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ABSTRACT
Transmission spectroscopy, which consists of measuring the wavelength-dependent absorp-
tion of starlight by a planet’s atmosphere during a transit, is a powerful probe of atmospheric
composition. However, the expected signal is typically orders of magnitude smaller than
instrumental systematics and the results are crucially dependent on the treatment of the lat-
ter. In this paper, we propose a new method to infer transit parameters in the presence of
systematic noise using Gaussian processes, a technique widely used in the machine learn-
ing community for Bayesian regression and classification problems. Our method makes use
of auxiliary information about the state of the instrument, but does so in a non-parametric
manner, without imposing a specific dependence of the systematics on the instrumental pa-
rameters, and naturally allows for the correlated nature of the noise. We give an example
application of the method to archival NICMOS transmission spectroscopy of the hot Jupiter
HD 189733, which goes some way towards reconciling the controversy surrounding this data
set in the literature. Finally, we provide an appendix giving a general introduction to Gaus-
sian processes for regression, in order to encourage their application to a wider range of
problems.

Key words: methods: data analysis – techniques: spectroscopic – stars: individual:
HD 189733 – planetary systems.

1 IN T RO D U C T I O N

Transiting exoplanetsΩoffer a unique opportunity to study the struc-
tures and atmospheres of planets outside our Solar system. When
a planet passes in front of its parent star as we view it from Earth,
it blocks a proportion of starlight which we can use to measure
the planet’s radius relative to its host. Transmission spectroscopy
exploits the fact that the measured radius of a planet is wavelength
dependent, as the effective size of a planet’s occulting disc depends
on the height in the atmosphere at which the planet becomes opaque
to starlight, which in turn depends on the atomic and molecular
species present in the atmosphere (e.g. Seager & Sasselov 2000;
Brown 2001). Thus measuring planetary transits (i.e. the planet-to-
star radius ratio) as a function of wavelength allows us to probe the
makeup of a planet’s atmosphere.

Observations of transmission spectra, in particular using the
Hubble Space Telescope (HST) and Spitzer Space Telescope (SST)
have provided some of the most detailed observations of exo-
planet atmospheres to date (see e.g. Charbonneau et al. 2002, 2005;

�E-mail: Neale.Gibson@astro.ox.ac.uk

Vidal-Madjar et al. 2003; Deming et al. 2005). However, extract-
ing transmission spectra from these data sets is by no means trivial
and has led to some discussion regarding the interpretation of these
signals. Problems arise because the transmission signal is often
dwarfed by instrumental systematics in the data sets. These are
caused by imperfect observing conditions, such as changes in the
pointing, detector temperature, optics and pixel-to-pixel sensitivity,
and result in correlated noise in the light curves. This has led to
the development of some novel techniques to correct and remove
instrumental systematics, usually by modelling them as a determin-
istic function of auxiliary measurements from the data set (see e.g.
Brown et al. 2001; Gilliland & Arribas 2003; Pont et al. 2007).
Often, however, the choice of systematics model will significantly
affect the transmission spectra, and therefore the detection of atmo-
spheric species. Attempting to develop a more general and robust
framework to infer transit parameters in the presence of instrumen-
tal systematics and correlated noise provides the motivation for this
work.

The problem of correlated noise for observations of transiting
exoplanets was first raised by Pont et al. (2006), who provided
methods to estimate its effects on time-series analysis, and take it
into account when inferring physical properties of exoplanets from
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such data sets. Indeed, the problems associated with systematics
appear in many different areas of exoplanet observations, including
transit timing analysis (e.g. Gibson et al. 2009) and radial veloc-
ity measurements (e.g. Pont, Aigrain & Zucker 2011). Notably,
Carter & Winn (2009) developed a fast and powerful wavelet-based
method to model and remove time-correlated noise from transit
light curves, without the need for additional inputs. Often, however,
we have auxiliary information from the data, such as measurements
of pointing drifts or changes in the detector and optical conditions,
thought to be the cause of the instrumental systematics. This addi-
tional information should ideally be used to model systematic trends
if available.

Instrumental systematics have proved to be particularly problem-
atic for HST/NICMOS observations of transmission spectra (e.g.
Swain, Vasisht & Tinetti 2008; Pont et al. 2009; Gibson, Pont &
Aigrain 2011). Swain et al. (2008, hereafter SVT08) observed and
analysed the transmission spectra of HD 189733b and interpreted
the results as evidence for CH4 and H2O. Following previous HST
analyses, the instrumental systematics in the light curves were mod-
elled as a linear function of ‘optical state parameters’. The optical
state parameters are simply auxiliary measurements made directly
from the spectra, such as the position, width and angle of the spec-
tral trace, or other parameters reflecting the state of the detector and
optics, such as the temperature and satellite orbital phase. Gibson
et al. (2011, hereafter GPA11), reviewed the evidence for molecular
species in this data set using similar methods to model the sys-
tematics. This study concluded that the transmission spectrum (and
hence the detection of molecules) was too dependent not only on
the functional form of the model, but also on the choice of which
parameters to include. However, this was a rather unsatisfactory
conclusion, as it did not provide an alternative method to determine
the transmission spectrum, and we have since searched for more
sophisticated techniques which can provide a robust interpretation
of these data sets. This paper introduces the use of Gaussian process
(GP) models to address this problem.

GP models are widely used in the machine learning community
(Bishop 2006; Rasmussen & Williams 2006) for Bayesian regres-
sion and classification problems, and have recently been adopted in
other areas of astrophysics (e.g. Way & Srivastava 2006; Mahabal
et al. 2008; Way et al. 2009). Rather than imposing a deterministic
model, GPs define a distribution over function space. This allows
the instrumental systematics to be modelled in a non-parametric
way. Using GPs, we can then marginalize out our ignorance of
the systematics model and determine the posterior distribution of
the parameters of interest, in this case the planet-to-star radius ra-
tio. To put it another way, the form of the systematics model is
inferred from the data themselves and does not have to be set a
priori. As GPs are a Bayesian technique, they also automatically
avoid the problem of overfitting. As we shall see later, through a
sensible choice of prior distributions on our input variables, we
may also determine which of the input variables are relevant to our
data set.

