A simulation framework for cooperative reconfigurable intelligent surface based systems

Published in:
IEEE Transactions on Communications

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023, IEEE.
This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 18. Jul. 2023
A Simulation Framework for Cooperative Reconfigurable Intelligent Surface Based Systems

Nidhi Simmons, Senior Member, IEEE, Jonathan W. Browning, Member, IEEE, Simon L. Cotton, Senior Member, IEEE, Paschalis C. Sofotasios, Senior Member, IEEE, David Morales-Jimenez, Senior Member, IEEE, Michail Matthaiou, Fellow, IEEE, and, Muhammad Ali Babar Abbasi, Member, IEEE

Abstract—We present a simulation framework for evaluating the performance of cooperative reconfigurable intelligent surface (RIS) based systems, which may ultimately deploy an arbitrary number of RISs to overcome adverse propagation-related effects, such as cascaded fading. The physical model underlying the proposed framework considers the (optional) presence of a dominant signal path between the source and RIS, and then between each subsequent stage of the communication link to the destination. Accompanying the dominant signal component is a non-isotropic scattered signal contribution, which accounts for angular selectivity within the cascaded RIS stages between the source and destination. The simulation of the time-correlated scattered signal, reflected by the illuminated reflective elements, is achieved using autoregressive modelling. As a by-product of our analysis, significant insights are drawn which enable us to characterize the amplitude and phase properties of the received signal, and the associated complex autocorrelation functions (ACFs) for the product of multiple Rician channels. For both single and multiple RIS systems, the outage probability (OP), and important second-order statistics, such as the level crossing rate (LCR) and average outage duration (AOD), are analyzed for a variety of system configurations, accounting for practical limitations, such as phase errors. It is shown that by using multiple RISs cooperatively, the AOD is reduced at a lower signal-to-noise-ratio (SNR) compared to single RIS-assisted transmission under the same operating conditions. Lastly, increased channel variations (i.e., higher maximum Doppler frequencies) are shown to decrease the AOD in the case of absent phase errors; yet, this improvement is not observed when phase errors are present.

Index Terms—Average outage duration, cooperative reconfigurable intelligent surface (RIS), outage probability, phase errors, simulation framework.

I. INTRODUCTION

To truly enable the next generation of wireless technologies, such as enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (uRLLC), and massive machine-type communication (mMTC), calls for a major shift in the network infrastructure paradigm [2], [3]. One potential approach is the utilization of intelligent meta-surfaces [4], which are two-dimensional planar arrays composed of a high number of passive reflective meta-atoms/antennae (hereby referred to as elements) that are on the order of sub-wavelengths of the operating frequency [5], [6]. The reflective elements within a meta-surface can be controlled to alter their reflective properties in order to manipulate the propagation of any signals which are impinged upon them [7]. As a result, this property allows the control of phase shifts applied by each of the reflective elements [8]. By using these smart surfaces distributed throughout a network, operators will be able to overcome unfavorable propagation phenomena in cellular environments [9], [10], in a cost effective manner [11]. In the literature, the same technology has been referred to as software-controlled metasurfaces [9], intelligent reflective surfaces [12]–[14] or reconfigurable intelligent surfaces (RISs) [15]–[17]. In the present contribution, we adopt the latter term, RISs, which are assumed to be composed of multiple reflective elements, that receive and re-radiate signals [4], [10], [12]–[14], [18]–[20].

A number of studies have investigated the theoretical performance of RISs in recent years [14], [19], [21]–[26]. To this end, the authors in [19] used the phase-shifts controlled by the illuminated reflective elements to fully optimize the received signal-to-noise-ratio (SNR). This work also showed that the outage probability (OP), the average symbol error rate, and the achievable rate, all are directly affected by the number of illuminated reflective elements, with greater numbers improving the end-to-end communications performance. It was shown in [21] that if two RISs work cooperatively to overcome a severe blockage, they can provide enhanced SNR compared to a single RIS enabled system. The authors in [27] showed that the OP and ergodic capacity improve with successive RISs working cooperatively to assist transmission, within Nakagami-m environments. While beyond the scope of this paper, we note that obtaining channel state information (CSI) is important for the successful operation of RISs and will be made more difficult for transmission via cascaded RISs. One possible solution is to incorporate passive beam steering between RISs working cooperatively, though...
it would increase the training overhead as more reflection coefficients need to be estimated [28]. It was shown in [29] that the cascaded CSI is sufficient for designing the cooperative beam steering at two RISs to maximize the data transmission rate. Furthermore, in [28], the CSI estimation for two RISs working cooperatively is significantly improved (in terms of overhead), while having high accuracy. This is essential to maximize the time resources available for data transmission given a limited channel coherence interval. The authors in [24] and [25] showed that practical implementations of RISs will surely be subject to errors in the desired phase shifts due to hardware imperfections in the reflective elements, or imperfect estimation. Hence, as the desired phase shifts from the illuminated reflective elements are often used to optimize RIS operation, accounting for their errors is essential for realistic assessment of the achievable performance [13]–[15], [19], [26]. While providing an opportunity to improve the end-to-end performance of wireless links, increasing the number of RIS stages will also be subject to practical considerations (such as, e.g., reliable CSI acquisition). Not only will it present difficulties with the estimation of CSI as discussed above, it will also entail significant challenges, for example when localizing users, which has already been shown to be a challenging issue in single RIS systems [30].

It is recalled that the theoretical performance analysis of wireless communication systems often makes use of first-order statistics, such as the probability density functions (PDFs) of the received signal envelope and received signal phase. Although these are useful for interpreting the overall distribution of metrics, such as the SNR, OP, etc., crucially, they provide no insight on how these metrics are distributed with respect to time. On the contrary, the second-order statistics, such as the level crossing rate (LCR), do convey this information and can be used in conjunction with the OP to determine the corresponding average outage duration (AOD) [31], [32]. For example, a primary use case of these concepts for RISs is in delay sensitive applications because of their potential to increase reliability and improve latency [22], [23]. Thus, acknowledging the investigation of the AOD in RIS systems is critical and is a key motivator for this work.

Unlike the theoretical treatment of performance analysis [14], [19], [21]–[26], the simulation of RIS systems has received less attention despite its importance for providing insights into the system performance in the presence of spatio-temporal variations. A simulator was implemented in [33] to model the RIS operation based on the 3GPP 5G channel study, discussed in [34]. This simulator provided useful insights into how RIS placement is crucial for improving the achievable rates; however, it neither considered spatial correlation effects arising from the close proximity of the reflective elements in the RIS, nor did it incorporate the impact of Doppler related effects. In this contribution, we develop a simulation framework, which is built upon underlying Gaussian random variables (RVs), for wireless transmission from a source to destination through multiple cooperative RISs. Through our analysis, we have been able to obtain expressions for a number of the first- and second-order statistics associated with product (or equivalently cascaded) complex Rician channels, including the complex autocorrelation function (ACF). Importantly, through the complex ACF, we are able to account for important channel properties through each of the cascaded links, such as potential Doppler effects, a dominant signal component, and a non-isotropic scattered signal contribution which caters for angular selectivity. By further exploiting the complex ACF and the properties of the fading model, we harness the power of autoregressive (AR) modeling [35] to implement our simulator. We recall that AR modeling has previously been successfully used for channel prediction [36], and the simulation of correlated Rayleigh and Nakagami-m fading channels [35], [37].

Following from the above, the main contributions of this paper are summarized as follows:

1) We present a new comprehensive simulation framework that enables the generation of realizations of the complex received signal, encapsulating the autocorrelation properties of the signal reflected by each illuminated reflective element, and also the spatial correlations between them.

2) Novel expressions for the distribution of the received signal phase for both single and cooperative RIS systems are derived, based upon the physical models representing the cascaded fading in each stage of the end-to-end communication link.

