Temporal variability of a single population can determine the vulnerability of communities to perturbations

Published in:
Journal of Ecology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 The Authors.

This is the peer reviewed version of the following article: Mrowicki, R. J., O'Connor, N. E., Donohue, I. (2016), Temporal variability of a single population can determine the vulnerability of communities to perturbations. Journal of Ecology, 104: 887–897, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12533/abstract This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
TEMPORAL VARIABILITY OF A SINGLE POPULATION CAN DETERMINE THE VULNERABILITY OF COMMUNITIES TO PERTURBATIONS

ROBERT J. MROWICKI*1, NESSA E. O’CONNOR1 AND IAN DONOHUE2,3

1School of Biological Sciences, Queen’s University Belfast, UK
2Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
3Trinity Centre for Biodiversity Research, Trinity College Dublin, Ireland

Running head: Population variability and perturbations

*Correspondence author. Email: rmrowicki01@qub.ac.uk

Type of article: Standard paper

Word count: 325 (summary); 8,696 (main text, references, tables and figure captions)
Summary

1. Many aspects of global change affect the variability of species population densities, in terms of both the magnitude and pattern of density fluctuations. However, we have limited empirical understanding of the consequences of altered temporal variability of populations, independent of changes in their mean densities, for the structure and stability of natural communities and the responses of ecosystems to additional stressors.

2. We used a field experiment to test the effects of altered temporal variability of a single consumer species on community structure and stability. Specifically, we manipulated the temporal variability of populations of a key grazer species on temperate rocky shores (*Littorina littorea*), independent of their mean densities, over 12 months and measured the responses of algal communities in terms of multiple measures of structure and stability. Further, we tested whether consumer variability determined the effects of an additional perturbation, elevated sedimentation, on algal communities.

3. The effects of sedimentation on the structure and stability of algal communities were regulated by the temporal variability of consumer populations. In particular, elevated sedimentation led to a decrease in algal evenness, but only when consumer densities were held constant, and resulted in a decrease in the rate of local algal extinctions, but only when consumer temporal variability was increased.

4. Independent of sedimentation, increased temporal variability of consumer populations led to a shift in algal assemblage structure and affected the stability of algal communities in terms of both compositional turnover and resistance to environmental perturbations. Further, these effects varied according to the temporal pattern of consumer density fluctuations.
5. *Synthesis.* Our results demonstrate that changes in the temporal variability of a single species can modify multiple aspects of both the structure and stability of natural communities and alter their responses to perturbations. **However,** the effects of consumer variability cannot be predicted without knowledge of the temporal pattern of density fluctuations. These findings have profound implications for our understanding of the effects of multiple disturbances on ecosystems.

Key-words: algae, diversity, ecosystem functioning, field experiment, *Littorina littorea,* multiple stressors, plant–herbivore interactions, rocky intertidal, sedimentation, stability
Introduction

Human-induced global environmental change is threatening the functioning and stability of Earth’s ecosystems and the valuable services that they provide (Vitousek et al. 1997; Millennium Ecosystem Assessment 2005; Cardinale et al. 2012; Hooper et al. 2012). In addition to the intensification of multiple environmental stressors (IPCC 2014), many aspects of global change are expected to alter the frequency, variance and timing of disturbances (Easterling et al. 2000; Rhein et al. 2013), the complex ecological consequences of which may be difficult to predict (Benedetti-Cecchi et al. 2006; García Molinos & Donohue 2010, 2011; Pincebourde et al. 2012). In light of these concerns, there has been increasing emphasis on the importance of spatial and temporal variability, versus the mean intensity, of ecological processes and their environmental drivers (Benedetti-Cecchi 2003; Bertocci et al. 2005; Atalah, Anderson & Costello 2007; Stier et al. 2013).

Densities of consumers and the strengths of their interactions with prey are naturally heterogeneous in both space and time, as a result of intrinsic community dynamics and exogenous environmental forcing (Butler 1989; Navarrete 1996; Berlow 1999; Lauzon-Guay & Scheibling 2009). The variability of specific consumer populations may also be modified by human activities (Adler, Raff & Lauenroth 2001; Castilla & Defeo 2001). Several common ecosystem management practices, such as those in agricultural systems, in fisheries and in many forms of conservation, are based on the direct manipulation of the biomass of one, or perhaps a few, focal species, altering the temporal variability of their population densities in different ways. For example, the harvesting of commercial wild species in marine systems often follows ‘boom and bust’ trends, increasing the variability in biomass of key consumers (Castilla & Defeo 2001; Worm et al. 2006), while management of livestock tends to promote
the reduction of grazing variability in terrestrial systems (Adler, Raff & Lauenroth 2001).

Within communities that are regulated largely by interactions between herbivores and primary producers, such as in marine benthic habitats and various kinds of agricultural systems (Hawkins & Hartnoll 1983; Shurin et al. 2002), changes in grazing variability may have profound consequences for ecosystem structure, functioning and stability (Benedetti-Cecchi et al. 2005; Atalah, Anderson & Costello 2007).