This paper describes a GP model for inferring transit parameters
in the presence of instrumental systematics and correlated noise,
when additional parameters are measured from the data such as the
optical state parameters mentioned above, but it can easily be gener-
alized to time-correlated noise in the absence of such measurements.
We provide a description of the GP model in Section 2, and its ap-
plication to NICMOS transmission spectroscopy of HD 189733 in
Section 3, followed by our conclusions in Section 4. We also pro-
vide an appendix giving a brief introduction to GPs with simple
regression examples.

2 G AU SSI AN PROCESSES FOR
TRANSMI SSI ON SPECTROSCOPY

A GP is a non-parametric method for regression, used extensively
for regression and classification problems in the machine learning
community. A GP is defined as a collection of random variables,
any finite number of which have a joint Gaussian distribution. A
brief introduction to GPs is provided in the appendix, along with
references for further reading.

Here, we use a GP to specify a non-parametric model of the
instrumental systematics for a transit observation, along with a de-
terministic transit model to infer the transit parameters. We begin
by defining the transmission spectroscopy data set, and briefly re-
stating the ‘standard’ linear model used in previous analyses, before
introducing our GP model.

2.1 Transmission spectroscopy data sets

Reduced transmission spectroscopy data sets consist of multi-
ple transit light curves as a function of time. Here, we consider
each wavelength channel independently and store the N flux mea-
surements in the vector f = (f1, . . . , fN )T observed at time
t = (t1, . . . , tN )T . Often, additional parameters (or optical state
parameters) are measured which describe the behaviour of the
instrument as a function of time. These are given by the vec-
tor xn = (xn,1, . . . , xn,K )T at time n, where K is the number of
additional parameters. These are collected in the N × K matrix
X = (x1, . . . , xN )T , and hereafter are called the input parameters.
As each light curve is treated independently, our model can easily
be extended to single passband photometric transit observations,
using additional measured inputs, or simply using time as the only
input in order to specify time-correlated noise.

2.2 Linear baseline model

Often, the baseline flux, which is how the light curve would be-
have in the absence of a transit due to instrumental systematics, is
modelled as a linear combination of the input parameters:

f = Xβ + ε,

where β = (β1, . . . , βK )T is a vector containing the coefficients
of each input parameter and ε = (ε1, . . . , εN )T are the residuals,
assumed to be independent Gaussian noise. The best-fitting coeffi-
cients are then found by linear least-squares for the out-of-transit
data, given by

β̂ = (XT X)−1XT f .

The baseline flux is constructed for all data points using the best-
fitting coefficients, and the transit light curve is divided through
by the baseline model to remove the instrumental systematics. The
‘decorrelated’ light curve is then fitted with a transit model to deter-
mine the parameters of interest, using varying methods to propagate
the uncertainties in the systematics model.

2.3 Gaussian process model

Rather than imposing a simple, deterministic function on the instru-
mental model, we model each wavelength channel as a GP with a
transit mean function:

f (t, x) ∼ GP (T (t, φ), �(x, θ )) .
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Here, T is the transit function depending on t and the transit param-
eters φ, modelled using the analytic equations of Mandel & Agol
(2002). � is the covariance matrix, which is a function of x and
parameters θ , referred to as hyperparameters of the GP.1 The defi-
nition of a GP means that the joint probability distribution for the
finite set of observations f is a multivariate Gaussian distributed
about a transit function T , with covariance �, given by

p( f |X, θ , φ) = N (T (t, φ), �(X, θ )) . (1)

The instrumental systematics and noise are specified fully by the
covariance matrix, which in turn is specified by a covariance func-
tion or kernel. As the instrumental systematics are a function of the
input parameters, we adopt the kernel:

�nm = k(xn, xm) = ξ exp

[
−

K∑
i=1

ηi(xn,i − xm,i)
2

]
+ δnmσ 2.

This returns a scalar covariance for each pair of inputs, defining
each element of the covariance matrix, �nm. ξ is a hyperparameter
that specifies the maximum covariance and η = (η1, . . . , ηK )T are
the inverse-scale parameters for each input vector. To incorporate
white noise, we add a variance term σ 2 to the diagonal of the covari-
ance matrix, where δ is the Kronecker delta function. We hereafter
use the notation θ = (ξ, ηT , σ 2)T to represent the covariance hy-
perparameter vector.

The interpretation of this kernel is straightforward; data points
that are nearby each other in input space are highly correlated, and
data points that are far from each other in input space are relatively
uncorrelated. This kernel therefore describes a smooth function of
the input parameters, with the addition of white noise. The length-
scales determine how important each vector in input space is to
determine the ‘closeness’ of two data points. It therefore enables
Automatic Relevance Determination (ARD; Neal 1996, also known
as shrinkage or ridge regression), where the ηi associated with each
input parameter becomes small when the parameter is of little rele-
vance to explain the data set. When ηi → 0 the parameter no longer
influences the covariance matrix, and does not contribute to the
model. In other words, the instrumental systematics model assumes
a similar value when all relevant input parameters are close. This
kernel is suitable for application to transmission spectroscopy data
sets, as squared exponential kernels are suitable for processes with
a dominant length-scale in each input dimension. In transmission
spectroscopy we are interested in instrumental systematics within
a narrow range of time-scales, commensurate with the duration of
the transit, therefore input parameters that vary in these time-scales.
Frequencies higher than the sampling can be treated as white noise
and frequencies lower can be modelled using a simple baseline
function incorporated into the mean function.