3) We obtain a closed-form expression for the complex ACF of the product of two Rician channels, which encapsulates the temporal variations of a dominant signal component, a non-isotropic scattered signal component, and Doppler effects. The non-isotropic scattered signal component caters for angular selectivity of the direction of departure (DoD) and direction of arrival (DoA) of the signals at the transmitting source, a RIS, and the receiving destination, respectively. This is subsequently extended to the product of multiple Rician channels.

4) We extend the system model of single RIS-assisted transmission including phase errors, to multiple cooperative RISs assisting transmission, which renders the proposed simulator particularly versatile.

5) Capitalizing on the above contributions, we indicatively simulate RIS-assisted device-to-device (D2D) communications (making use of either a single or multiple cooperative RISs) and evaluate the corresponding OP, LCR, and AOD while considering various realistic RIS configurations, phase errors, and critically, different practical signal propagation conditions.

The remainder of the paper is organized as follows: In Section II, the physical models are presented for both the single and cooperative RIS systems, along with some of the associated first- and second-order statistics for the product of multiple complex Rician channels, which arise as a result of the analysis performed here. Next, the simulation technique for generating the signal at each stage of an RIS-assisted transmission, is detailed in Section III. Following this, Section IV presents the system models for both single and cooperative RIS systems with phase errors. In Section V, single and cooperative RIS systems are simulated using our proposed
framework and insights into the performance of the considered systems under the prescribed conditions are provided. Lastly, Section VI outlines our concluding remarks.

Notation: The complex conjugate of \(x \) is given by \(x^* \), \(x^T \) denotes the transpose of vector \(x \), \(\arg(\cdot) \) returns the argument, while \(\otimes \) represents the Kronecker product. The \(\{ \cdot \} \in \mathbb{Q} \) notation is used to indicate that the elements in \(\{ \cdot \} \) are members of set \(\mathbb{Q} \). Also, the real numbers greater than zero are denoted as \(\mathbb{R}_{>0} \), non-negative real numbers including zero are represented by \(\mathbb{R}_{\geq 0} \), and the set of natural numbers greater than zero is denoted as \(\mathbb{N}_1 \). The statistical expectation operator is represented as \(\mathbb{E}[\cdot] \) and the variance operator is denoted by \(\mathbb{V}[\cdot] \), while \(\mathbb{P}[\cdot] \) denotes the probability operator. Circularly-symmetric complex Gaussian distributed RVs are denoted as \(X \sim \mathcal{CN}(a, b) \) where \(a \) is the mean value and \(b > 0 \) is the variance. The gamma function is denoted as \(\Gamma(\cdot) \) [38, Eq. (8.310.1)], \(K_x(\cdot) \) is the modified Bessel function of the second kind with order \(x \) [38, Eq. (8.407.1)], and \(I_x(\cdot) \) represents the modified Bessel function of the first kind with order \(x \) [38, Eq. (8.406.1)]. Finally, the Pochhammer symbol is denoted as \((\cdot)_x \) [39, Eq. (06.10.02.0001.01)].

II. PHYSICAL MODEL

For the single RIS system illustrated in Fig. 1(a), we assume that there is no direct link between the source and destination due to severe blockage effects. We also consider that there are \(L \) illuminated reflective elements available, and that the received signal at the destination is the superposition of signals coming from the \(L \) illuminated reflective elements; each of these signals is subject to a cascaded channel, corresponding to the paths between the source and the \(l \)th illuminated reflective element (i.e., \(p_l \)), and between the \(l \)th element and the destination (i.e., \(g_l \)). The simulation of this system is further detailed in Fig. 2 (with \(\Lambda \) being the number of RISs assisting transmission, i.e., depicted in Fig. 1(b), \(\Lambda = 1 \)), where the physical model introduced in the sequel is used to simulate the signal propagated through each stage of the transmission. We then apply knowledge of the RIS functionality (i.e., reflection coefficients and phase errors that will be introduced in Section IV) in the system model to obtain the received SNR at the destination.

In our physical model, for a single RIS case, we consider the optional presence of dominant signal paths between the source and the RIS and then between the RIS and the destination. Accompanying this is a scattered signal contribution which can be modeled as a zero-mean complex Gaussian random process [12]. As we will show later, for RISs, the scattered signal may exhibit non-isotropic transmission and reception behavior. It is also noted that each stage of the cascaded channel can be denoted in vector form as \(p = [p_1, \ldots, p_l, \ldots, p_L]^T \) and \(g = [g_1, \ldots, g_l, \ldots, g_L]^T \). Following from this, the \(l \)th illuminated reflective elements of both \(p \) and \(g \) are characterized as complex non-zero mean Gaussian RVs due to the superposition of the dominant and scattered signal contributions within each cascaded stage of the source-to-destination link. Therefore, the magnitudes of the \(l \)th illuminated reflective elements of both \(p \) and \(g \) follow the Rician distribution [40].

Fig. 1. A single (a) and a two cooperative (b) RIS-assisted system transmissions.

Fig. 2. Block diagram of the simulation of cooperative RIS-assisted system transmission using \(\Lambda \) RISs working cooperatively.
The complex signal envelope at the destination is denoted as
\[S = R \exp(j\Theta) \], where \(R \) is the received signal envelope and \(\Theta \) is the received signal phase. Also, the in-phase and quadrature components are represented by \(X \) and \(Y \), respectively. Based on this, it follows that \(S = X + jY \), \(R^2 = X^2 + Y^2 \), \(\Theta = \arg(X + jY) \), \(X = R \cos(\Theta) \) and \(Y = R \sin(\Theta) \). From Fig. 1(a), sub index \(\lambda = 1 \) refers to the path between the source and the RIS for each illuminated reflective element (i.e., \(p_l \)). Correspondingly, sub index \(\lambda = 2 \) refers to the path between the RIS and the destination for each illuminated reflective element (i.e., \(g_l \)). Letting the quadrature components, which make up the signal contribution from each illuminated reflected element, be represented by complex non-zero mean Gaussian RVs, the received signal power at the destination can now be expressed as

\[R^2 = \sum_{\lambda=1}^{L} \left[(B_{\lambda,l} + u_{\lambda,l})^2 + (C_{\lambda,l} + v_{\lambda,l})^2 \right], \tag{1} \]

where \(L \) is the number of illuminated reflective elements, and \(B_{\lambda,l} \) and \(C_{\lambda,l} \) are mutually independent Gaussian RVs with \(\mathbb{E}[B_{\lambda,l}] = \mathbb{E}[C_{\lambda,l}] = 0 \) and \(\mathbb{E}[B_{\lambda,l}^2] = \mathbb{E}[C_{\lambda,l}^2] = \sigma_{\lambda,l}^2 \). The time-varying amplitudes of the in-phase and quadrature components of the dominant signal component are represented by \(u_{\lambda,l} \) and \(v_{\lambda,l} \), respectively, with the variation related to the embedded Doppler effect [41]. The Rician \(k_{\lambda,l} \) factor represents the ratio between the total power of the dominant signal component, \(\sigma_{\lambda,l}^2 = u_{\lambda,l}^2 + v_{\lambda,l}^2 \), and the total power of the scattered signal component \(2\sigma_{\lambda,l}^2 \), with

\[\sigma_{\lambda,l} = \frac{\bar{r}_{\lambda,l}}{\sqrt{2(1 + k_{\lambda,l})}}, \tag{2} \]

where \(\bar{r}_{\lambda,l} = \sqrt{\mathbb{E}[R^2_{\lambda,l}]} \) denotes the root mean square (rms) of the signal envelope. Based on this, it follows that \(k_{\lambda,l} = \frac{u_{\lambda,l}^2 + v_{\lambda,l}^2}{2\sigma_{\lambda,l}^2} \), while by defining \(\varpi_{\lambda,l} = \arg(u_{\lambda,l} + jv_{\lambda,l}) \) as a phase parameter we have,

\[u_{\lambda,l} = \sqrt{\frac{k_{\lambda,l}}{1 + k_{\lambda,l}}} \bar{r}_{\lambda,l} \cos(\varpi_{\lambda,l}) \]

and

\[v_{\lambda,l} = \sqrt{\frac{k_{\lambda,l}}{1 + k_{\lambda,l}}} \bar{r}_{\lambda,l} \sin(\varpi_{\lambda,l}). \tag{3} \]