The importance of structural properties of communities in regulating their stability has comprised a key focus of both theoretical and empirical research in ecology for decades (e.g. MacArthur 1955; May 1972; Montoya, Pimm & Solé 2006; Allesina & Tang 2012). However, our understanding of the reciprocal relationship between community structure and stability remains limited (Rooney & McCann 2012). This is, in part, because ecological stability is a multidimensional concept, incorporating components such as spatial and temporal variability, resistance, resilience, robustness and persistence (Table 1; Pimm 1984; Ives & Carpenter 2007), but the vast majority of research has focussed on single components in isolation. Recent experimental research (Donohue et al. 2013) has demonstrated that different components of stability can be strongly related to each other, but also that the strength and nature of relationships among them may be disrupted when communities are exposed to strong perturbations. Therefore, simultaneous quantification of multiple components of stability is needed to provide comprehensive understanding of how communities may be destabilised by structural change and perturbations (Donohue et al. 2013). Theory suggests that changes in the population dynamics of key components of food webs could have considerable knock-on consequences for the stability of whole ecosystems (Pimm 1982; Rooney & McCann 2012). Further, empirical research has demonstrated how variability in consumer–resource interactions can promote spatial variability in marine
intertidal communities (Berlow 1999; Benedetti-Cecchi 2000; Benedetti-Cecchi et al. 2005). Consumer variability may also affect other components of stability, such as temporal variability, indirectly via shifts in assemblage structure or diversity (Jiang & Pu 2009; Rooney & McCann 2012). Currently, however, we have little empirical understanding of the consequences of alterations to the variability of consumer populations, independent of changes in their mean densities, for the multidimensional stability of natural communities.

Here, we examine how altering the temporal variability of populations of a key consumer species, independent of changes in their mean densities, affects the structure and multiple components of the stability of communities in a natural ecosystem. Specifically, we manipulated the temporal variability of a key grazer, the periwinkle *Littorina littorea*, experimentally in natural rocky intertidal communities and examined the responses of both microalgal and macroalgal assemblages to subsequent perturbation in the form of sedimentation. *Littorina littorea* plays a significant role in the dynamics of benthic communities in the north Atlantic (Bertness 1984; Jenkins et al. 2008; O’Connor et al. 2015) and is subjected to unregulated harvesting in many areas (McKay & Fowler 1997; Cummins et al. 2002). This can promote high population variability over small spatial and temporal scales in intertidal habitats (Johnson et al. 2008). In addition to anthropogenic impacts on the abundance and variability of key consumer species, coastal habitats are also subjected to a variety of interacting abiotic pressures at local and global scales (Thompson, Crowe & Hawkins 2002; Halpern et al. 2008). Sedimentation, arising from both natural and anthropogenic processes, is a particularly widespread and pervasive form of disturbance that has profound consequences for the structure and dynamics of coastal marine ecosystems, including rocky shores (Airoldi 2003). Further, as a result of human activities that enhance riverine inputs and exacerbate coastal erosion, sediment loading in coastal areas is expected to
increase over the coming decades throughout the globe (Thompson, Crowe & Hawkins 2002). Despite the potential for such abiotic stressors to interact with important consumer-driven processes (Bertness 1984; Airoldi & Hawkins 2007; O’Connor & Donohue 2013; Mrowicki & O’Connor 2015), it is not yet known how altered patterns of consumer variability modify the responses of natural communities to perturbations.

Based on previous empirical research examining the responses of assemblages to increased temporal variability of consumers in aquatic systems (e.g. Butler 1989; Navarrete 1996; Atalah, Anderson & Costello 2007), we hypothesised that changing the temporal variability of *L. littorea* populations, independent of their mean densities, would alter the biomass and structure of natural algal assemblages. Additionally, we expected that increased consumer population variability would destabilise algal assemblages in terms of multiple components of their stability, either directly or indirectly via changes in community structure, as well as determine their responses to perturbation in the form of elevated sedimentation. Given that the dynamics of marine communities often depend strongly on the timing of consumer and environmental variability (Bertocci et al. 2005; Stier et al. 2013), we also explored whether the effects of changes in consumer variability were regulated by the timing of fluctuations in population density.

Materials and Methods

Experimental site

The experiment was conducted on a moderately exposed rocky shore at Rush, Co. Dublin, on the east coast of Ireland (53.524°N, 6.078°W). The shore comprised a mosaic of patches of
bare emergent substratum, barnacles (predominantly Austrominius modestus and Semibalanus balanoides) and mussels (predominantly Mytilus edulis). Macroalgal assemblages consisted mostly of red algal turfs (Mastocarpus stellatus, Osmundea spp. and Gracilaria gracilis) interspersed with green filamentous species (Cladophora rupestris, Ulva spp. and Chaetomorpha linum), overlain by sparse canopies of brown macrophytic algae (Fucus vesiculosus). Encrusting macroalgae (‘Lithothamnia spp.’ and Ralfsia verrucosa) were common on bare rock and barnacles. By far the most abundant gastropod grazer on the shore was the common periwinkle, Littorina littorea (hereafter ‘Littorina’; density 300.8 ± 24.5 m⁻² [mean ± SE; n = 16]). Other grazers were present at much lower densities, including the topshell Gibbula umbilicalis (36.8 ± 7.3 m⁻²), the limpet Patella vulgata (16.0 ± 3.7 m⁻²) and other littorinids, such as L. saxatilis and L. obtusata.

Experimental design

We established 40 experimental plots (35 × 35 cm) within mussel beds around mid-tidal level (ca. 2.0 m above Chart Datum). To enable the manipulation of consumer densities, plots were enclosed by 12 cm-high cages, consisting of square fences with attached lids, constructed from stainless steel mesh (0.9 mm wire diameter, 4.17 mm aperture, 67% open area) fixed to the substratum with screws and washers. The cages were used to restrict the movement of adult Littorina while allowing exposure to natural environmental dynamics and access to smaller mobile consumers, including annelid and nemertean worms, amphipods and juvenile gastropod grazers, in addition to propagules of sessile benthic fauna and algae. One month prior to the commencement of the experiment, mussels and associated sediment, fauna and algae were transplanted into cages from an adjacent area on the shore to ensure that the initial
cover of mussels within cages (61.4 ± 1.0% [mean ± SE]) was similar in all treatments and representative of background abundances on the shore (O’Connor et al. 2013).