There are other kernel functions available that could be used to
model such behaviour, in particular the Matérn class. This can be
seen as a ‘rougher’ generalization of the squared exponential ker-
nel, that results in less smooth functions of the inputs. However,
this kernel would require an extra hyperparameter for each input
parameter, and would likely prohibit marginalization over all the
hyperparameters, and perhaps allow too much freedom in the in-
strument model. As the squared exponential kernel defines a prior
distribution over the smooth function of the inputs, we can further
justify the use of the this kernel by noting that this incorporates all
common functions typically used in instrument models to account

1 Strictly speaking, the transit parameters are also hyperparameters of the
GP, but here we refer to them as the transit parameters for simplicity.

for systematics; for example, models that are linear, quadratic and
higher order functions of the inputs, and thus represent a generaliza-
tion of previous work. Indeed, this kernel reflects our prior beliefs
about the properties of the data. The systematics are dominated
by pixel-to-pixel sensitivity variations, which we would expect to
smoothly vary with the inputs, particularly when we consider that
each wavelength channel is binned over many pixels. None the
less, readers should be aware that there are many covariance ker-
nels available with different properties. The choice of kernel is an
important consideration in applying GP models, but the use of a
non-parametric systematics model allows much greater flexibility
than imposing a deterministic parametric form.

We have now defined a distribution over smooth functions of the
input parameters to model the instrumental systematics. The func-
tional form that describes the baseline function may now be inferred
from the data themselves. As the joint probability of the observa-
tions defined by the GP is multivariate Gaussian (equation 1), the
log marginal likelihood function is written as

logL(r|X, θ , φ) = −1

2
rT 	−1 r − 1

2
log |	| − N

2
log (2π) , (2)

where r is a vector containing the residuals from the mean function:

r = f − T (t, φ).

This defines the likelihood as a function of the mean function param-
eters φ, which determine the underlying transit light curve and the
hyperparameters θ , which determine the behaviour of the baseline
function and the noise.

In practice, it is convenient to place explicit priors on the maxi-
mum covariance hyperparameter and the scalelength hyperparame-
ters (or hyperpriors) to encourage their values towards zero if they
are truly irrelevant to explain the data. In our model we use gamma
hyperpriors (with shape parameter of unity) of the form

p(x) = 1

l
exp (−x/l) ,

for x ≥ 0 and l is the length-scale of the hyperprior. The log pos-
terior distribution of the transit parameters and hyperparameters
is proportional to the sum of the log marginal likelihood and log
hyperpriors; hence, we add the log hyperpriors to equation (2) as
follows:

logP(θ , φ| f ,X) = log L(r|X, θ , φ) − ξ

lξ
−

K∑
i=1

(
ηi

li

)
+ C,

(3)

for ξ , ηi ≥ 0, l are the scalelengths of the hyperpriors, and C rep-
resents additional constant terms. Note that we do not explicitly
add hyperpriors for the transit parameters or variance hyperparam-
eter (implying uniform and improper hyperpriors). The hyperprior
length-scales are set to a large value to ensure that the hyperpri-
ors are non-informative. The challenge is now to infer the transit
parameters and hyperparameters from the posterior probability dis-
tribution.

2.4 Inferring transit parameters

Now we have specified the log posterior as a function of the hy-
perparameters θ and the transit parameters φ; it is straightforward
(in theory) to infer the planet-to-star radius ratio ρ from the data.
For example, to find the maximum posterior solution, the log pos-
terior given by equation (3) is optimized with respect to the transit
parameters and hyperparameters. In a fully Bayesian treatment, we
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should obtain the posterior distribution for each parameter of inter-
est by marginalizing over all the other parameters of our model, i.e.
all other mean-function parameters and hyperparameters. In prac-
tice, this can be done using Monte Carlo Markov Chains (MCMC)
methods, which are widely used in the exoplanet community to
explore the joint posterior probability distribution of multivariate
models (see e.g. Holman et al. 2006; Collier Cameron et al. 2007;
Winn et al. 2008). However, each time the hyperparameters are
changed (at each step in a chain), we must re-calculate the covari-
ance matrix and its inverse in order to evaluate the log posterior.
This scales badly with the length of the input time series, requiring
O(N 3) operations. This often makes a full marginalization over all
hyperparameters intractable for large data sets, and at best slow to
compute. It is therefore worth introducing an approximation known
as type-II maximum likelihood.

Type-II maximum likelihood involves fixing all the hyperparam-
eters at their maximum likelihood values and marginalizing over the
remaining parameters of interest. In this case we will find the maxi-
mum posterior solution, and marginalize over the remaining transit
parameters, although we still refer to this procedure as type-II max-
imum likelihood as in the literature. This is a valid approximation
when the posterior distribution is sharply peaked at its maximum
around the covariance hyperparameters. First, the log posterior func-
tion is optimized with respect to the hyperparameters θ and transit
parameters φ, in order to determine the maximum posterior solu-
tion. This procedure still requires the covariance matrix is inverted,
but much fewer times than for a full marginalization over all param-
eters. The hyperparameters θ are then held fixed at their maximum
posterior values, and to obtain the (approximate) posterior distri-
butions for each parameter of interest, one then marginalizes over
the remaining transit parameters, which does not require a matrix
inversion at each step. One caveat is that we do not know if the
posterior distribution is sharply peaked until we marginalize over
all parameters. Consequently, it is always preferable to marginalize
over all hyperparameters of the GP when possible, and indeed, this
is the final approach used in this work. However, for many sets of
data using the same kernel function, we might confirm the effec-
tiveness of type-II maximum likelihood for a particular subset and
apply it to the remainder. Nevertheless, in many cases fixing the co-
variance hyperparameters might be a better approach than imposing
a deterministic model of the systematics, but such approximations
must be used with caution. In the following section, we apply our
GP model to NICMOS transmission spectroscopy of HD 189733,
and use both type-II maximum likelihood and a full marginalization
over all transit parameters and hyperparameters to obtain the trans-
mission spectrum. Of course, results from the full marginalization
are preferred, but the comparison to type-II maximum likelihood is
a worthwhile exercise.

3 A PPLICATION TO N ICMOS O BSERVATI ONS
O F H D 1 8 9 7 3 3

3.1 The data set

Here we provide a summary of the HST/NICMOS observations
of HD 189733, used as a test case for our GP model. These were
originally analysed by SVT08 and re-analysed by GPA11, and the
data set used in this paper is the same as that used in GPA11.
For a more detailed account of the observations and data reduction
methods, we refer the readers to the aforementioned papers.