If only one reflective element is illuminated (i.e., \(L = 1 \) and the \(l \) subindex is omitted), the model in (1) simplifies to

\[R^2 = \prod_{\lambda=1}^{\Lambda} \left[(B_{\lambda} + u_{\lambda})^2 + (C_{\lambda} + v_{\lambda})^2 \right]. \tag{4} \]

Let us now consider the case where there are \(\Lambda \) RISs working cooperatively, in order to transmit the signal from the source to destination. To this effect, the received signal power at the destination can now be expressed as

\[R^2 = g^T \left[\prod_{\lambda=1}^{\Lambda-1} H_{\lambda} \right] p, \quad \Lambda \geq 2. \tag{5} \]

The number of illuminated reflective elements at the first RIS is \(L \) and the channel vector from the last RIS to the destination is denoted by \(g = [g_1, \ldots, g_m, \ldots, g_M]^T \), with \(M \) being the number of illuminated reflective elements at the last RIS.\(^1\) The channel matrices between the \(\Lambda \) cooperating RISs are represented by \(H_{\lambda} \), whilst the matrix dimensions in each \(H_{\lambda} \) correspond to the number of illuminated reflective elements at each RIS. Hereafter, when considering two RISs working cooperatively (i.e., \(\Lambda = 2 \)) the \(\lambda \) subindex within \(H_{\lambda} \) is omitted to become \(H \). For instance, in Figs. 1(b) and 2 (using \(\Lambda = 2 \)), with \(p \) and \(g \) as previously defined, therefore

\[H = \begin{bmatrix} h_{11} & \cdots & h_{1l} & \cdots & h_{1L} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ h_{m1} & h_{ml} & h_{mL} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ h_{ML} & \cdots & h_{Ml} & \cdots & h_{ML} \end{bmatrix} \]

represents the channel matrix between the two cooperating RISs assisting transmission [21]. Each element in all of the vectors and matrices are complex non-zero mean Gaussian RVs, corresponding to Rician fading. Also, when only one reflective element is illuminated at each RIS (i.e., \(L = M = 1 \) and therefore \(g, H_{\lambda} \) and \(p \) each reduce to a single complex Rician RV, respectively), the model in (5) simplifies to

\[R^2 = \prod_{\lambda=1}^{\Lambda+1} \left[(B_{\lambda} + u_{\lambda})^2 + (C_{\lambda} + v_{\lambda})^2 \right]. \tag{6} \]

A. Products of Rician channels

As a consequence of the physical models presented for RIS-assisted transmission, we now present new results for the product of Rician channels. This is predicated on the received signal models for the product of two and then \(\Lambda + 1 \) complex Rician channels, as shown in (4) and (6), respectively. The product of multiple RVs, and their corresponding received signal distributions, can be used to model cascaded fading channels, such as those encountered in multihop cooperative communications and multiple-input-multiple-output (MIMO) keyhole communication systems [42].

1) First-Order Statistics

Considering the mathematical model in (4), the PDF of the received signal envelope, \(R \), for the product of two complex Rician channels is given by [43, Eq. (19)],

\[\text{To avoid ambiguity, } g \text{ is always used to describe the channel vector between the last RIS and the destination in any RIS-assisted transmission. The size of } g \text{ changes depending on the number of RISs assisting the transmission, when it is a single RIS its length is } L, \text{ whilst when } \Lambda = 2 \text{ the length of } g \text{ is } M. \]
Theorem 2. For \(k_1, \ldots, k_{\Lambda+1} \in \mathbb{R}_{\geq 0}, \{\tilde{r}_1, \ldots, \tilde{r}_{\Lambda+1}\} \in \mathbb{R}_{\geq 0}, \{\varpi_1, \ldots, \varpi_{\Lambda+1}, \theta\} \in [-\pi, \pi], \) the PDF of the received signal phase of the model in (6), which considers the product of \(\Lambda + 1 \) complex Rician channels is given by,

\[
f_{\theta}(\theta) = \int_0^\infty \cdots \int_0^\infty f_{\theta|R_1,\ldots,R_{\Lambda+1}}(\theta|r_1,\ldots,r_{\Lambda+1}) \times f_{R_1,\ldots,R_{\Lambda+1}}(r_1,\ldots,r_{\Lambda+1}) \, dr_1 \cdots dr_{\Lambda+1},
\]

(11)

Proof: See Appendix C.

Several propagation scenarios arise from the model in (4), which have a significant impact on the properties of the received signal phase. For illustrative purposes, and without loss of generality, \(\varpi_\Lambda \) is considered to be time-invariant for all examples presented in this section. Figure 3 illustrates the form of the PDF of the received signal phase for a number of propagation scenarios of interest. Firstly, as expected, we observe that when \(k_1 = k_2 = 0 \), the received signal phase follows the circular uniform distribution. Most strikingly, when only one of the Gaussian RVs has a zero mean, it is found that the resultant received signal phase is still uniformly distributed, which is consistent with the result presented in [47]. This observation suggests that the clustering of the signal around a particular phase, which is introduced by the dominant signal component in one stage of the cascaded transmission, is diffused in the other stage of transmission. When both Gaussian RVs have non-zero means, both Rician \(k \) factors (i.e., \(k_1 \) and \(k_2 \)) control the concentration of the distribution around the maximum, which occurs at \(\theta = \varpi_1 + \varpi_2 \), while the minima is located at \(\theta = \varpi_1 + \varpi_2 + \pi \).

2) Second-Order Statistics: The backbone of our proposed simulation framework is the use of AR modeling to induce the time variant properties of the fading into the complex Gaussian RVs underlying each of the cascaded stages of transmission. Central to the construction of the appropriate AR model for channel simulation in our proposed framework is knowledge of the associated complex ACF. This requires expansion of the physical model to include other propagation related effects not apparent within the first-order statistics.
Initially, let us consider the product of two complex Rician channels given in (4). This is representative of the case when only one reflective element is illuminated for a single RIS-assisted transmission. For ease of understanding, and to remove any potential ambiguity, we let $\delta_\lambda(t)$ represent the complex amplitude of the dominant signal component, and $\varrho_\lambda(t)$ account for the scattered signal component in each of the complex Gaussian RVs in p and g. The time dependent complex received signal for a single Rician channel is already known as in [48]. We hereafter extend this result to the product of two Rician channels (in this analysis when a single reflective element is illuminated for the single RIS-assisted transmission case), which can be expressed as

$$S(t) = \prod_{\lambda=1}^{2} \bar{r}_\lambda \left[\varrho_\lambda(t) + \sqrt{k_\lambda} \delta_\lambda(t) \right],$$

(13)

where \bar{r}_λ and k_λ have been defined previously. When $\lambda = 1$, (13) represents the first stage of transmission which occurs between the source and the RIS (i.e., p), and when $\lambda = 2$, this denotes the second stage of transmission which occurs between the RIS and the destination (i.e., g). In addition, we let f_λ and α_λ represent the relative Doppler frequency and the DoA of the dominant signal component, respectively. Using [49], the dominant signal component, $\delta_\lambda(t)$, is expressed as

$$\exp \left(j \left(2 \pi f_\lambda t \cos (\alpha_\lambda) + \varphi_\lambda \right) \right)$$

where, φ_λ is the initial phase, uniformly distributed on the interval $[-\pi, \pi]$. Now by adopting the notation provided in [50, p. 82] a mathematical reference model for the scattered signal contribution, $\varrho_\lambda(t)$, can be written as

$$\varrho_\lambda(t) = \sqrt{\frac{T}{Q}} \sum_{q=1}^{Q} \exp \left[2j\pi t \left(f_D \cos (\alpha_D) + f_A \cos (\alpha_A) \right) \right] + f_A \cos (\alpha_A) + j \varphi_A,$$

(14)

where Q is the number of propagation paths, f_D and f_A are the maximum Doppler frequencies of the signal departing (denoted with subscript D) from the source and arriving (denoted with subscript A) at the RIS (i.e., f_D and f_A), and departing from the RIS and arriving at the destination (i.e., f_D and f_A), respectively. The Doppler shifts observed in an RIS system can occur for multiple reasons, such as the mobility of the source and destination, mobile scatterers in the local environment, or some combination thereof. The random DoA of the q^{th} propagation path with reference to the respective velocity vector is α_D, while α_A is the random DoA. The variable φ_A is a random phase uniformly distributed on $[-\pi, \pi]$ and is independent of α_D and α_A for all q.

