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Abstract—The identification of patterns and changes in time-
series using the autocorrelation function (ACF) is traditionally
used in several applications from communications, multimedia to
remote health monitoring. Existing ACF implementations have
tried to meet the throughput requirements of specific domains by
mainly using time-domain approaches, however such techniques
require several costly multiplications, which hinder their use in
power-constrained devices, essential in emerging ACF-based edge
applications. Frequency-domain (FD-ACF) approaches could re-
duce the computational complexity of the ACF calculation, but
their use is limited in specific domains, leaving room for further
power-aware algorithmic and architectural optimizations. This
paper presents a framework, named ACOR, for the design
of energy-efficient pipelined ACF architectures under various
settings, throughput and energy requirements that vary across
ACF-based applications. The proposed framework allows the
quick exploration of ACF architectures for different sampling
window sizes, window overlapping ratios, number of lags, and
precision levels, which is impossible with the existing scattered
domain-specific works. Our experimental results show that when
compared with existing ACF architectures used in bio-signal
analysis, linear predictive coding and telecommunications our
proposed framework achieves up to 27.18%, and 51.47% reduc-
tion in the circuit area and energy consumption, respectively,
with a slight throughput reduction of 8%.

Index Terms—Fast autocorrelation calculation (FACF), fast
Fourier transform (FFT), pipelined autocorrelation architecture.

I. INTRODUCTION

In recent years, various signal processing applications, are
increasingly executed on energy-constrained devices. These
applications generally require numerous operations, such as
multiplications, to analyze and compare signals in real-time.
This often involves computationally intensive workloads, in-
cluding convolutions and correlations. Among them, the au-
tocorrelation function (ACF) represents a special case of
correlation in which a single input signal is compared with
a time-shifted version of itself.

The ACF is commonly employed in various algorithms,
such as autoregressive modeling, power spectral analysis
(PSA) , linear predictive coding (LPC), and signal syn-
chronization which are pivotal for commonly used sig-
nal processing applications, like bio-signal analysis [1–3],
telecommunications [4], lidar systems [5] and audio pro-
cessing/compression algorithms[6, 7]. While providing key
insights, the ACF calculation is considered to be one of the
foremost energy-consuming parts of these algorithms. Indeed,
most existing approaches [1–7], utilize only a predetermined
number of lags p of the ACF out of the N total window
samples, as the ACF computational complexity of the re-

quired multiplications is O(pN). Therefore, various pipeline
dedicated circuits have been proposed to efficiently perform
the required operations while also achieving high processing
throughput.

To reduce the energy dissipation of the power-dominant
arithmetic operations (i.e. multiplications), several time-
domain-based (TD-ACF) architectures have been devised.
These architectures, based on either multiply-accumulate
(MAC) [1, 2, 5, 6] or systolic architectures [3, 8], perform the
required multiplications in a pipelined manner. While the TD-
ACF architectures are relatively simple and straightforward,
they present high energy consumption due to their quadratic
computational complexity

(
O(pN)

)
. To this end, frequency-

domain (FD-ACF) algorithms [9–11], based on the low-
complexity fast Fourier transform (FFT), can be applied to
achieve a loglinear computational complexity of O(N log2 N).
As in many applications, the number of utilized lags p for
the ACF calculation is significantly smaller than the sam-
pling window size N , these full-sized FFT-based FD-ACF
methods [9–11] not only require more multiplications, but
also result in significantly more hardware units compared
with the TD-ACF methods. This is attributed to the complex
multiplications (rotations) of the FFT algortithm [12]. Finally
in many applications in order to extract further information
[13] of a given input signal, an overlapping ratio R resulting
in Q = 1

1−R distinct input window channels is employed,
resulting to further energy/hardware overhead.