To increase the applicability of our findings to real-world ecosystems, we established an additional eight uncaged manipulated plots, which enabled the comparison of consumer variability and algal assemblage dynamics in our caged plots with natural patterns on the shore. The uncaged plots were interspersed haphazardly among the caged plots and contained similar cover of mussels (range 53–78%). The uncaged plots were, however, not used as true procedural controls for detecting cage artefacts because it was not possible to manipulate, a priori, consumer variability within caged plots independent of the mean density to reflect robustly the natural spatiotemporal dynamics at similar spatial scales on open areas of the shore. Nonetheless, we opted to conduct our experiment on open natural communities in the field because field experiments have a distinct advantage over laboratory- or mesocosm-based studies with regards to the incorporation of natural environmental heterogeneity and enhanced realism (Naeem 2008). Further, numerous studies conducted on this shore and elsewhere using an identical cage design have demonstrated an absence of cage effects on the structure and stability of algal assemblages over similar or longer timescales (e.g. O’Connor & Crowe 2005; O’Connor et al. 2011, 2013; Donohue et al. 2013).

Three experimental treatments were established in August 2012 to test the effects of consumer variability on algal assemblages over 12 months. Importantly, the mean density of Littorina was identical in all of our experimental plots (both caged and uncaged) over the duration of the experiment, mimicking the mean background density on the shore (Fig. 1a,b), and was unconfounded from the manipulation of consumer variability (Fig. 1c). In the ‘constant’ treatment, Littorina density was maintained at 30 individuals per plot for the
duration of the experiment to mimic situations where the density of consumers is relatively constant over time. We established two ‘variable’ treatments to test the importance of the temporal pattern of consumer density fluctuations. *Littorina* density in both of these treatments alternated between 15 and 45 individuals per plot every two months (Fig. 1a). This was within the range of background densities observed in preliminary surveys at the experimental site (128–464 m$^{-2}$). The ‘variable1’ treatment commenced with 15 *Littorina* individuals per plot, while the ‘variable2’ treatment commenced with 45 (Fig. 1a). All experimental densities were based on adult individuals (> 5 mm) because it was impractical to manipulate juveniles smaller than the cage mesh size. The mean density of juvenile *Littorina* was quantified over the duration of the experiment and did not vary among our caged biotic variability treatments (ANOVA; MS = 0.44, $F_{2,17} = 0.39$, $P = 0.681$).

To test whether variability in consumer population densities altered the responses of communities to disturbances, we established two sedimentation treatments (‘ambient’ and ‘elevated’) four months after the commencement of the experiment. The elevated sedimentation treatment involved the monthly addition of 400 g dry mass of sandy sediment, collected from an adjacent sandy shore, to each respective plot until the end of the experiment (12 months). This sedimentation rate, equivalent to ca. 100 g m$^{-2}$ d$^{-1}$, is within the range experienced by coastal habitats in the vicinity of populated areas (Airoldi & Virgilio 1998; Connell 2005). Instead of a temporally consistent increase in sedimentation above background levels, which would have been impossible to maintain for the duration of the experiment, this treatment was manifested as a pulse disturbance, whereby the full quantity of sediment was applied to each respective plot at low tide and then apparently washed away by the incoming tide. The two sedimentation treatments were crossed fully with the three biotic variability treatments, yielding a total of six treatments in a factorial design. Eight replicate
Caged plots were assigned randomly to each of the four treatment combinations involving the constant and variable consumer variability treatments. However, owing to practical limitations on the number of plots that could be maintained during the experiment, it was not possible to allocate such a large number of replicates to all treatments. Consequently, four replicate caged plots were assigned randomly to the remaining two treatment combinations involving the variable treatment.

The percent cover of macroalgal species was estimated monthly using a 25 × 25 cm quadrat with 64 intersections, positioned centrally within cages to avoid sampling edge effects. Species present within the quadrat but not occurring underneath any of the intersections were assigned a value of 1% (O’Connor & Crowe 2005). Slate tiles (10 × 10 × 1 cm) were either attached inside cages or fixed to the substratum adjacent to uncaged plots four months after the commencement of the experiment to monitor the development of epilithic biofilms. Microalgal biomass on the tiles was quantified monthly in situ by measuring chlorophyll a concentrations with a benthic fluorometer (BenthoTorch, bbe Moldaenke GmbH, Schwentinental, Germany). This method has been shown to provide reliable estimates of total microalgal biomass in marine intertidal systems (Kahlert & McKie 2014), and enables the differentiation of component microalgal groups (diatoms, cyanobacteria and chlorophytes) based on their fluorescence excitation spectra (Aberle et al. 2006). Mean values for each plot were calculated from three haphazardly-spaced readings per tile because the distribution of epilithic microalgae is highly heterogeneous at small scales (Hutchinson et al. 2006). Quantification of all response variables commenced four months after the establishment of the experiment (i.e. from December 2012 to August 2013) to avoid transient dynamics (Donohue et al. 2013).
Data analyses

Given the dynamic nature of algal communities on rocky shores and their rapid responses to fluctuations in physical and biological conditions at scales relevant to this study (e.g. Hawkins & Hartnoll 1983), focusing on primary producer assemblages allowed us to maximise the probability of detecting shifts in ecosystem functioning and stability (Borrvall & Ebenman 2006; Donohue et al. 2013). Therefore, we used the total biomass of microalgae and the total cover, taxonomic richness, Simpson’s evenness \((1-\lambda)\) and assemblage structure of macroalgae at the end of the experiment as proxies for shifts in ecosystem functioning. There were no significant differences in any of these variables among treatment combinations (including between caged and uncaged plots) at the start of the experiment (Table S1 in Supporting Information).