This reference model allows greater flexibility in being able to consider either, or both ends of the transmission, to be in motion [50, p. 82].

It is noted here that since the RISs can be deployed in urban environments to assist transmission to users in blind zones [10], the scattered signal component may be subject to spatial filtering and as a consequence be non-isotropic in nature [51]. In this case, the distribution of the DoD or DoA of the scattered signal component can be modeled using the versatile Von Mises distribution [52]. This distribution can be used to model propagation scenarios in which the DoD or DoA of multipath waves are either isotropic or non-isotropic. The Von Mises distribution for the DoD (or DoA) of the scattered signal contributions, $f_A(\alpha)$, is given by [52]

$$f_A(\alpha) = \frac{\exp \left(\kappa A \cos (\alpha - \alpha_A) \right) }{2\pi I_0(\kappa A)}$$

(15)

where $\alpha_A \in [-\pi, \pi]$, $\alpha_A \geq 0$ controls the spread of the DoD (κA) and the DoA (κA). The mean DoD or DoA are accounted for by α_D and α_A, respectively, and each can take values in the range $[-\pi, \pi]$. When $\kappa A = 0$, (15) reduces to the circular uniform distribution and the signal received is the result of isotropic scattering. As κA increases, the DoD or DoA becomes increasingly unidirectional with $\kappa A \rightarrow \infty$ describing extremely non-isotropic scattering. As discussed in [52], a useful estimator of the spread of the DoD or DoA in polar coordinates for increasing values of κ (i.e., $\kappa > 1$) can be obtained by considering the inflection points of $f_A(\alpha)$ which are approximately equal to $\pm 1/\kappa A$. For highly non-isotropic scattering, e.g., for $\kappa A \approx 3$ and 5, the spread of the DoD or DoA of these contributions can be estimated as $2\sqrt{\kappa A}$, giving 66° and 51°, respectively.

Using the previous definition of the dominant signal component, $\delta_\lambda(t)$, and the scattered signal component, $\varrho_\lambda(t)$, the complex ACF with respect to the time lag, τ, of the model given in (13) is now presented by Theorem 4 below.

Theorem 4. For $\{k_\lambda, \tau, f_S, f_D, \kappa_D, f_A, \kappa_A\} \in \mathbb{R}_{\geq 0}$, $\{\bar{r}_\lambda\} \in \mathbb{R}_{> 0}$, $\{\alpha_\lambda, \alpha_D, \alpha_A\} \in [-\pi, \pi]$, the complex ACF

$$A_{\alpha}(\tau) = \frac{1}{\mathbb{E}[\varrho_\lambda(t)\varrho_\lambda(t+\tau)]},$$

(16)

where $\varrho_\lambda(t)$ is the complex amplitude of the dominant signal component, and $\varrho_\lambda(t)$ is the scattered signal component, respectively.

Using the previous definition of the dominant signal component, $\delta_\lambda(t)$, and the scattered signal component, $\varrho_\lambda(t)$, the complex ACF with respect to the time lag, τ, of the model given in (13) is now presented by Theorem 4 below.
of the model for the product of two Rician channels in (13) can be expressed as,

\[
\phi_{SS}(\tau) = \prod_{\lambda=1}^{2} \frac{\hat{r}_\lambda^2}{1 + k_\lambda} \times \left[\frac{I_0(\sqrt{\kappa_D A_\lambda^2 - 4\pi^2 f_3 A_\lambda^2 \tau^2} + j 4\pi \kappa D_\lambda \cos(\alpha D_\lambda) f D_\lambda \tau)}{I_0(\kappa D_\lambda)} \times \frac{I_0(\sqrt{\kappa_A A_\lambda^2 - 4\pi^2 f_3 A_\lambda^2 \tau^2} + j 4\pi \kappa A_\lambda \cos(\alpha A_\lambda) f A_\lambda \tau)}{I_0(\kappa A_\lambda)} \right. \\
\left. + k_\lambda \exp \left(j 2\pi f_3 A_\lambda \tau \cos(\alpha A_\lambda) \right) \right]. \tag{16}
\]

\textbf{Proof:} The proof is provided in Appendix D. \qed

The derived complex ACF in (16) is a general expression for both isotropic (i.e., \(\kappa_{D\lambda} = 0\) or \(\kappa_{A\lambda} = 0\)) and non-isotropic (i.e., \(\kappa_{D\lambda} > 0\) or \(\kappa_{A\lambda} > 0\)) scattering conditions that can occur between the source and the RIS, and then between the RIS and the destination. It is also recalled that is often more convenient to use the complex ACF in its normalized form, given by \(\phi_{SS}(\tau)\). This can be straightforwardly obtained by setting \(\hat{r}_\lambda = 1\) in (16).

As an example, now let us consider the real and imaginary parts of the complex ACF for the case where a source transmits to an RIS, illuminating a single reflective element, and the RIS reflects the signal to the destination. The real part of the normalized ACF for this type of scenario is given in Fig. 4(a). It can be seen that when either \(k_1\) or \(k_2\) are decreased, there is weaker correlation, as compared to the case where there is at least one strong dominant signal component present (e.g., \(k_1 = 5\) and \(k_2 = 0.8\)). Next, we compare the real part in Fig. 4(a) to the imaginary part in Fig. 4(b), which is a measure of the cross-correlation of the real and imaginary parts of the complex received signal [50]. We observe that in the presence of stronger dominant signal components, there is greater correlation between the two quadrature components in this particular example, where the scattering conditions have remained identical.

FIG. 4. The normalized complex ACF of a single RIS system with one illuminated reflective element (lines) in (16) alongside simulation results using an AR model order of 200 (shapes) for varying \(k_1\) and \(k_2\), with \(\omega_1 = \pi/4\) rad, \(f_{d1} = f_{d2} = 0\) Hz, \(\alpha_{d1} = \alpha_{d2} = 0\) rad, \(\kappa_{D1} = 2, \kappa_{D2} = 4, f_{D1} = 7\) Hz, \(f_{D2} = 0.3\) Hz, \(\alpha_{D1} = -\pi\) rad, \(\alpha_{D2} = \pi\) rad, \(\kappa_{A1} = 4, \kappa_{A2} = 2, f_{A1} = 0.2\) Hz, \(f_{A2} = 8\) Hz, \(\alpha_{A1} = \pi\) rad, and \(\kappa_{A2} = \pi/2\) rad: (a) the real part and (b) the imaginary part.