A transit of HD 189733 was monitored on 2007 May 25, using
the G206 grism covering the wavelength range 1.4–2.5 μm. As

HD 189733 is not in the continuous viewing zone of the HST , the
light curve was observed over 5 half-orbits, although orbit 1 is
excluded as it shows much larger systematic effects attributed to
spacecraft ‘settling’. The light curves for 18 wavelength channels
were extracted for 638 spectra, along with optical state parameters.
These are the positions of the spectral trace along the dispersion
axis (�X), the average position of the spectral trace along the cross-
dispersion axis (�Y), the angle the spectral trace makes with the
x-axis (ψ) and the average width of the spectral trace (W). The
temperature2 (T) and orbital phase (φH) were also determined for
each image.

In total, our data set consists of a time series of 519 flux mea-
surements (for orbits 2–5 only) in 18 wavelength channels and
time series of six optical state parameters. The 18 light curves and
the optical state parameters are shown in Fig. 1. The light curves
show clear instrumental systematics, and these must be accounted
for when measuring the transit depth at each wavelength. We have
strong reasons to suspect that the systematics in the light curves are
related to the optical state parameters in some way. This is a reason-
able assumption, as changes in the position, angle and width of the
spectrum can obviously have an effect on the flux collected in each
wavelength bin, as can the temperature of the detector. However, it
is not possible to construct a reliable deterministic physical model
which relates these parameters to the baseline flux, as it depends on
each individual pixel’s sensitivity and response to temperature, as
well as other complex changes in the optics.

For each wavelength channel, the GP model outlined in
Section 2 was applied, where f contains the 519 flux mea-
surements and X contain the input parameters, where xn =
(�Xn, �Yn,Wn, ψn, Tn, φn)T . To test that the model was not influ-
enced by the noise of the input parameters, a GP regression model
with zero mean function was fitted to each input parameter using a
squared exponential kernel, with time as the only input. The hyper-
parameters were optimized with respect to the likelihood function,
and the regression is shown by the red lines in Fig. 1. The inference
described in the following two sections was repeated using these
de-noised input parameters.3 We found that this had little influence
on the results, and report the results using the noisy input param-
eters. We also checked that the choice of hyperprior length-scale
had little effect on the results, by setting them to large values, and
repeating the procedure with varying length-scales ensuring that the
transmission spectra were not significantly altered.

3.2 Type-II maximum likelihood

As mentioned in Section 2.4, a useful approximation is Type-II max-
imum likelihood. First, the log posterior is maximized with respect
to the hyperparameters and variable mean-function parameters us-
ing a Nelder–Mead simplex algorithm (see e.g. Press et al. 1992).
The transit model is the same as that used in GPA11, which uses
Mandel & Agol (2002) models calculated assuming quadratic limb
darkening and a circular orbit. All non-variable parameters were
fixed to the values given in Pont et al. (2008), except for the limb
darkening parameters, which were calculated for each wavelength
channel (GPA11; Sing 2010). The only variable mean function

2 No direct measurement of the temperature of the detector exists, rather a
the temperature of the NIC1 mounting cup is used as a proxy measurement,
see GPA11 for details.
3 We did not use the GP smoothed parameters for T , as we were not confident
that the fit reliably represented the underlying structure.

C© 2011 The Authors, MNRAS 419, 2683–2694
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/419/3/2683/1070795 by Q
ueen's U

niversity of Belfast user on 10 January 2023



Gaussian processes for modelling systematics 2687

Figure 1. The ‘raw’ HD 189733 NICMOS data set used as an example for our Gaussian process model. Left: raw light curves of HD 189733 for each of the
18 wavelength channels, from 2.50 µm to 1.48 µm top to bottom. Right: the optical state parameters extracted from the spectra plotted as a time series. These
are used as the input parameters for our GP model. The red lines represent a GP regression on the input parameters used to remove the noise and test how this
affects the GP model.

variable parameters are the planet-to-star radius ratio, and two pa-
rameters that govern a linear baseline model; an out-of-transit flux
foot and (time) gradient Tgrad.

An example of the predictive distributions found using type-II
maximum likelihood is shown in Fig. 2 for four of the wavelength
channels. In this example, only orbits 2, 3 and 5 are used to deter-
mine the parameters and hyperparameters of the GP (or ‘train’ the
GP) and are shown by the red points.4 Orbit 4 (green points) was
not used in the training set. Predictive distributions were calculated
for orbits 2–5, and are shown by the grey regions, which plot the 1σ

and 2σ confidence intervals. The predictive distribution is a good
fit to orbit 4, showing that our GP model is effective at modelling
the instrumental systematics. The final systematics model will of
course be even more constrained than in this example, as we use
orbits 2–5 to simultaneously infer parameters of the GP and tran-
sit function, in particular since orbit 4 has the most similar input
parameters to the in-transit orbit (Fig. 1).

Now that all parameters and hyperparameters are optimized with
respect to the posterior distribution, the hyperparameters are held
fixed. This means the inverse covariance matrix and log determi-
nant used to evaluate the log posterior are also fixed and need to
be calculated only once. An MCMC is used to marginalize over
the remaining parameters of interest, in this case the planet-to-star

4 We used the smoothed hyperparameters here for aesthetic purposes. Using
the noisy hyperparameters would simply result in noisier 1 and 2σ limits,
but with similar structure.

radius ratio and the linear baseline coefficients. Our MCMC imple-
mentation is adapted from Gibson et al. (2010), and uses the log
posterior function given by equation (3) as the merit function.