We quantified up to six components of ecological stability for algal assemblages (Table 1): spatial and temporal variability of total biomass were calculated for both micro- and macroalgal assemblages, while the number of local species extinctions and invasions, compositional turnover and resistance to environmental fluctuations were determined for macroalgal assemblages only, owing to low taxonomic resolution of the microalgal data. Both spatial and temporal variability were detrended to avoid the potentially confounding effects of transient or seasonal shifts in algal abundance over the duration of the experiment. This was achieved by using the residuals from linear regressions of total algal abundance (microalgal biomass or macroalgal cover) against time, rather than algal abundance per se (Tilman, Reich & Knops 2006; Donohue et al. 2013).
We tested for effects of the nature and timing of variability in consumer densities and for interactions between these and sedimentation on measures of each of the structure, functioning and stability of algal communities. Our statistical models incorporated two fully-crossed factors, consumer variability (fixed, three levels: constant, variable1 and variable2) and sedimentation (fixed, two levels: ambient and elevated). In the case of spatial variability, for which data were not associated with individual plots, month was included as a random factor in all analyses to account for variation among survey dates.

Permutational analysis of variance (perANOVA; Anderson 2001a), based on Euclidean distance matrices, was used to test hypotheses involving univariate metrics of ecosystem functioning and stability. Homogeneity of data was assessed prior to analysis using Levene’s test and data were transformed as necessary to stabilise heterogeneous variances. We used permutational procedures rather than conventional ANOVA in our analyses because they do not rely on the normality of error distributions, an assumption to which univariate ecological data often do not conform (Anderson 2001a), and because these methods have been shown to be significantly more robust for the analysis of unbalanced datasets than other resemblance-based permutation methods (Anderson & Walsh 2013). We tested the consistency of the perANOVA results by comparing pseudo-F values obtained for all terms against distributions of F-values obtained from conventional ANOVAs performed on 10^4 balanced datasets ($n = 4$) sampled randomly from the full dataset. All relevant test statistics were within the 95% confidence intervals derived from this procedure (Table 2).

We tested for differences in the structure of macroalgal assemblages using permutational multivariate analysis of variance (PERMANOVA; McArdle & Anderson 2001; Anderson 2001b) based on Bray-Curtis dissimilarities and calculated from $\log_{10}(x+1)$-transformed
abundance data to reduce the influence of dominant taxa (Clarke & Warwick 2001). The analysis was performed with 9,999 permutations of residuals under a reduced model and was based on Type II sums of squares, as recommended for unbalanced factorial designs (Langsrud 2003). Owing to low numbers of unique permutations in some cases, statistical significance was assessed using P-values obtained via Monte Carlo simulations rather than from permutation-based empirical distributions (Anderson & Robinson 2003). Post hoc permutational t-tests were used to resolve pairwise differences among levels of significant terms and the relative contributions of algal taxa to differences between treatments were determined using similarity of percentages analysis (SIMPER; Clarke 1993).

Analyses were conducted in R (version 3.0.1; R Development Core Team 2013), except for distance-based perANOVAs and PERMANOVAs, which were performed using the PERMANOVA+ add-on in PRIMER (version 6.1.13; PRIMER-E Ltd., Plymouth, UK).

Results

Temporal variability of *Littorina* populations determined the effects of sedimentation on the structure and stability of algal assemblages (Table 2). Macroalgal evenness was reduced by elevated sedimentation when *Littorina* density was constant, but not when *Littorina* densities were variable (perANOVA; consumer variability × sedimentation: $P = 0.035$; Table 2a; Fig. 2a). Elevated sedimentation also decreased the number of local extinctions of macroalgal species in both of the variable treatments but not in the constant treatment (consumer variability × sedimentation: $P = 0.015$; Table 2b; Fig. 2b). Although consumer variability and sedimentation interacted to affect the spatial variability of both microalgal ($P = 0.030$) and macroalgal ($P = 0.012$) assemblages (Table 2b), post hoc tests were inconclusive and revealed
no significant \((P < 0.05)\) differences between ambient and elevated sedimentation for any of
the three consumer variability treatments (Fig. 2c,d). A decrease in macroalgal spatial
variability in response to elevated sedimentation was, however, bordering on statistical
significance in the variable\(_2\) treatment (perANOVA post hoc test; \(t = 2.28, P = 0.052\)).
Independently of sedimentation, increased temporal variability of \textit{Littorina} populations
resulted in a shift in macroalgal assemblage structure (PERMANOVA; \(P = 0.012\); Table 2a),
but this effect depended on the temporal pattern of consumer density fluctuations.
Specifically, the ‘variable\(_2\)’ treatment (i.e. commencing with low \textit{Littorina} density), but not
the ‘variable\(_1\)’ treatment (i.e. commencing with high \textit{Littorina} density), differed from the
‘constant’ treatment in terms of macroalgal assemblage structure at the end of the experiment
(PERMANOVA post hoc test; \(t = 1.66, P = 0.024\)). This difference was driven by greater
cover of red (\textit{Osmundea} spp. and \textit{Mastocarpus stellatus}) and green (\textit{Ulothrix} sp.) turf-
forming species and encrusting coralline species (‘\textit{Lithothamnia} spp.’) in the variable\(_2\)
treatment compared to the other treatments (SIMPER; Table S2).
The nature and temporal pattern of \textit{Littorina} population variability also affected, independent
of sedimentation, the compositional turnover of macroalgal assemblages (perANOVA; \(P =
0.010\); Table 2b) and their resistance to perturbations in the form of natural environmental
fluctuations (\(P = 0.045\); Table 2b). Although post hoc tests were unable to resolve differences
among groups fully, algal assemblages in the variable\(_2\) treatment appeared to have increased
compositional turnover relative to those in the constant treatment (Fig. 2e) and lower
resistance to perturbations compared to those in the variable\(_1\) treatment (Fig. 2f).