III. SIMULATION OF THE COMPLEX RECEIVED SIGNAL

Underlying our simulation framework is the well-known approach of AR modeling, which we use to introduce the necessary time-related variation in the complex received signal. AR modeling can be used to exploit the autocorrelation properties of a signal and has been successfully used to simulate wireless channels based on the theoretical model from [35], and the empirical model from [53] for the channel's complex ACF. In what follows, we provide an overview on how to generate \(p, H_1, \ldots, H_{L-1}\), and \(g\) over time. To assist with the understanding of the procedure, a block diagram is provided in Fig. 5. The simulator framework developed can be found here [54].

A. AR-based simulation

An AR model is an infinite impulse response filter in which the current output is dependent on the previous inputs. In
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
<th>Special Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td>Number of RISs</td>
<td>$\Lambda \in \mathbb{N}_1$</td>
<td>Single RIS: $\Lambda = 1$</td>
</tr>
<tr>
<td>τ (s)</td>
<td>Time lag</td>
<td>$\tau \in \mathbb{R}_{\geq 0}$</td>
<td></td>
</tr>
<tr>
<td>k_λ</td>
<td>Ratio between the total power of the dominant signal component and the total power of the scattered signal component</td>
<td>$k_\lambda \in [0, \infty)$</td>
<td>Rayleigh fading: $k_\lambda = 0$</td>
</tr>
<tr>
<td>$\bar{\nu}_\lambda$</td>
<td>The rms signal level</td>
<td>$\bar{\nu}_\lambda \in (0, 2.5]$</td>
<td>Normalized ACF, $\tilde{\phi}{SS}(\tau)$: $\bar{\nu}\lambda = 1$</td>
</tr>
<tr>
<td>$f_{\delta \lambda}$ (Hz)</td>
<td>Relative Doppler frequency of the dominant signal component</td>
<td>$f_{\delta \lambda} \in [0, \infty)$</td>
<td>No Doppler shift: $f_{\delta \lambda} = 0$</td>
</tr>
<tr>
<td>$\alpha_{\delta \lambda}$ (rad)</td>
<td>DoA of the dominant signal component</td>
<td>$\alpha_{\delta \lambda} \in [-\pi, \pi]$</td>
<td></td>
</tr>
<tr>
<td>$\kappa_{D\lambda}$</td>
<td>Spread of the departing scattered signal component</td>
<td>$\kappa_{D\lambda} \in [0, \infty)$</td>
<td>Isotropic: $\kappa_{D\lambda} = 0$</td>
</tr>
<tr>
<td>$f_{D\lambda}$ (Hz)</td>
<td>Maximum Doppler frequency from the departing side</td>
<td>$f_{D\lambda} \in [0, \infty)$</td>
<td>No Doppler shift: $f_{D\lambda} = 0$</td>
</tr>
<tr>
<td>$\bar{\alpha}_{D\lambda}$ (rad)</td>
<td>Mean DoD of the departing scattered signal component</td>
<td>$\bar{\alpha}_{D\lambda} \in [-\pi, \pi]$</td>
<td></td>
</tr>
<tr>
<td>$\kappa_{A\lambda}$</td>
<td>Spread of the arriving scattered signal component</td>
<td>$\kappa_{A\lambda} \in [0, \infty)$</td>
<td>Isotropic: $\kappa_{A\lambda} = 0$</td>
</tr>
<tr>
<td>$f_{A\lambda}$ (Hz)</td>
<td>Maximum Doppler frequency at the arriving side</td>
<td>$f_{A\lambda} \in [0, \infty)$</td>
<td>No Doppler shift: $f_{A\lambda} = 0$</td>
</tr>
<tr>
<td>$\bar{\alpha}_{A\lambda}$ (rad)</td>
<td>Mean DoA of the arriving scattered signal component</td>
<td>$\bar{\alpha}_{A\lambda} \in [-\pi, \pi]$</td>
<td></td>
</tr>
</tbody>
</table>
order to filter the complex white noise, the AR parameters must be estimated, whereas the number of AR parameters is equal to the AR model order. It can be seen in Fig. 5 that the complex ACF of the scattered signal contribution is used as the input for this procedure. To estimate the AR parameters, the complex ACF of the scattered signal contributions in (35) is used to establish the Yule-Walker equations, which are then solved (see [48] for further mathematical details of this process). For each of the scattered signal contributions reflected from each of the illuminated reflective elements in $p, H_1, \ldots, H_{\Lambda-1}$, or g, complex white noise must be filtered using the AR parameters estimated for the different complex ACFs of $p, H_1, \ldots, H_{\Lambda-1}$, and g. This technique ensures that the scattered signal reflected from each of the illuminated reflective elements at the RISs in $p, H_1, \ldots, H_{\Lambda-1}$, and g are all autocorrelated.

B. Spatial Correlation

Using a single RIS system as an example, we will now detail the approach used to generate spatial correlations between the scattered signals reflected by the illuminated reflective elements of the RISs. To achieve this, we create the departing and arriving spatial correlation matrices, denoted by $\Phi_{D\lambda}$ and $\Phi_{A\lambda}$, respectively. As shown in Fig. 5, these correlation matrices are used as inputs. In a single RIS system, when $\lambda = 1$, Φ_{D1} dictates the spatial correlations introduced by the placement of antennas (or single antenna) at the transmitting source. Reciprocally, Φ_{A1}, represents the spatial correlations between the illuminated reflective elements at the RIS. The spatial correlation matrix, Φ_{DA1} can be expressed as the Kronecker product of both sets of spatial correlations such that $\Phi_{DA1} = \Phi_{D1} \otimes \Phi_{A1}$. To generate the spatial correlations between the complex Gaussian RVs, a Cholesky lower decomposition is performed on Φ_{DA1} to generate w_1. This is then multiplied on the vectorized Gaussian RVs produced by the AR-based simulation, as described in Section III-A. This procedure must be repeated to introduce the desired spatial correlation between the signal reflected from each of the illuminated reflective elements at the RIS and propagated towards the destination (i.e., $\lambda = 2$). The spatial correlation matrix of the arriving signals at an RIS will be the same as the spatial correlation matrix of the signals departing the same RIS (i.e., $\Phi_{A1} = \Phi_{D2}$), even though they correspond to separate stages of the transmission process. This is because the illuminated reflective elements used to redirect the signal are in the same position and, thereby, subject to the same spatial correlation properties. This assumption is based on the physical arrangement of the illuminated reflective elements in an RIS, although the simulation is not limited to this. In other words, the spatial correlation matrices of the arriving and departing signal can be set such that $\Phi_{A1} \neq \Phi_{D2}$. As a result, the simulation framework proposed here can easily be adjusted for other applications, such as relays using adaptive antenna array structures, where different elements may be used for transmission and reception.
C. Complex Signal Formation

As shown in Fig. 5, the next stage of the simulation is the complex signal formation. The RVs representing the time-correlated scattered signal reflected from each of the illuminated elements now need to be altered to have the correct power and include a dominant component (if present). This is straightforwardly achieved by adding u_Λ and v_Λ from (3) to the zero mean in-phase and quadrature components respectively, which have been multiplied by σ_Λ in (2). This stage, and the two previous stages of the simulation framework are repeated until $p, H_1, \ldots, H_{\Lambda-1}$, and g are all generated, representing each stage of the communication link in RIS-assisted transmission.

D. Output

Lastly, depending on the RIS system (single or cooperative) $p, H_1, \ldots, H_{\Lambda-1}$, and g representing each stage of the RIS-assisted transmission are multiplied together to form the final complex received signal.