Given the vast number of application domains that utilize
the ACF and the scattered, non-optimized architectures that
the existing works have employed, it is currently impossible
for designers to identify the best choices that meet their
requirements/specifications. Therefore, this paper introduces
a novel FD-ACF architecture generation framework named
ACOR, that based on the specifications of an application can
provide an energy-efficient ACF architecture for a given size p,
N , window overlapping ratio (R), input processing throughput
T and precision level. The contributions of this paper can be
summarized as follows:

1) Reformulate the conventional full FFT-based FD-ACF
achitectures based on a revised fast autocorrelation al-
gorithm [14] that requires smaller p sized FFTs instead
of full N sized FFTs. Therefore, a computational com-
plexity of O(N log2 p) is achieved, resulting in a drastic
reduction of hardware units.

2) Adaptively generate optimized ACF architectures for
a given input processing throughput T and window-



overlapping ratio R. This allows us the trade-off through-
put for area and power consumption while facilitating
the calculation of multiple overlapping windows. Our
hardware savings are even higher if a multi-channel
architecture is employed.

3) Redesign the FFT complex multipliers (rotators) by in-
troducing a novel multiplierless technique using only
a few adders, multiplexers, and bit-shifters. Unlike the
existing ones [15–18], this technique jointly minimizes
the employed adders and multiplexers, resulting in signif-
icant power improvements compared to generic complex
multipliers and other optimizations methods.

4) Apply architecture level optimizations on the proposed
ACOR generated ACF architectures based on the input
data x[n]. If x[n] ∈ R then several optimizations in
terms of the required number of multiplier and hardware
units can be performed due to the underlying conjugate
symmetries that arise at the frequency domain [19].

5) Demonstrate the efficacy of our proposed approach by
performing an architecture exploration in designing ACF
calculation units of various throughputs, overlapping ra-
tios and lag samples that are suitable for specific ap-
plications with particular requirements. Our experimental
results indicate that when the resultant ACF architectures,
are synthesized in 45 nm, up-to 27.18% and 51.47%
savings are achieved in terms of the area, and energy
consumption, respectively with a throughput penalty of
around 8%.

The rest of the paper is organized as follows. Section II
discusses the background and challenges of the existing ACF
methods. Section III presents the proposed approach and the
design steps of ACOR. Section IV presents a complexity
analysis of the produced architectures and our experimental
results. Section V draws the final conclusions.

II. BACKGROUND AND CHALLENGES

This section introduces some basic background regarding
the existing ACF calculation algorithms and their compu-
tational complexity in terms of the number of operations.
Proceeding that, previously proposed ACF hardware architec-
tures are presented, along with some challenges that remained
addressed.

A. Autocorrelation function (ACF) calculation

The ACF for a discrete windowed time-series x[n] can be
computed according to:

c[n] =

N−n−1∑
k=0

x[k]x∗[k + n] | n ∈ [0, p− 1] (1)

where N is the number of input window samples and p the
number of required lags and x∗[n] is the complex conjugate of
x[n] (if x[n] ∈ R then x∗[n] = x[n]). Computing directly, at
the time-domain (TD-ACF), the p first coefficients c[n] of (1)
results in pN− p(p−1)

2 total multiplications which comprise of

Algorithm 1 Rader ACF algorithm [14]

1: Xold[k]← 0
2: C[k]← 0 where k ∈ [0, 2p− 1]
3: for i = 0 : N/p− 1 do ▷ Subsequencies
4: Xnew[k]← F

{
x[ip : (i+ 1)p− 1]∥⃗0p

}
5: C[k]← C[k] +X∗

new[k]
[
Xnew[k] + (−1)kXold[k]

]
6: Xold[k]← Xnew[k]
7: end for
8: c[n]← (1/N)F−1

{
C[k]

}
the main processing overhead of several applications [1, 2, 5–
7].

Due to the O(pN) complexity of the TD-ACF methods
an FFT-based algorithm can be employed to reduce the com-
putaional complexity to loglinear order. So, according to the
Wiener-Khinchin theorem, (1) can be computed with two FFTs
as [9–11]:

c[n] = F−1
{∣∣∣F{x[n]∥⃗0N}∣∣∣2} (2)

where x[n]∥⃗0N is the zero-padded input signal with N addi-
tional samples (⃗0N ) to avoid the frequency-domain aliasing
and F ,F−1 are the oversampled 2N forward and inverse
FFT algorithms, respectively. Finally, only the p first ACF
coefficents are utilized. The computational complexity of (2)
is O(N log2 N) and the total number of operations depend on
the implementation of the forward and inverse FFT (F ,F−1)
and the squaring operation (| · |2).