Discussion
Our results demonstrate that altered patterns of temporal variability in the population density of even a single consumer species can, independent of its mean density, affect multiple aspects of both the structure and stability of natural communities and determine their responses to other perturbations. Additionally, we show that the effects of consumer population variability depend on the timing of density fluctuations, which, in general, appeared to be more important than variability \textit{per se}. These findings have important implications for our understanding of the factors governing ecological responses to perturbations. In particular, our results indicate that predicting the effects of disturbances on ecosystems requires knowledge of the patterns of variability in species populations.

We found that the effects of sedimentation on the structure and stability of algal assemblages were determined by variability in the densities of \textit{Littorina littorea} populations, independent of their mean densities. Further, it appeared that the variability \textit{per se}, rather than temporal pattern, of consumer densities drove this interaction. When consumer densities were held constant, elevated sedimentation resulted in a decline in macroalgal evenness, which can be explained by a reduction in the recruitment and/or survival of less tolerant species and a subsequent shift in dominance towards more resistant species (Airoldi 2003). Mechanisms by which sediment can affect algal species directly include damage to or loss of individuals via scouring and abrasion, reduced availability of stable substratum as a result of sediment build-up, and restricted access to light, oxygen and nutrients owing to burial and smothering (Airoldi 2003). Although sedimentation can directly impair the feeding activity of gastropod grazers such as limpets (Airoldi & Hawkins 2007), it may have weaker effects on more mobile species, particularly at greater densities. In fact, \textit{L. littorea} has been shown to ‘bulldoze’ accumulated sediment from rocky substrata, indirectly inhibiting the development
of algal canopies (Bertness 1984) and mitigating the negative effects of sedimentation on
more susceptible ephemeral algal species (Airoldi 2003). It is therefore possible that the
effects of elevated sedimentation on the growth of certain algal species were negated by
periods of higher grazing pressure within the variable treatments, with consequences for algal
evenness. Consistent with this, elevated sedimentation reduced the number of local
extinctions of macroalgal species when *L. littorea* densities were variable, with a tendency
towards homogenising algal cover in space. In our study, which was conducted on open
emergent substrata on a moderately exposed rocky shore, there appeared to be little
opportunity for the extensive accumulation of sediment within experimental plots (pers. obs.).
Further, although we did not characterise background sedimentation rates, our elevated
sedimentation treatment involved the addition of quantities of sediment that were relatively
small in the context of natural sedimentation regimes on other temperate rocky shores
(Airoldi & Virgilio 1998; Connell 2005). Despite the observed responses of algal assemblages
to this treatment, these factors may have limited the effect of sedimentation on our other
measures of structure and stability. Overall, however, our results demonstrate that the
ecological effects of such perturbations can depend strongly on the nature of temporal
variability in biotic communities.

Independent of sedimentation, increased consumer variability resulted in a shift in macroalgal
assemblage structure relative to when consumer density was held constant. Similar results
have been found previously in aquatic systems where resource species differed in their growth
rates and susceptibility to predation and consumers exhibited prey selectivity (Butler 1989;
Navarrete 1996). However, this shift observed in our experiment occurred only in the
‘variable’ treatment commencing with a high consumer density (variable2), and not in the
treatment commencing with a low density (variable1). The timing of disturbance events has
been shown to have important consequences for the emergent structure of recovering communities when species differ in terms of reproductive and phenological traits, in addition to their relative susceptibilities at different life history stages (Hawkins 1981; Airoldi 2000).

It is possible that differences in consumer densities between variability treatments at the start of the experiment influenced the relative rates of establishment among algal species, resulting in divergent successional trajectories that contributed to the observed differences in final assemblage structure. Additionally, the temporal coincidence between maximum grazer densities and periods of peak recruitment of algal species throughout the duration of the experiment may have contributed to the observed shifts in algal assemblage structure (Bertocci et al. 2005). For example, in the variable$_2$ treatment, peaks in grazing corresponded with the main reproductive periods of *Fucus vesiculosus*, i.e. September–October and May–June (Berger et al. 2003). The final macroalgal assemblage structure in this treatment was characterised by a relatively low abundance of this species. Similarly, differences in the abundances of some algal species, particularly fast-growing ephemeral species, may be a function of grazer density immediately prior to the final census date. For example, the abundances of *Porphyra umbilicalis* and *Ulva lactuca*, which are preferred food items for *L. littorea* (Lubchenco 1978), were greater in the variable$_2$ treatment compared to the constant and variable$_1$ treatments. However, if patterns in final assemblage structure were based predominantly on direct consumptive effects of grazing, we would expect differences to be driven by such palatable ephemeral species. In contrast to this expectation, unpalatable perennial species, such as *Osmundea* spp. and *Mastocarpus stellatus*, made a far greater contribution to differences in assemblage structure between these treatments. This suggests strongly that other indirect processes, such as competitive interactions among species, were important in mediating the responses of algal communities to temporal patterns of grazing (Airoldi & Cinelli 1997).
Both the compositional turnover and the extent of structural change (resistance) of algal assemblages in response to environmental fluctuations depended on the temporal pattern of consumer density fluctuations. There was, however, no consistent effect on overall community stability of any particular treatment. Specifically, resistance to environmental fluctuations appeared to be greatest in the variable\textsubscript{1} treatment and lowest in the variable\textsubscript{2} treatment, whereas compositional turnover was greatest in the variable\textsubscript{2} treatment and lowest in the constant treatment. Although the underlying mechanisms are unclear, such effects may occur indirectly via changes in the relative abundances of key species that modify competitive interactions within the community and, therefore, contribute to multiple components of stability. For example, in temperate grassland ecosystems, the existence of competitive hierarchies involving dominant ‘core’ species that interact with less abundant ‘satellite’ species may promote biotic feedback instabilities, leading to the destabilisation (i.e. increase in variability) of communities (Collins 2000). Similar processes may operate within intertidal macroalgal assemblages, which are also characterised by competitive asymmetries at multiple life stages (Berger \textit{et al.} 2003; Maggi \textit{et al.} 2012). Additionally, certain species may modify the influence of exogenous environmental variability on communities in different ways, with contrasting consequences for stability. In marine intertidal systems, for example, habitat engineers such as mussels may enhance the transmission of environmental stochasticity through communities, increasing the temporal variability of other species (Wootton 2010). Conversely, on some rocky shores, canopy-forming algae may dampen oscillations in physical conditions and promote asynchronous species fluctuations, resulting in decreased overall community variability (Bulleri \textit{et al.} 2012). Thus, changes in both biotic and environmental feedback pathways resulting from the shift in balance away from structurally important forms of perennial algae (\textit{Mastocarpus stellatus} and \textit{Fucus vesiculosus}), as
observed in the variable treatment, may have contributed to the destabilisation of assemblages in this treatment. In general, the mechanisms by which population variability affects the stability of complex communities require further investigation, paying particular attention to the relative contribution of particular species to different components of stability (Ives & Carpenter 2007). Importantly, while previous studies have shown that species loss can have dramatic effects on assemblage structure and stability (O’Gorman & Emmerson 2009; Donohue et al. 2013), we have shown that more subtle biotic perturbations, such as changes in the temporal variability of a single key species, may also affect multiple aspects of ecosystem functioning and stability.