IV. AN RIS SYSTEM EXAMPLE

As an illustrative example of the use of our simulation framework within an RIS system, we now consider the cases of both single and cooperative RIS-assisted transmission. We first consider communication from a source to a destination through a single RIS (i.e., $\Lambda = 1$) having L illuminated reflective elements, as illustrated in Fig. 1(a). The signals before (i.e., p_l) and after (i.e., g_l) the RIS are assumed to be Rician distributed, as previously defined in Section II, and hence p_l and g_l are each modeled as complex non-zero mean Gaussian RVs. Based on this, the received signal at the destination using a single RIS with L illuminated reflective elements can be written as

$$y_1 = \sum_{l=1}^{L} g_l \eta_l e^{j\vartheta_l} p_l x + n,$$

where x is the signal transmitted by the source satisfying

$$\mathbb{E}[|x|^2] = P,$$

with P being the transmit power and $n \sim \mathcal{CN}(0, \sigma_n^2)$ denoting the additive white Gaussian noise (AWGN), with zero mean and variance σ_n^2. Furthermore, η represents the reflection coefficient introduced by the lth illuminated reflective element of the RIS, whilst ϑ_l represents the phase shift introduced by the lth illuminated reflective element of the RIS. Note that the received signal in (18) can also be expressed as [12]

$$y_1 = g^T \bar{\Theta} p x + n,$$

where p and g are defined as previously, and $\Theta = \text{diag}[\eta_1 e^{j\vartheta_1}, \ldots, \eta_L e^{j\vartheta_L}]$ is a diagonal matrix which captures the reflection functionality of the RIS elements.

Following from this, we now consider communication from a source to a destination through two RISs working cooperatively (i.e., $\Lambda = 2$), as illustrated in Figs. 1(b) and 2. We assume that the first RIS has L illuminated reflective elements, while the second RIS has M illuminated reflective elements. As before, we assume that there is no direct link between the source and destination due to severe blockage effects. The signal propagating between individual reflective elements is assumed to be Rician distributed as detailed in Section II, and hence p_l, h_{ml} and g_m are each modeled as complex non-zero mean Gaussian RVs. Based on this, the received signal at the destination through two cooperative RISs having L and M illuminated reflective elements, respectively, can be expressed as

$$y_2 = g^T \bar{\Theta}' \bar{H} \bar{\Theta} p x + n,$$

where g, H, $\bar{\Theta}$, \bar{p}, x, and n are as defined previously, whilst $\bar{\Theta}' = \text{diag}[\eta_1 e^{j\vartheta_1}, \ldots, \eta_m e^{j\vartheta_m}, \ldots, \eta_M e^{j\vartheta_M}]$ is a diagonal matrix which captures the reflection properties of the M illuminated reflective elements of the second RIS.\(^3\)

The reflection coefficients introduced by the lth and mth illuminated reflective element of the first and second RIS, are represented by η_l and η_m, respectively. Likewise, ϑ_l and ϑ_m represent the phase shift introduced by the lth and mth illuminated reflective element of the first and second RIS, respectively.

A. Phase Errors

Given the phases $\arg(p_l), \arg(g_l), \arg(h_{ml})$ and $\arg(h_{ml})$, the received SNR can be maximized by intelligently controlling the reflective properties of each illuminated reflective element within the RIS. In other words, the optimal choice of ϑ_l for the single RIS system is obtained when they are adjusted so as to cancel the overall phase shift $\arg(p_l) + \arg(g_l)$, whilst the optimal choice of ϑ_l and ϑ_m, for the cooperative RIS system, is obtained when they are adjusted so as to cancel the overall phase shift $\arg(p_l) + \arg(h_{ml}) + \arg(g_m)$. Now, assuming the phase shifts induced by the channels are not estimated perfectly and/or the desired phases cannot be set precisely, we consider the deviation of ϑ_m and ϑ_l from the ideal setting through the phase noise $\tilde{\vartheta}_m$ and $\tilde{\vartheta}_l$ terms, respectively, which are uniformly distributed between $[-\pi, \pi]$.

The received signal for the single and cooperative RIS systems can now be expressed as

$$y_1 = g^T \bar{\Theta} p x + n,$$

and

$$y_2 = g^T \bar{\Theta}' \bar{H} \bar{\Theta} p x + n,$$

respectively, where

$$\bar{\Theta} = \text{diag}[\eta_1 e^{j\vartheta_1}, \ldots, \eta_L e^{j\vartheta_L}], \quad \bar{\Theta}' = \text{diag}[\eta_1 e^{j\vartheta_1}, \ldots, \eta_m e^{j\vartheta_m}, \ldots, \eta_M e^{j\vartheta_M}],$$

and $\tilde{\vartheta}_l = \vartheta_l + \tilde{\vartheta}_l$. Following from (21) and (22), the received SNR for the single and cooperative RIS systems can now be written as

$$\text{SNR}_1 = \frac{\gamma |g^T \bar{\Theta} p|^2}{\sigma_n^2},$$

and

\(^3\)As previously mentioned, g is always used to describe the channel vector between the last RIS and the destination. In this instance, the size of g is M.\]
\[\text{SNR}_2 = \bar{\gamma} \left| g^T \hat{\Theta} \hat{\mathbf{H}} \hat{\mathbf{p}} \right|^2, \]
respectively, where \(\bar{\gamma} = P/\sigma^2_N \) is the average transmit SNR.

Alternatively, (23) can be expressed as

\[\text{SNR}_1 = \bar{\gamma} \left| \sum_{l=1}^{L} |g_l| |p_l| \eta_l e^{j(\hat{\theta}_l + \Omega_l + \omega_l)} \right|^2, \]

whereas (24) can be expressed as

\[\text{SNR}_2 = \bar{\gamma} \left| \sum_{m=1}^{M} \sum_{l=1}^{L} |g_{m_l}| |h_{ml}| |p_l| \eta_l' e^{j(\hat{\theta}_m' + \hat{\theta}_l + \Omega_m + \Omega_{ml} + \omega_l)} \right|^2, \]

where the complex non-zero mean Gaussian RV magnitudes, \(|g_l|, |g_{m_l}|, |h_{ml}| \) and \(|p_l| \) are independent Rician variates whilst \(\Omega_l, \Omega_m, \Omega_{ml} \) and \(\omega_l \) are the corresponding signal phases distributed in the range \([-\pi, \pi]\). Note that for the optimal choice of \(\hat{\theta}_l \) and \(\hat{\theta}_m' \), (25) reduces to

\[\text{SNR}_{\text{opt},1} = \bar{\gamma} \left| \sum_{l=1}^{L} |g_l| |p_l| \eta_l \right|^2, \]

whilst (26) reduces to

\[\text{SNR}_{\text{opt},2} = \bar{\gamma} \left| \sum_{m=1}^{M} \sum_{l=1}^{L} |g_{m_l}| |h_{ml}| |p_l| \eta_l' \right|^2. \]

V. PERFORMANCE ANALYSIS AND RESULTS

In this section, we use the proposed simulation framework with the system model described above to study the performance of D2D communications when assisted by single (i.e., \(\Lambda = 1 \)) and then cooperative (i.e., \(\Lambda = 2 \)) RIS systems (see Fig. 1). As well as presenting the OP for both systems, we also demonstrate the utility of the simulation framework by reporting important second-order statistics, such as the AOD and LCR. To the best of the authors’ knowledge, the offered results have not been previously reported in the open literature. We now provide details of the simulations for both communication systems.

Without loss of generality, it is assumed that the transmitting and receiving devices are equipped with a single directional antenna. Also, both systems operated in an urban environment, resulting in non-isotropic behavior of the scattered signals. At each stage of the communication link for both systems, we considered a dominant signal component with \(f_{\delta\lambda} = 0 \) Hz and \(\alpha_{\delta\lambda} = 0 \) rad. The rest of the parameters are summarized in Table II. It should be noted that \(f_{D1}, f_{A1} \) and \(f_{A2} \) have values which correspond to both the users in the D2D communication link being in motion. All other \(f_{D\lambda}, f_{\delta\lambda} \) Doppler frequencies, which are below 1 correspond to the stationary RISs. The proximity of the illuminated reflective elements in the single and cooperative RIS systems results in spatial correlations, such that each entry in the associated systems spatial correlation matrices is equal to 0.9 (i.e., \(\Phi_{A1} \) and \(\Phi_{D2} \) for the single RIS system, and \(\Phi_{A1}, \Phi_{D2}, \Phi_{A2} \) and \(\Phi_{D3} \) for the cooperative RIS system). In all simulations, an AR model order of 200 was used, with a sampling frequency of 1 kHz to generate \(2 \times 10^6 \) samples using a bias of \(1 \times 10^{-3} \). whilst the noise power of the AWGN was set to \(\sigma^2_N = 1 \).