For each of the 18 wavelength channels, four separate chains
of length 20 000 were computed, with the starting parameter set
initialized to the maximum posterior distribution parameters with
small perturbations applied to the variable parameters. During the
burn-in phase (first 20 per cent of each chain), the global and relative
stepsizes are adapted so that ∼25 per cent of proposal parameters
sets are accepted. After burn-in is complete the chains have con-
verged and now sample from the posterior probability distribution.
These samples are used to estimate the marginalized posterior dis-
tributions for the planet-to-star radius ratio. For each wavelength
channel, convergence was confirmed for the four chains by calcu-
lating the Gelman–Rubin (GR) statistic (Gelman & Rubin 1992),
and in all cases it was within 1 per cent of unity, a good sign of
mixing and convergence.

The resulting transmission spectrum consists of the planet-to-star
radius ratio for each wavelength channel and is shown in the left-
hand plot of Fig. 3. The dashed grey line shows the value of ρ for
the ‘white’ light curve (i.e. the light curve given by the sum of all
wavelength channels) reported in GPA11.

3.3 Marginalization over the hyperparameters

Despite the need to invert a matrix at every calculation of the log
likelihood function, it is still feasible to marginalize over all the pa-
rameters and hyperparameters of the GP model for the HD 189733
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Figure 2. Examples of type-II maximum likelihood regression for four light curves of HD 189733. The red points show those data used in the training process
(orbits 2, 3 and 5), and the green points show the remaining data (orbit 4). The predictive distributions are shown by the grey regions, which mark the 1σ and 2σ

confidence intervals. The GP model predictions are consistent with the measured data, indicating that our GP model is an effective model of the instrumental
systematics. In practice all four orbits are used to model the light curve and systematics, and infer the planet-to-star radius ratio, hence the systematics model
will be even better constrained than shown here.

Figure 3. NICMOS transmission spectra of HD 189733 produced from the GP model. The horizontal dashed line represents the planet-to-star radius ratio
determined from the white light curve. Left: using the maximum likelihood type-II approximation (see Section 3.2). Right: obtained by marginalizing over all
other parameters and hyperparameters (see Section 3.3).
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data set using MCMC. The same MCMC routine as described in the
previous section is used, this time allowing all the hyperparameters
of the GP to vary along with the mean function parameters. The
chains were initialized from the maximum posterior values, again
with a small perturbation applied to each variable parameter.

For each wavelength channel, four chains of length 150 000 were
calculated. As each evaluation of the posterior probability required
a matrix inversion, each chain took about ∼2.5 h to run on a stan-
dard desktop computer. In order to run tests in a reasonable time
frame, all 72 chains were run in parallel using the Oxford e-Research
Centre supercomputing cluster. The chains were again checked for
convergence using the GR statistic. For the majority of parameters,
convergence within 1 per cent of unity was achieved. However,
some parameters did not converge as efficiently and the GR statistic

was as much as ∼5 per cent from unity. This can be understood in
terms of the degeneracy between input parameters. Given the inputs
show similar structure, the same overall systematics model may be
described using different combinations of scalelength parameters.
Also, input parameters that have small η values are not strongly
constrained by the data (or priors) and effectively exhibit random
walk behaviour. However, importantly the main parameters of in-
terest ρ did converge for all wavelength channels. Correlation plots
for two of the wavelength channels are shown in Fig. 4.

For each of the wavelength channels, different input parameters
proved to be relevant to describe the instrument model as inferred
from the values of the η parameters. The phase is a consistently
relevant input parameter for the majority of wavelength channels,
and the temperature is not particularly relevant for any channels,

Figure 4. Posterior distributions of the variable transit parameters and hyperparameters from the MCMC chains for two of the wavelength channels, shown in
the lower and upper triangles. The scatter plots show all pairs of parameters plotted after marginalization over all other parameters, and the histograms show
the marginalized posterior distribution of each individual parameter. The different colours represent the four separate MCMC chains. The lower triangle shows
one of the better converged wavelength channels, and the upper one shows one with some poorly converged hyperparameters.
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likely due to the measurement being particularly noisy and only a
proxy measurement. Of course the true temperature of the detector
may still have a significant influence on the light curves, but un-
fortunately this is not available. The other parameters tend to vary
in their influence, in part due to the degeneracy discussed earlier.
SVT08 and GPA11 recognized the angle as the most important input
parameter. This at first might seem contradictory to our results, but
in this case importance was judged on the overall (visual) change in
features of the outputted transmission spectrum. Here we judge it on
the hyperparameter values from the posterior distribution. Indeed,
parameters that are only relevant for a subset of the wavelength
channels may in fact have the greatest impact on any features in the
transmission spectrum.

The resulting transmission spectrum is shown in the right-hand
plot of Fig. 3. Again the dashed line shows the white light curve
planet-to-star radius ratio from GPA11. The spectrum is consistent
with the type-II maximum likelihood results, the main difference
being that the uncertainties are larger. Therefore, in this case it
was important to marginalize over all the hyperparameters to obtain
good estimates of the uncertainties. Given the convergence was not
perfect, we ran the same MCMC procedure several more times.
The transmission spectrum and uncertainties produced were almost
indistinguishable.

This spectrum is also consistent with the results of SVT08 and
GPA11, when using the simple linear basis models. However, the
uncertainties are much larger and do not provide strong evidence
for the molecular features reported in SVT08. The central ‘feature’
in the spectrum at ∼2.1 μm is no longer significant. Bluewards
of ∼1.7 μm the same dip appears, but with lower significance.
We emphasize that if the simple linear basis functions provided a
good explanation for the systematics, our GP model would have
reproduced the same transmission spectrum (and uncertainties),
as the GP marginal likelihood function favours long length-scales
(i.e. slowly varying functions) if they are sufficient to explain the
instrumental systematics. Therefore, we strongly encourage anyone
wishing to carry out comparisons with theoretical models to use the
more conservative, but robust transmission spectrum determined in
the present work using the GP model. Not doing so would entail the
risk of overinterpreting features in the spectrum. These results are
provided in Table 1.