In a mesocosm experiment, Atalah et al. (2007) found that increased temporal variability of grazing resulted in reduced total algal cover. In contrast to this, however, we found no effect of consumer variability on either microalgal biomass or macroalgal cover in our field experiment. Further, the temporal variability of both microalgal and macroalgal cover was also unaffected by alterations to grazing variability. These results suggest that the biomass and temporal variability of communities in our study were regulated more strongly by processes other than variability in grazing intensity. This may be because environmental heterogeneity in the field masked the effects of consumer population fluctuations on total algal abundance and variability. Additionally, within diverse algal assemblages, strong competitive interactions among species can result in compensatory responses (Maggi et al. 2012) whereby opposing changes in individual species abundances may underlie constant total algal abundance. Indeed, we observed a shift in macroalgal assemblage structure resulting from changes in the abundances of individual algal taxa, which were perhaps mediated by interactions between species.
We designed our consumer variability treatments in the absence of detailed information about natural fluctuations of *Littorina littorea* populations at the study site. During the course of our experiment, however, our uncaged unmanipulated plots revealed background patterns of population variability (Fig. 1a). While the mean density and magnitude of fluctuations of *L. littorea* populations were both similar between uncaged and caged plots, the frequency of fluctuations in our experimental manipulations was slightly greater than that observed on the shore. However, differences in the responses of algal assemblages between uncaged and caged plots may have been a result of artefacts from the use of cages, in concert with differences between natural and manipulated patterns of consumer variability. The lack of true procedural controls in our experiment, necessitated by difficulties in manipulating consumer densities without the use of cages, limits how far we can extend our inferences to natural communities. Despite this, examining differences among our caged treatments enabled us to test the effects of consumer variability and sedimentation on natural multitrophic assemblages exposed to realistic levels of natural environmental heterogeneity and open to propagule supply. Within a given area, temporal variability in natural populations may occur both as a result of community processes, including consumer–resource dynamics, and in response to environmental heterogeneity, such as seasonal changes in conditions (Butler 1989; Navarrete 1996; Lauzon-Guay & Scheibling 2009). Owing to the potential for complex interactions between intrinsic and extrinsic drivers of population variability, and their additional effects on ecosystem functioning and stability, it is difficult to disentangle the ecological role of population variability itself from other such influences in natural systems. Consequently, community responses to changes in natural versus manipulated patterns of consumer variability may differ. Thus, while our results demonstrate the importance of consumer variability when manipulated in isolation, enhancing the applicability of these findings to natural stochastic systems requires greater understanding of the modifying roles of
community dynamics and environmental variability. Another caveat of our study is that it does not account for the potential role that population density plays in mediating the effects of temporal variability. Although we separated the effects of variability and temporal pattern from that of mean density, logistical constraints prevented us from testing for an interaction between these variables (Benedetti-Cecchi et al. 2005). Further experimentation, involving a range of grazer density treatments, would help to clarify the relative contribution of density to the observed effects of consumer variability on community stability.

In conclusion, our study demonstrates that altered patterns of temporal variability within the population of a single species may propagate through food webs to influence multiple aspects of the structure, functioning and stability of communities. Importantly, we found that the effects of such disturbances cannot be predicted without knowledge of the temporal pattern of density fluctuations. Moreover, to our knowledge, this study is the first to show that alterations to the temporal variability of single populations can determine how communities respond to other perturbations. Overall, our findings indicate that the ecological impacts of disturbances, which may be unpredictable because of interactions among different temporal patterns of perturbations (García Molinos & Donohue 2010) as well as different types of stressors (Crain, Kroeker & Halpern 2008), are mediated by patterns of temporal variability within communities. Therefore, the consequences of disturbances are likely to be highly context-dependent with respect to the timing of environmental fluctuations and temporal coincidence of disturbance events (see also Pincebourde et al. 2012). Our work also emphasises the value of a multidimensional view of ecological stability in facilitating a more complete understanding of community responses to perturbations (Donohue et al. 2013). To improve our predictions of the ecological impacts of perturbations in a changing world, we...
require greater appreciation of the importance of temporal patterns of variability and, in particular, the reciprocal relationship between community structure and stability.