A. Outage Probability

The OP, \(P_{\text{OP}}(\gamma_{\text{th}}) \), is defined as the probability that the instantaneous SNR, \(\gamma \), falls below a certain threshold, \(\gamma_{\text{th}} \), namely

\[P_{\text{OP}}(\gamma_{\text{th}}) \triangleq \mathbb{P} \left[\gamma \leq \gamma_{\text{th}} \right]. \]

For the figures presented in this subsection, we assume \(\gamma_{\text{th}} = 5 \) dB. Figure 6 depicts the OP versus \(\bar{\gamma} \) for both scenarios with and without phase errors, and for different values of \(\eta_l \) and \(\eta_m \). As expected, the OP is lower for higher values of the reflection coefficients and the OP is greater when there were phase errors present. Figure 7 shows the variation in the OP versus \(\gamma \) for the single RIS system, with an increasing numbers of illuminated reflective elements, \(L \), with and without phase errors, for \(\eta_l = 0.4 \). We observe that the OP decreases as the number of illuminated reflective elements increases, since there is a greater signal contribution re-radiated towards the receiving device. As expected, the OP is lowest in the absence of phase errors.

B. Average Outage Duration

The AOD, \(T(\gamma_{\text{th}}) \), measured in seconds, is used to describe how long on average a wireless system remains in outage [31], [32]. Mathematically, the AOD is given by [56, Eq. (1.29)]

\[4\]

While beyond the scope of this paper, we make the point that the proposed simulation framework can be used to test the performance of various signal processing techniques designed to be used with RIS systems. For example, approaches to phase optimization such as that proposed in [55].

Table II

<table>
<thead>
<tr>
<th>System</th>
<th>λ</th>
<th>k_λ</th>
<th>\bar{r}_λ</th>
<th>$\bar{\omega}_\lambda$</th>
<th>$\kappa_D\lambda$</th>
<th>$\bar{f}_D\lambda$</th>
<th>$\kappa_{A\lambda}$</th>
<th>$\bar{f}_{A\lambda}$</th>
<th>$\bar{\alpha}_{A\lambda}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single RIS</td>
<td>1</td>
<td>1.2</td>
<td>1.1</td>
<td>$\frac{\pi}{4}$</td>
<td>5</td>
<td>10</td>
<td>$\frac{5\pi}{6}$</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>(i.e., $\Lambda = 1$)</td>
<td>2</td>
<td>2</td>
<td>1.05</td>
<td>0</td>
<td>4</td>
<td>0.4</td>
<td>$\frac{\pi}{4}$</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Cooperative RIS</td>
<td>1</td>
<td>1.2</td>
<td>1.1</td>
<td>$\frac{\pi}{4}$</td>
<td>5</td>
<td>10</td>
<td>$\frac{5\pi}{6}$</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>(i.e., $\Lambda = 2$)</td>
<td>2</td>
<td>1.5</td>
<td>1.18</td>
<td>0</td>
<td>4</td>
<td>0.4</td>
<td>$-\frac{\pi}{2}$</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1.05</td>
<td>0</td>
<td>4</td>
<td>0.4</td>
<td>$\frac{\pi}{4}$</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Fig. 7. OP versus $\bar{\gamma}$ for the single RIS system, for an increasing number of illuminated reflective elements, with and without phase errors for $\eta_l = 0.4$.

$$T(\gamma_{th}) = \frac{P_{OP}(\gamma_{th})}{N(\gamma_{th})},$$

where $P_{OP}(\gamma_{th})$ is the OP and $N(\gamma_{th})$ is the LCR, defined as the rate at which the SNR crosses a given threshold level, γ_{th}, in a positive (or negative) direction per unit time.

For both the single and cooperative RIS systems, when the average transmitted SNR is at -7.5 dB and below, and in the presence of phase errors with a reflection coefficient of 0.5, the AOD is higher compared to when there are no phase errors present. The effect of varying the maximum Doppler frequency of the scattered signal contributions is depicted in Fig. 9. It is evident that when no phase errors are present in either system, the increase in the Doppler frequencies causes a decrease in the AOD, as expected, due to the increased temporal variation.

VI. Conclusion

For the first time, this paper has provided a method for simulating a cooperative RIS system where the received signal is autocorrelated, spatial correlations can exist between the scattered signal reflected from each of the illuminated reflective elements at an RIS, and phase errors can be present. To this end, physical models for both single and cooperative RIS-assisted transmission have been presented, with the fluctuation of the signal transmitted between the reflective elements assumed to follow that described by the Rician fading model. Based on the physical models, novel formulations for the PDF of the received signal phase were provided for the product of two and multiple complex Rician channels. A number of ex-
Fig. 9. AOD versus γ for single and cooperative RIS systems in RIS-assisted D2D communication, with and without phase errors and $\eta = \eta_m = 0.6$ when $L = M = 4$. Black lines represent the single RIS system and grey lines indicate the cooperative RIS system. The solid lines used f_{D1} and f_{A1} as provided in Table II and the dashed lines used $f_{D1} = f_{A2} = 20$ Hz, $f_{A1} = f_{D2} = 15$ Hz for the single RIS system and $f_{D1} = f_{A3} = 20$ Hz, $f_{A1} = f_{D2} = f_{A2} = f_{D3} = 15$ Hz for the cooperative RIS system. Here, $\theta_e = \theta_f$ for the single RIS system and $\theta_e = \theta_l + \theta_m$ for the cooperative RIS system.

APPENDIX A
PROOF OF THEOREM 1

We first consider the mathematical model given in (6), which is the product of $\Lambda + 1$ complex non-zero mean Gaussian RVs. The PDF of the received signal envelope can be determined by extending the principle used in [43, Theorem IV.3] to $\Lambda + 1$ complex non-zero mean Gaussian RVs. The resultant expression of the PDF of the received signal envelope for the product of $\Lambda + 1$ complex Rician channels is shown in (8).

APPENDIX B
PROOF OF THEOREM 2

The PDF of the received signal phase for the product of two complex Rician channels is found by integrating the joint envelope-phase distribution with respect to R, the received signal envelope. The joint envelope-phase distribution of the product of two independent non-zero mean complex Gaussians is already known as [43, Eq. (6)],

$$f_{R,\phi}(r, \theta) = \frac{2r \exp (-k_1^2 - k_2^2)}{\pi \sigma_1^2 \sigma_2^2}$$

$$\times \sum_{b, c = 0}^{\infty} \frac{I_b + c(2\beta)}{b!c!} \left(\frac{\beta}{2 \cos \theta - \phi_1 \phi_2} \right)^{b+c}$$

$$\times \left(\frac{k_1}{k_2} \right)^{b-c} K_{b-c} \left(\frac{2r}{\sigma_1 \sigma_2} \right),$$

where $\beta = \sqrt{2r k_1 k_2 \cos(\theta - \phi_1 - \phi_2)}/\sigma_1 \sigma_2$, and corresponds to the joint envelope-phase distribution of (4). By first substituting $\sigma_1 = \frac{r_1}{\sqrt{2(1 + k_1)}}$ and $\sigma_2 = \frac{r_2}{\sqrt{2(1 + k_2)}}$ (from (2) with the l subscript now removed) into (31) and then integrating the result with respect to the received signal envelope by sequentially using the identities [39, Eq. (03.02.06.0037.01)] and [38, Eq. (6.561.16)], results in (10).