The dip on the left-hand side of the spectrum could indeed be
the result of a drop in molecular absorption in the atmosphere.
However, we warn the reader that this region of the spectrum is
where the flux is lowest, and therefore is susceptible to systematics
from poor background subtraction as discussed in GPA11. This has
the effect of stretching or compressing the transit light curve in the
flux axis, and therefore the dip could be the result of systematics
remaining from the data reduction. This raises an important point;
GP models, or indeed any sophisticated models, can still suffer
from systematic effects not removed from the data sets at the initial
reduction stage. A more detailed interpretation of the HD 189733
spectrum will form the subject of a later paper (Gibson et al., in
preparation) , combined with WFC3 near-infrared observations that
overlap the blue region of the NICMOS spectrum, and will shed
some light on the interpretation of this feature.

4 SU M M A RY A N D D I S C U S S I O N

We have introduced GPs as an alternative to deterministic models
for the modelling and removal of systematics in the presence of
auxiliary input parameters. GPs provide a powerful Bayesian ap-
proach to place distributions over functions. Rather than imposing

Table 1. NICMOS transmission
spectrum of HD 189733 from our
GP model, giving the wavelength,
planet-to-star radius ratio ρ and its
uncertainty �ρ. The wavelengths are
displayed red to blue, so that they
correspond to the plots in Fig. 1.

Wavelength ρ �ρ

(µm)

2.468 0.155 45 0.000 77
2.411 0.155 20 0.000 52
2.353 0.154 55 0.000 44
2.296 0.155 13 0.000 57
2.238 0.155 12 0.000 41
2.181 0.155 04 0.000 51
2.124 0.154 17 0.000 66
2.066 0.155 08 0.000 66
2.009 0.153 93 0.000 36
1.951 0.155 49 0.000 51
1.894 0.155 95 0.000 60
1.837 0.155 13 0.000 53
1.779 0.155 34 0.000 51
1.722 0.154 47 0.000 87
1.665 0.154 29 0.000 64
1.607 0.152 66 0.000 62
1.550 0.153 59 0.000 73
1.492 0.153 67 0.001 18

a parametric model of instrumental systematics, by using GPs, one
can marginalize out their ignorance of the functional form of the
systematics model. GPs allow an arbitrary number of additional
input parameters and a framework to determine which parameters
are important to the analysis.

We demonstrated the application of our GP model to NICMOS
transmission spectroscopy of HD 189733. The transmission spec-
trum is consistent with those found in SVT08 and GPA11 using
simple linear basis functions, although with larger uncertainties.
This is because the linear basis functions are not sufficient to ex-
plain the instrumental systematics, and therefore do not provide
realistic treatment of the uncertainties. Detailed interpretation of
these results will be included in a later paper.

Our GP model may also be used in the absence of auxiliary in-
formation, by using a time dependant covariance kernel to model
time-correlated noise in exoplanet transits. However, due to the con-
siderable computation time required, existing methods, in particular
the wavelet method of Carter & Winn (2009), are considerably faster
where applicable for large transit data sets, and are preferable in the
absence of additional inputs, although limited to regularly sampled
data. Comparing results of both methods for time-correlated noise
will provide useful tests and may form the subject of future work.

Recently, Waldmann (2011) proposed another non-parametric
method for removing systematics from transmission spectroscopy
data sets, based on independent component analysis. This uses a
completely different approach, and searches for common signals
in multiple transit light curves, used to remove the systematics
from the data. These new methods based on non-parametric models
should provide effective new tools to robustly extract signals in
the presence of unknown systematic noise, and the development of
such methods are important to future exoplanet research. It would be
interesting to compare results from our GP model to those using the
approach proposed by Waldmann (2011), as the two methods may
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prove complementary, given that they make different assumptions
about the systematics.

GP models provide a general framework that can be applied to
many different problems in regression, interpolation and prediction
where a deterministic function is not available. The major limita-
tion to applying GP models is that each evaluation of the posterior
probability requires a matrix inversion, which scales badly with the
size of the data set. This is unavoidable for data sets which require
marginalization over function space. This difficulty may be some-
what eased in the near future by using sparse GP methods (e.g.
Quiñonero-Candela & Rasmussen 2005; Walder, Kim & Schölkopf
2008), which approximate the covariance matrix as sparse, or using
utilizing rank-reduction methods for large matrices where appropri-
ate (e.g. Foster et al. 2009; Way et al. 2009), and/or by using GPUs
to vastly speed up matrix inversion (e.g. Volkov & Demmel 2008).
Indeed, ongoing research in this area should open up the application
of GPs to many more astronomical data sets.
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Quiñonero-Candela J., Rasmussen C., 2005, J. Machine Learning Res., 6,
1939

Rasmussen C. E., Williams K. I., 2006, Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA

Seager S., Sasselov D. D., 2000, ApJ, 537, 916
Sing D. K., 2010, A&A, 510, A21
Swain M. R., Vasisht G., Tinetti G., 2008, Nat, 452, 329 (SVT08)
Vidal-Madjar A., Lecavelier des Etangs A., Désert J.-M., Ballester G. E.,
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APPENDI X A : G AU SSI AN PROCESSES
F O R R E G R E S S I O N

Gaussian process (GP) models are extensively used in the machine
learning community for Bayesian inference in non-parametric re-
gression and classification problems. They can be seen as an ex-
tension of kernel regression to probabilistic models. This appendix
aims to give a brief introduction to GPs used for regression prob-
lems. Our explanations are based on the textbooks by Rasmussen
& Williams (2006) and Bishop (2006), where the interested reader
will find more complete and detailed information.

A1 Introducing Gaussian processes

We first define a collection of N observations, consisting of
independent variables xn and observed values yn. Here xn =
(x1,n, . . . , xD,n)T is a D-dimensional input vector and yn is the cor-
responding scalar output.5 We arrange the N inputs into an N × D
matrix X = (x1, . . . , xN )T and the N observed outputs into a vector
y = (y1, . . . , yN )T .

A standard approach is to model data as

y = m(X, φ) + ε,

where m is the mean function with parameter vector φ, and ε repre-
sents independent and identically distributed (i.i.d.) Gaussian noise:

p(ε) = N (0, σ 2I).