Acknowledgements

We thank S.J. Hawkins, J.D.R. Houghton and one anonymous reviewer for useful comments on an earlier draft of this manuscript. We are also grateful to E. Nolan, B. Tamland and L. Taplin for providing assistance in the field. This study was completed as part of a PhD studentship funded by the Department for Employment and Learning Northern Ireland.

Data accessibility

Species abundance data are available via the Dryad Digital Repository (doi: xx.xxxx/dryad.xxxx).
References

Jiang, L. & Pu, Z. (2009) Different effects of species diversity on temporal stability in single-

Intertidal Shellfish in Strangford Lough. Northern Ireland Environment Agency
Research and Development Series No. 09/05. Belfast, UK.

benthic algal biomass and composition in freshwaters. Environmental Science:
Processes & Impacts, 16, 2627–2634.

Langsrud, Ø. (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of

(Littorina littorea) associated with feeding fronts. Journal of Shellfish Research, 28,
581–587.

Lubchenco, J. (1978) Plant species diversity in a marine intertidal community: importance of
herbivore food preference and algal competitive abilities. The American Naturalist, 112,
23–39.

MacArthur, R. (1955) Fluctuations of animal populations and a measure of community

Maggi, E., Bulleri, F., Bertocci, I. & Benedetti-Cecchi, L. (2012) Competitive ability of
macroalgal canopies overwhelms the effects of variable regimes of disturbance. Marine

comment on distance-based redundancy analysis. Ecology, 82, 290–297.

Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B.C.,
314, 787–790.

Supporting Information

Additional supporting information may be found in the online version of this article:

Table S1. Results of tests for differences in macroalgal assemblages among treatment
combinations at the start of the experiment.

Table S2. Relative contributions of macroalgal taxa to differences in assemblage structure
between consumer variability treatments.

As a service to our authors and readers, this journal provides supporting information supplied
by the authors. Such materials may be re-organized for online delivery, but are not copy-
edited or typeset. Technical support issues arising from supporting information (other than
missing files) should be addressed to the authors.
Table 1. Components of ecological stability quantified in this study and their measurement (see Pimm 1984 and Donohue et al. 2013).

<table>
<thead>
<tr>
<th>Stability component</th>
<th>Description and quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial variability</td>
<td>The coefficient of variance (CV) of total algal abundance (microalgal biomass or macroalgal cover) among experimental plots within each treatment combination on each census.</td>
</tr>
<tr>
<td>Temporal variability</td>
<td>The CV of total algal abundance (microalgal biomass or macroalgal cover) in each experimental plot over time.</td>
</tr>
<tr>
<td>Number of extinctions†</td>
<td>Also known as structural robustness. Calculated as the number of macroalgal taxa that were recorded on the first census date in each plot, but which were absent at the end of the experiment.</td>
</tr>
<tr>
<td>Number of invasions†</td>
<td>A measure of community persistence. The number of macroalgal taxa that were recorded at the end of the experiment in each plot, but which were absent on the first census date.</td>
</tr>
<tr>
<td>Compositional turnover†</td>
<td>The extent of change in community composition over time, integrating aspects of temporal variability, resistance, extinctions and invasions. Calculated as the mean Jaccard similarity in macroalgal community composition (based on taxonomic presence/absence data) between consecutive sampling dates for each plot.</td>
</tr>
<tr>
<td>Resistance†</td>
<td>Calculated as the reciprocal of the Euclidean distance from each experimental plot to the centroid of the uncaged unmanipulated plots at the end of the experiment, based on Bray-Curtis dissimilarity matrices calculated from log$_{10}$(x+1)-transformed algal abundance data. Thus, this measure represents the extent of structural change in communities in different experimental treatments in response to natural environmental fluctuations.</td>
</tr>
</tbody>
</table>

†Quantified for macroalgal assemblages only.
Table 2. Results of PerANOVAs and PERMANOVA testing the effects of consumer variability (constant, variable1 and variable2) and sedimentation on (a) measures of abundance, diversity and structure and (b) components of ecological stability of microalgal and macroalgal assemblages. For univariate analyses involving unbalanced datasets, 95% CIs are based on F-values from conventional ANOVAs performed on 10^4 balanced datasets ($n = 4$) sampled randomly from the full dataset. Significant P-values are highlighted in bold.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source of variation</th>
<th>df</th>
<th>MS</th>
<th>Pseudo-F (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Abundance, diversity and structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microalgal biomass</td>
<td>Consumer variability, V</td>
<td>2</td>
<td>0.37</td>
<td>2.81 (0.77, 6.78)</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>Sedimentation, S</td>
<td>1</td>
<td>0.06</td>
<td>0.43 (8 x 10^{-4}, 2.98)</td>
<td>0.514</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>0.14</td>
<td>1.02 (0.19, 5.00)</td>
<td>0.376</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cover</td>
<td>V</td>
<td>2</td>
<td>42.09</td>
<td>1.24 (0.12, 4.11)</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>0.08</td>
<td>2 x 10^{-3} (3 x 10^{-4}, 2.13)</td>
<td>0.962</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>4.51</td>
<td>0.13 (0.02, 1.96)</td>
<td>0.877</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>33.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species richness</td>
<td>V</td>
<td>2</td>
<td>0.14</td>
<td>0.08 (0.02, 1.49)</td>
<td>0.925</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>0.63</td>
<td>0.34 (0.06, 2.36)</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>5.72</td>
<td>3.16 (0.16, 5.24)</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>1.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species evenness</td>
<td>V</td>
<td>2</td>
<td>2 x 10^{-3}</td>
<td>0.20 (5 x 10^{-3}, 0.84)</td>
<td>0.811</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>2 x 10^{-3}</td>
<td>0.26 (1 x 10^{-4}, 0.69)</td>
<td>0.613</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>0.03</td>
<td>3.71 (0.68, 3.13)</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assemblage structure</td>
<td>V</td>
<td>2</td>
<td>2381.80</td>
<td>2.28 -</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>791.17</td>
<td>0.76 -</td>
<td>0.608</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>1079.10</td>
<td>1.03 -</td>
<td>0.420</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>1044.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Stability components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microalgae:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial variability</td>
<td>Month, M</td>
<td>7</td>
<td>40.11</td>
<td>17.84 -</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>2</td>
<td>6.91</td>
<td>3.08 -</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>2.98</td>
<td>1.32 -</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>8.72</td>
<td>3.88 -</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>35</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal variability</td>
<td>V</td>
<td>2</td>
<td>0.04</td>
<td>0.37 (0.01, 1.97)</td>
<td>0.696</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1</td>
<td>0.05</td>
<td>0.52 (4 x 10^{-4}, 1.53)</td>
<td>0.479</td>
</tr>
<tr>
<td></td>
<td>V × S</td>
<td>2</td>
<td>0.10</td>
<td>0.96 (0.22, 2.34)</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
(Table 2 continued)