APPENDIX C
PROOF OF THEOREM 3

The PDF of the received signal phase for the product of $\Lambda + 1$ complex Rician channels is obtained by following the same procedure as presented in [43, Appendix A]. Now it is extended to $\Lambda + 1$ complex non-zero mean Gaussian RVs and integrated with respect to the received signal envelope to obtain (11). This completes the proof.

APPENDIX D
PROOF OF THEOREM 4

The ACF of a wide sense stationary process may be written as $\phi_{SS}(\tau) = E[S(t)S^*(t + \tau)]$, where t is the current time and τ is the time lag [50]. Using (13) as a model for the complex received signal when one reflective element is illuminated and after some mathematical manipulations the complex ACF may be expressed as

$$\phi_{SS}(\tau) = E[S(t)S^*(t + \tau)]$$

and point-to-point communications which make use of antenna arrays and cascaded links.
\[\phi_{\lambda_1 \lambda_2}(\tau) = \lim_{Q \to \infty} \sqrt{\frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E}\left[(j2\pi f_{DA} t \cos (\alpha_{q,D}\lambda) + 2\pi f_{AX} t \cos (\alpha_{q,A}\lambda) + \varphi_q,\lambda) \right]}. \]

(33)

\[\phi_{\lambda_1 \lambda_2}(\tau) = \lim_{Q \to \infty} \sqrt{\frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E}\left[(j2\pi f_{DA} t \cos (\alpha_{q,D}\lambda)) \exp (j2\pi f_{AX} t \cos (\alpha_{q,A}\lambda)) \right]}. \]

(34)

\[\phi_{\lambda_1 \lambda_2}(\tau) = \frac{I_0 \left(\sqrt{(\kappa_D\lambda)^2 - 4\pi^2 (f_{DA})^2 \tau^2 + j4\pi\kappa_D \cos (\alpha_D\lambda) f_D t \tau} \right)}{I_0 (\kappa_D\lambda)} \times \frac{I_0 \left(\sqrt{(\kappa_A\lambda)^2 - 4\pi^2 (f_{AX})^2 \tau^2 + j4\pi\kappa_A \cos (\alpha_A\lambda) f_A t \tau} \right)}{I_0 (\kappa_A\lambda)}. \]

(35)

Evaluating the autocorrelation of the scattered signal component separately for each complex Gaussian RV gives (33) shown at the top of the page. This conveniently reduces to (34), which is again shown at the top of the page.

Knowing that \(\alpha_{D\lambda} \) and \(\alpha_{A\lambda} \) are independent RVs

\[(\mathbb{E}[\alpha_{D\lambda} \alpha_{A\lambda}] = \mathbb{E}[\alpha_{D\lambda}] \mathbb{E}[\alpha_{A\lambda}]) \]

(32)

along with (38, Eq. (3.338.4)), yields (35), shown at the top of the page. Now substituting (35) into (32), we obtain the complex ACF given in (16), completing the proof.

REFERENCES

[34] “3GPP TR 38.901 V16.1.0 - Study on channel model for frequencies from 0.5 to 100 GHz,” Dec. 2020.

Paschalis C. Sofotasios (S’07-M’12-SM’16) was born in Volos, Greece, in 1978. He received the M.Eng. degree from Newcastle University, U.K., in 2004, the M.Sc. degree from the University of Surrey, U.K., in 2006, and the Ph.D. degree from the University of Leeds, U.K., in 2011. He has held academic positions at the University of Leeds, U.K., University of California at Los Angeles, CA, USA, Tampere University of Technology, Finland, Aristotle University of Thessaloniki, Greece and Khalifa University of Science and Technology, UAE, where he currently serves as Associate Professor in the department of Electrical Engineering and Computer Science. His research interests are in the broad areas of physical layer digital and optical wireless communications as well as topics relating to pure mathematics and statistics. Dr. Sofotasios serves as a regular reviewer for several international journals and has been a member of the technical program committee of numerous IEEE conferences. He was an Associate Editor for IEEE COMMUNICATIONS LETTERS from 2015 to 2019 and a TPC Co-Chair for the Communication Theory Track of IEEE Globecom 2020. Furthermore, he received the Exemplary Reviewer Award from IEEE COMMUNICATIONS LETTERS in 2012 and from IEEE TRANSACTIONS ON COMMUNICATIONS in 2015 and in 2016. Dr. Sofotasios is a Senior Member IEEE and he received the Best Paper Award at ICUFN 2013, and was runner up at IEEE ICT 2016 and IEEE Globecom 2018.

Michail Matthaiou (Fellow, IEEE) was born in Thessaloniki, Greece in 1981. He obtained the Diploma degree (5 years) in Electrical and Computer Engineering from Aristotle University of Thessaloniki, Greece in 2004. He then received the M.Sc. (with distinction) in Communication Systems and Signal Processing from the University of Bristol, U.K. and Ph.D. degrees from the University of Edinburgh, U.K. in 2005 and 2008, respectively. From September 2008 through May 2010, he was with the Institute for Circuit Theory and Signal Processing, Munich University of Technology (TUM), Germany working as a Postdoctoral Research Associate. He is currently a Professor of Communications Engineering and Signal Processing and Deputy Director of the Centre for Wireless Innovation (CWI) at Queen’s University Belfast, U.K. after holding an Assistant Professor position at Chalmers University of Technology, Sweden. His research interests span signal processing for wireless communications, beyond massive MIMO, intelligent reflecting surfaces, mm-wave/THz systems and deep learning for communications.

David Morales-Jimenez (M’13–SM’19) is an Ryc Research Professor with the Department of Signal Theory, Networking and Communications at University of Granada (Spain). He received the M.Sc. and Ph.D. degrees in Telecommunication Technologies from University of Malaga (Spain) in 2008 and 2011, respectively. Between 2011 and 2013 he was a Postdoctoral Fellow at Universitat Pompeu Fabra (Barcelona, Spain). He then joined the Hong Kong University of Science and Technology (HKUST), first as Visiting Scholar (2014–2016) and then as Research Assistant Professor (2016–2018) with the Department of Electronic and Computer Engineering, He was a Lecturer (Assistant Professor) at Queen’s University Belfast (2018–2021) and an Associate Professor at University of Malaga (2021–2022). He also held visiting appointments at University College London (Electronic and Electrical Engineering, 2010) and at Stanford University (Statistics Department, 2015). His research interests include statistical signal processing, random matrix theory, and high-dimensional statistics, with multidisciplinary applications to wireless communications and computational biology.

Muhammad Ali Bahar Abbasi (Member, IEEE) received a B.S. degree in electrical engineering from COMSATS University Islamabad (CUI), Pakistan, an M.S. degree in electrical engineering from the National University of Sciences and Technology (NUST), Islamabad, Pakistan, in 2013, and the PhD degree in electrical engineering from Frederick University, Cyprus, in 2017. From 2017 to 2019, he held a Research Fellowship with the Centre of Wireless Innovation (CWI), Queen’s University Belfast (QUB), Belfast, U.K. He is currently a Lecturer (Assistant Professor) with QUB. He has authored or co-authored over 80 journals and conference papers and contributed five book chapters. His research grant portfolio includes academic ownership of over £750k. His key projects include 6G-SANDBOX SNS HE, DSTL EME Hub and REFLECT-MMWAVE. He was a recipient of the Erasmus Mundus INTACT Doctoral Scholarship by the European Union in 2014. He has been an IEEE Antennas and Propagation Society (AP-S) Young-Professional Ambassador since 2022, IET-Young-Professional since 2017, and a Grand Prize Winner of the Mobile World Scholar Challenge at the Mobile World Congress (MWC) 2019. He has acted as a publication chair, a session chair, a technical program committee member, and a reviewer in several scientific conferences and workshops.