Here, N represents a multivariate Gaussian distribution with mean
vector 0 and covariance matrix σ 2I, where σ 2 is the variance of a
single observation and I is the N × N identity matrix. The joint
probability distribution for a set of outputs y is therefore

p( y |X, φ, σ ) = N (m(X, φ), σ 2I).

For example to represent photometric observations of a planetary
transit, y would be the measured flux, typically the input matrix X
contains only time and φ are the transit parameters. Thus, the above
expression is the standard likelihood function often used for transit

5 It is straightforward to extend this model to multidimensional outputs, but
for simplicity we consider only scalars.
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light-curve fitting. This could be extended to include additional
inputs in the matrix X, such as auxiliary data pertaining to the
state of the instrument (e.g. detector temperature) and observing
conditions (e.g. airmass).

Formally, Rasmussen & Williams (2006) define a GP as a collec-
tion of random variables, any finite number of which have a joint
Gaussian distribution. GPs are often written as

y(x) ∼ GP (m(x), �) ,

where � is the covariance matrix, and we have dropped the mean
function parameters from the notation for simplicity. A GP has only
two parameters: the mean and covariance. The parameters of the
mean function and covariance function, φ and θ , respectively, are
the hyperparameters of the GP.

As any finite collection of observations has a joint Gaussian
distribution, the joint probability distribution of y is given by

p( y |X, φ, θ ) = N (m(X), �). (A1)

We can see that assuming an i.i.d. noise model is in fact a special
case of a GP with a diagonal covariance matrix. In a GP model,
each element in the covariance matrix is defined by the kernel or
covariance function which has hyperparameters θ and is given by

�nm = k(xn, xm),

where the kernel maps the input vectors x to a scalar covari-
ance. The specification of a covariance function implies a prob-
ability distribution over functions; thus, a GP can be viewed
as a distribution over functions. To illustrate this we will adopt
a commonly used covariance function, the squared exponential,

given by

k(xn, xm) = θ0 exp

(
−θ1

D∑
i=1

(xi,n − xi,m)2

)
,

where θ0 is the maximum covariance and θ1 is an inverse length-
scale parameter (this becomes more obvious if we write θ1 = 1/2l2

to get an unnormalized Gaussian). As there is only one hyperpa-
rameter governing the length-scale for all dimensions, this is called
an isotropic kernel.

The GP now has a simple interpretation; data points that lie near
each other in input space are highly correlated, and data points
which are distant in input space are relatively uncorrelated. We can
draw samples from the GP by choosing a number of inputs, calculat-
ing the corresponding covariance matrix, and generating a random
Gaussian vector from the multivariate distribution. The top two plots
in Fig. A1 show examples of three vectors drawn at random from a
GP with a one-dimensional input space, with a squared exponential
kernel function and zero mean function. The dark and light grey
shaded areas represent the 1σ and 2σ boundaries of the prior dis-
tribution, respectively. The left-hand plot has hyperparameters {θ0,
θ 1} = {25, 1/8} (l = 2), and the right-hand plot has hyperparame-
ters {θ 0, θ 1} = {25, 2} (l = 0.5). These sample vectors represent
random smooth functions drawn from the prior (specified by the
hyperparameters). The longer inverse length-scale means that the
functions on the right-hand plot vary more quickly.

A GP with a squared exponential kernel function therefore de-
fines a distribution over smoothly varying functions y(x). The θ0

hyperparameter determines the maximum variation of the function,
and the inverse length-scale θ1 determines how quickly varying
the function is; in other words, how far input values need to be

Figure A1. Top: examples of random functions drawn from a GP with a squared exponential covariance kernel. The left- and right-hand plots have
hyperparameters {θ0, θ1} = {25, 2} and {θ0, θ1} = {25, 0.5}, respectively. The dark and light grey shaded areas represent the 1σ and 2σ boundaries
of the distribution. Bottom: the predictive distributions generated after adding some training data and conditioning using the same hyperparameters as
the corresponding plots above, with the addition of a white noise term (σ 2 = 1). The coloured lines are now random vectors drawn from the posterior
distribution.
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apart in order to become uncorrelated. It can be shown that GP
regression with the squared exponential kernel function is equiva-
lent to Bayesian linear regression with an infinite number of basis
functions.6

The mean function of the GP controls the deterministic com-
ponent of the model, whilst the covariance function controls its
stochastic component. Multiple covariance functions can be added
or multiplied together to model multiple stochastic processes (as
they are still valid covariance functions). For example, most GP
models include an i.i.d. component. To incorporate this, we simply
add a term to the diagonal of the covariance matrix. The covariance
function is then given by

k(xn, xm) = θ0 exp

(
−θ1

D∑
i=1

(xi,n − xi,m)2

)
+ δnmσ 2,

where δ is the Kronecker delta function, and σ 2 is a new hyper-
parameter representing the variance of the white noise. Therefore,
a GP with this covariance function now defines a distribution over
smoothly varying functions with the addition of white noise.

The joint probability distribution of the GP given by equa-
tion (A1) is the likelihood of observing y, given the inputs X,
mean function parameters φ and hyperparameters θ . This likeli-
hood is already marginalized over all possible realizations of the
stochastic component that satisfy the covariance matrix (or all pos-
sible functions in the distribution specified by the GP) and hence is
commonly referred to as the marginal likelihood. In this sense, GPs
are intrinsically Bayesian and help to mitigate against the problem
of over-fitting associated with non-Bayesian methods.

A2 Gaussian process regression

Given a set of N observed data points y with corresponding inputs
X (in the machine learning literature known as the training data), we
can use a GP to make predictions for additional input values given
by x� (known as the test data). We want to obtain the predictive
distribution for the output y� conditioned on the training data. Ac-
cording to the prior, the joint probability distribution of the training
outputs y and the test output y� is Gaussian and given by

p

([
y

y�

])
= N

([
m(X)

m(x�)

]
,

[
� k�

kT
� c

])
,

where � is the covariance matrix for the training data points, k� is
the column vector with elements k(xn, x�) for n = (1, . . . , N), and
c is the scalar given by k(x�, x�) + σ 2.

