fig. 3(b)] near this temperature. This thermodynamic signature—combined with a lack of frequency dependence in the 1–10 kHz range—demonstrate that below 110 K FeTiO$_3$-II is a long-range ordered antiferromagnet, in agreement with the theoretical prediction [14]. Figure 3(c) shows isothermal magnetization measured at 105 K, just below T_N. A clear hysteresis is observed in the data, indicative of a WFM component superimposed on the antiferromagnetic background. We note that $M(H)$ measured above 120 K shows no hysteresis [Fig. 3(c), top left inset], demonstrating that the appearance of WFM is linked to the onset of the antiferromagnetic (AFM) state. A small curvature observed below $\sim 1 \, kOe$ [Fig. 3(c), top left inset] is seen in the range $5 \, K \leq T \leq 300 \, K$ and may reflect an extremely low concentration of a magnetic impurity such as Fe (found at $\sim 1\%$ level by XRD) or ferrous oxides in quantities undetectable to XRD. In the bottom right inset of Fig. 3(c) we have subtracted the high field linear part of $M(H)$ to estimate the field dependence of the ferromagnetic (FM) component alone. This analysis shows a symmetric hysteresis loop, saturating by 30 kOe at 0.008 μ_B/Fe. There are two possible origins for the intrinsic WFM: (1) phase separation into discrete FM and AFM regions in the sample, as has been proposed both theoretically [23] and experimentally [24] for several doped transition metal oxides, or (2) a canting of the Fe spins away from 180°. The former scenario is unlikely based on the coincident appearance of both FM and AFM components and the lack of frequency dependence in the ac susceptibility, leading us to favor the canted state as the origin of WFM.

Several facts argue that the weak ferromagnetic signal is intrinsic to the FeTiO$_3$-II phase (see supplementary materi-
ficiently large magnetic field will rotate \mathbf{M} only satisfy within each polar domain, as each magnetic domain need does not fully constrain the various magnetic domains (ignoring higher order single-ion anisotropy), this coupling according to Ref. [14] the magnetization vector, \mathbf{M}, of each magnetic domain within a given polar domain will lie perpendicular to the polar vector \mathbf{P}. However, in $\mathbf{H} = 0$ (or ignoring higher order single-ion anisotropy), this coupling does not fully constrain the various magnetic domains within each polar domain, as each magnetic domain need only satisfy $\mathbf{P} \cdot \mathbf{M} = 0$ individually. Application of a sufficiently large magnetic field will rotate \mathbf{M} about \mathbf{P} to maximize $\mathbf{M} \cdot \mathbf{H}$ subject to this constraint, orienting \mathbf{P}, \mathbf{H}, and \mathbf{M} coplanar within that polar domain. In this case, the projection of \mathbf{M} onto \mathbf{H} is $M_H = M \sin \theta$, where θ is the polar angle between \mathbf{P} and \mathbf{H}. Averaging over θ, accounting for $T/T_C \sim 0.9$ and using the extracted estimate of $M_H = 0.008 \mu_B/\text{Fe}$ yields $M_S = 0.04 \mu_B/\text{Fe}$, in excellent agreement with the value $0.03 \mu_B/\text{Fe}$ calculated in Ref. [14].

In summary, we have prepared the LiNbO$_3$ polymorph of ilmenite, FeTiO$_3$-II, at high pressure and found that it is both ferroelectric and weakly ferromagnetic, in agreement with the first-principles calculations of [14]. Although not offering definitive proof that the polarization is causal for the WFM, our results validate this rare weak-ferromagnetic and ferroelectric state predicted in Ref. [14], which offers a strong symmetry argument and direct first-principles calculations that this spin canting can only arise due to the presence of the polar lattice distortion. For definitive proof of this effect, it remains to demonstrate explicitly using aligned single crystals that the magnetic and polar domains can be switched in concert.

Work at Argonne and use of the Advanced Photon Source and the Center for Nanoscale Materials is supported by the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357. Portions of this work were performed at the GeSoilEnviroCARS, which is supported by the National Science Foundation—Earth Sciences (EAR-0622171) and the Department of Energy—Geosciences (DE-FG01-94ER14466). P.S. and V.G. acknowledge support from the National Science Foundation Grants No. DMR-0820404, No. DMR-0507146, and No. DMR-0512165. C.J.F. acknowledges support from the Cornell Center for Materials Research with funding from the National Science Foundation (cooperative agreement DMR 0520404).

Present address: Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

[17] See EPAPS Document No. E-PRLTAA-103-046931 for supplementary data including dc susceptibility, heat capacity, additional magnetic and piezoforce microscopy data as well as detailed crystallographic refinements. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[25] While large magnetic fields could in principle rotate the polar domains due to the coupling of \mathbf{P} to \mathbf{M}, it is likely that the spin-flop field of the antiferromagnet would be reached first.