Macroalgae:

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>V</th>
<th>S</th>
<th>V × S</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>8</td>
<td>0.04</td>
<td>1.70</td>
<td>-</td>
<td>0.132</td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0.15</td>
<td>7.16</td>
<td>-</td>
<td>0.002</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0.03</td>
<td>1.53</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>0.11</td>
<td>4.91</td>
<td>-</td>
<td>0.014</td>
</tr>
<tr>
<td>Residual</td>
<td>40</td>
<td>0.02</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>Temporal variability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0.01</td>
<td>2.42</td>
<td>(0.69, 7.54)</td>
<td>0.103</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>4 × 10^{-3}</td>
<td>0.66</td>
<td>(6 × 10^{-3}, 4.04)</td>
<td>0.415</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>0.01</td>
<td>1.88</td>
<td>(0.33, 5.22)</td>
<td>0.168</td>
</tr>
<tr>
<td>Residual</td>
<td>34</td>
<td>0.01</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>No. of extinctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>3.97</td>
<td>7.88</td>
<td>(3.29, 10.32)</td>
<td>0.002</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>3.60</td>
<td>7.15</td>
<td>(2.35, 14.49)</td>
<td>0.012</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>2.42</td>
<td>4.80</td>
<td>(1.63, 5.64)</td>
<td>0.017</td>
</tr>
<tr>
<td>Residual</td>
<td>34</td>
<td>0.01</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>No. of invasions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>4.27</td>
<td>2.76</td>
<td>(0.83, 6.27)</td>
<td>0.084</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>4.90</td>
<td>3.17</td>
<td>(0.10, 8.35)</td>
<td>0.085</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>0.77</td>
<td>0.50</td>
<td>(0.03, 2.68)</td>
<td>0.608</td>
</tr>
<tr>
<td>Residual</td>
<td>34</td>
<td>1.55</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0.32</td>
<td>3.39</td>
<td>(2.06, 5.70)</td>
<td>0.045</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0.01</td>
<td>0.12</td>
<td>(9 × 10^{-4}, 7.21)</td>
<td>0.746</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>0.15</td>
<td>1.60</td>
<td>(0.46, 4.59)</td>
<td>0.214</td>
</tr>
<tr>
<td>Residual</td>
<td>34</td>
<td>0.09</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
<tr>
<td>Compositional turnover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2</td>
<td>0.02</td>
<td>5.15</td>
<td>(2.36, 8.59)</td>
<td>0.010</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0.01</td>
<td>1.21</td>
<td>(0.08, 8.99)</td>
<td>0.278</td>
</tr>
<tr>
<td>V × S</td>
<td>2</td>
<td>0.01</td>
<td>2.38</td>
<td>(0.82, 6.45)</td>
<td>0.111</td>
</tr>
<tr>
<td>Residual</td>
<td>34</td>
<td>4 × 10^{-3}</td>
<td>1.70</td>
<td>-</td>
<td>0.223</td>
</tr>
</tbody>
</table>
Figure legends

Fig. 1. (a) Monthly mean densities, (b) overall mean (+1 SE) densities and (c) temporal variability (detrended coefficient of variation; mean +1 SE) in the density of *Littorina littorea* over the duration of the experiment in uncaged unmanipulated plots (*n* = 8) and in caged plots belonging to consumer variability treatments (constant and variable1, *n* = 8; variable2, *n* = 4). In (c), different letters denote groups of treatments that are significantly different from each other (*P* < 0.05) based on SNK tests.

Fig. 2. Mean (+1 SE) (a) Simpson’s evenness (1−λ) of macroalgal assemblages, (b) number of local extinctions of macroalgal species, spatial variability of (c) micro- and (d) macroalgal assemblages, (e) compositional turnover of macroalgal assemblages and (f) resistance of macroalgal assemblages to natural environmental fluctuations over the duration of the experiment in uncaged unmanipulated plots (*n* = 8) and in caged plots belonging to consumer variability treatments (constant and variable1, *n* = 8; variable2, *n* = 4). Results from uncaged plots were not included in statistical analyses but are included here to provide additional context. Asterisks indicate significant differences between groups (**P** < 0.05) based on perANOVA post hoc tests. Different letters denote groups of treatments that are significantly different from each other (*P* < 0.05) based on SNK tests.
Fig. 1. Mrowicki et al.
Fig. 2. Mrowicki et al.