Induction of the inflammatory regulator A20 by gibberellic acid in airway epithelial cells

Published in:
British Journal of Pharmacology

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015, The Authors

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:11. Jan. 2020
DATA SUPPLEMENT

INDUCTION OF THE INFLAMMATORY REGULATOR A20 BY GIBBERELLIC ACID IN AIRWAY EPITHELIAL CELLS

J A Reihill1*, B Malcomson1*, A Bertelsen1, S Cheung1, A Czerwiec1, R Barsden1, J S Elborn1, H Dürkop2, B Hirsch3, M Ennis1, C Kelly4* and B C Schock1*.

1Centre for Infection and Immunity, Queen’s University of Belfast, Belfast, BT9 7AE, UK
2Institute für Pathodiagnostik, 12099 Berlin, Germany
3Charité-University, Institute of Pathology, 12200 Berlin, Germany
4Northern Ireland Centre for Stratified Medicine, University of Ulster, Londonderry, BT47 6SB, UK

*Both junior and senior authors contributed equally to this work

$Corresponding author contact details:
Address: Centre for Infection and Immunity, Queen’s University of Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, UK, BT9 7AE.
Phone: +44 (0) 28 9097 5876
Fax: +44 (0) 28 90 972671
Email: b.schock@qub.ac.uk

Key Words: A20 protein; NF-kappaB; Gibberellic Acid, Airway epithelial cells; Inflammation.
EXPERIMENTAL PROCEDURES

Quantitative real time qPCR

Primers were designed using gene accession numbers and Primer3 open-source PCR primer design software and obtained from Invitrogen Ltd. (Paisley, UK). Primer sequences are given in Table S1.

Table S1: PCR primer sequences.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession Number</th>
<th>Sequence</th>
</tr>
</thead>
</table>
| Beta-actin | NM_001101.3 | 5’ctctttcagccttctctcct 3’
| | | 3’agcacgtggttggcgtacacg 5’ |
| A20 | NM_006290 | 5’gagacgcaatggctgtaa 3’
| | | 3’tccagttgtgtatcctggtacat 5’ |
| p65 | NM_021975 | 5’ctctggagccagtacgatc 3’
| | | 3’cactgtcacctggaagcaga 5’ |
| TLR4 | NM_003266.3 | 5’tggacaatttgctagaggg 3’
| | | 3’gatccacccatctggtct 5’ |
SUPPLEMENTARY RESULTS

Cell Proliferation

[Graph showing cell proliferation with GA3 concentrations]

Figure S1: GA3 does not induce cellular proliferation. 16HBE14o- cells were incubated with GA3 (0-300 µM) for 72h and cell proliferation was determined in using the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, UK) according to the manufacturer’s recommendations. No change in proliferation was observed.

Purity of GA3 preparation - Expression of TLR4 mRNA

[Graph showing TLR4 mRNA expression]

Figure S2: GA3 preparation does not induce TLR4 mRNA expression. To determine if the GA3 preparation used in this study may contain traces of endotoxin, expression of TLR4 and β-actin (housekeeping gene) were assessed by qPCR. LPS alone [10 µg/ml] significantly increased TLR4 mRNA expression in a time dependent manner (p<0.01 LPS 1h vs. LPS 24h, Kruskal Wallis with Dunn’s post hoc test, n=5), but exposure of cells to GA3 [30 µM] did not induce TLR4.