The predictive distribution of y� is then obtained by conditioning
on the observed data points. Using standard results the conditional
joint posterior distribution is another Gaussian:

p (y�| x�, y,X, θ , φ) = N (
ŷ�, σ̂

2
�

)
,

where ŷ� and σ̂ 2
� are the mean and variance of the distribution,

respectively, given by

ŷ� = m(x�) + kT
� �−1 r,

and

σ̂ 2
� = c − kT

� �−1 k�,

6 In practice, we need only to consider the function values for a finite set
of inputs making it possible to work in the infinite space of basis functions.
This is impossible using standard basis function models.

and r = y − m(X) is the vector containing the residuals from the
mean function.

These results may easily be extended to make predictions for N�

test inputs given by X�. If we define K� as the N × N� matrix con-
taining the covariance for all pairs of training inputs and test inputs,
and K�� as the N� × N� covariance matrix of the test inputs, the
distribution is again Gaussian with mean ŷ and covariance matrix
C, given by

ŷ� = m(X�) + KT
� �−1 r,

and

C = K�� − KT
� �−1 K�.

Fig. A1 gives simple examples of GP regression conditioned on
some artificial training data, shown by the red points. The top plots
show the prior probability distribution and random vectors drawn
from it, as described in previous section. The lower plots show
the distribution conditioned on the training data, with the mean
indicated by the thick black line, surrounded by the 1σ and 2σ

predictive distributions. These use the same hyperparameters as the
corresponding plots above, with an additional white noise hyper-
parameter equal to 1. We can think of this process as a weighted
average of the functions generated by the prior, weighted on their
likelihood function, or mathematically, marginalizing over function
space. The predictive distribution therefore becomes narrower as
more of function space is restricted. Note that with the longer length-
scale the distribution is narrowed along most of the x range plotted,
whereas with the shorter length-scale the distribution quickly resorts
to the prior distribution far from any observed data. The plotted dis-
tributions include white noise for the training data, and the three
coloured lines are random functions drawn from the posterior dis-
tribution.7 Clearly, the value of the hyperparameters has a large
impact on the regression; luckily it is possible to infer these from
the training data.

A3 Learning the hyperparameters

GPs are extremely effective for interpolation and prediction, and
indeed this is one of their main applications in the machine learning
community. However, GPs can also be used to infer distributions
of the mean function parameters and/or hyperparameters, either of
which may be the quantities of interest. We consider the marginal
likelihood function from the previous sections:

L(r|X, θ , φ) = 1

(2π )n/2|	|1/2 exp

(
−1

2
rT 	−1 r

)
,

where we have now explicitly written the Gaussian function. It is
convenient to use the log likelihood:

logL(r|X, θ , φ) = −1

2
rT 	−1 r − 1

2
log |	| − n

2
log (2π ) .

Ideally, in a Bayesian framework one should obtain the poste-
rior probability distribution of each hyperparameter of interest by
marginalizing over all the others. This can be done, for example,
using a sampling technique such as Markov Chain Monte Carlo.
However, this is expensive to compute as each evaluation of the
likelihood function we must invert the N × N covariance matrix,
requiring O(n3) operations.

7 When plotting the distribution we need only to consider the diagonal of
the matrix K��, whereas when generating random vectors we must consider
the full covariance matrix of the test inputs.

C© 2011 The Authors, MNRAS 419, 2683–2694
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/419/3/2683/1070795 by Q
ueen's U

niversity of Belfast user on 10 January 2023



2694 N. P. Gibson et al.

Figure A2. Examples of GP regression using type-II maximum likelihood. The dashed green lines represent the functions that the training data were drawn
from, before adding Gaussian i.i.d. noise. All data were fitted using a GP with squared exponential kernel, and all used a zero mean function with the exception
of the bottom left-hand plot, which used a transit mean function. The solid grey and black regions represent the mean, and 1σ and 2σ confidence intervals.
Clockwise from top left, the function used to generate the data is: a straight line, a quadratic function, a step-function and a planetary transit model with the
addition of correlated ‘noise’. See the text for discussion.

One alternative is to make an approximation known as type-II
maximum likelihood. This involves fixing the covariance hyper-
parameters at their maximum likelihood values and marginalizing
over the remaining mean function hyperparameters of interest. This
is a valid approximation when the posterior distribution is sharply
peaked at its maximum with respect to the covariance hyperparam-
eters and should give similar results to the full marginalization.

Fig. A2 gives examples of GP regression using a squared expo-
nential covariance function, after optimizing the hyperparameters
via a Nelder–Mead simplex algorithm (see e.g. Press et al. 1992).
The training data (red points) were generated from various functions
(shown by the green dashed line) with the addition of i.i.d. noise.
All were modelled using a zero-mean function, with the exception
of the transit function at the bottom left, which used a transit mean
function. In the top-left the data were generated from a straight line
function. The marginal likelihood strongly favours functions with
a longer length-scale, and the GP is able to predict the underlying
function both when interpolating and extrapolating away from the
data. The top right-hand data were generated from a quadratic func-
tion and again the GP reliably interpolates the underlying function.

However, as the length-scale is now shorter, the predictive distribu-
tion veers towards the prior more quickly outside the training data.
These two examples show that GPs with squared exponential ker-
nels are very good at interpolating data sets providing the data are
generated from a smooth function. The bottom left-hand plot shows
data drawn from a transit mean function with sinusoidal and Gaus-
sian time-domain ‘systematics’ added. The GP model has a transit
mean function and the additional ‘systematics’ are modelled by the
GP. Finally, the bottom right-hand plot shows data drawn from a step
function. In this case the GP interpolation is less reliable. This is
because the squared exponential function implies smooth functions.
A more appropriate choice of covariance kernel is required for such
functions (e.g. Garnett et al. 2010). Indeed, a wide choice of covari-
ance kernels exist which effectively model periodic, quasi-periodic
and step functions (see Rasmussen & Williams 2006), enabling GPs
to be a very flexible and powerful framework for modelling data in
the absence of a parametric model.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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