While (2) may have reduced the computational complexity
of the TD-ACF calculation, it is clear that for small values of
p, the direct method (1) outperforms the FFT-based one (2). To
this end, Rader in 1970 [14] proposed an improved autocorre-
lation algorithm which by segementing the original sequence
in smaller ones and perfoming smaller sized FFTs and by
leveraging the circular shift properties of the FFT achieved
a computational complexity of O(N log2 p). Particularly, as
show in line 4 of Alg. 1 the input sequence x[n] is seperated
in N/p parts of size p and which are then zero-padded with p
additional samples (⃗0p). Following that, the 2p sized FFTs of
each subsequence is computed in order to compute the ACF
at the frequency-domain (line 5). Finally a scaled IFFT of
size 2p is performed (line 8), while keeping the p first output
ACF coefficients. Regarding the computational overhead of
Alg. 1, there are N/p + 1 FFTs of size 2p (lines 4, 8) and
N/p− 1 complex multiplications (line 5), which account for
a combined computational complexity of O(N log2 p).

B. Overlapping windows

In many PSA and LPC applications [1, 6] a window function
ϕ[n] (i.e. hanning, hamming, gaussian, etc.) is utilized to limit
the spectral leakage of the side lobes of the conventional rect-
angular window [13]. Whereas very beneficial, as the values
of ϕ[n] approach to 0 near the start and the end of the time-
window, information of the original signal at these regions
is lost. To compensate for this loss overlapping windows are
used as shown in Fig. 1. In this case the overlapping ratio is
R = 0.5 since half of the input data reutilized. As in [20] the



Fig. 1: Multi-channel windowing for Q = 2.

time-windows can be seperated in Q = 2 channels (channel 0,
channel 1), thus the computational workload is doubled for a
single input sample. Furthermore, if R = 0.75 then Q = 4
channels are need, hence the computational workloaded is
quadripled for a single input sample. Hence, for the rest of
the paper we distiguish the explored architectures in single-
channel (SC) and multi-channel (i.e. MCQ2, MCQ4). Also we
define a multi-channel architecture of T = 1 if it facilitates
the processing of all the Q total channels simultaneously.

C. Autocorrelation function (ACF) architectures

TD-ACF architectures: To efficiently compute the ACF co-
efficients of (1), in recent works several TD-ACF hardware
architectures have been proposed, which can be distinguisted
in two types: the multiply-accumulate (MAC) [1, 2, 5, 6] and
systolic-based pipelined architectures [3, 8]. As shown Fig.
2, both TD-ACF architectues utilize p generic multipliers,
to perform the multiplications of (1). In case of the MAC-
based approach (Fig. 2a) the multipliers are connected in
parallel, while for the systolic based approach (Fig. 2b) they
are serially connected. Furthermore, both these architectures
proccess one sample per clock, thus the achieved processing
throughput is T = 1. Also in both cases, the number of
required mutlipliers increases proportionally to the total re-
quired lags p in order to maintain T = 1 (unrolled case),
while utilizing p/2 mutlipliers will result in half the area and
power and T = 0.5 (folded case). Consequently, there is linear
relationship between the number of multiplication units, the
area and power and an inverse-linear relationship with the
achieved processing throughput as also mentioned in [1].

FD-ACF architectures: As discussed in Section II-A exist-
ing FD-ACF approaches [9, 10] require the utilization of 2
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Fig. 2: Existing TD-ACF architectures. (a) MAC based TD-ACF
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FFTs (F ,F−1) of full size 2N and a complex multiplication
unit. Note that the IFFT can be implemented with a properly
scaled forward FFT as F−1 = 1

2NF [21]. Therefore, in Fig.
3 a pipelined implementation for T = 1 is presented (unrolled
case). This architecture is comprised of 4 SDF radix-22 [12]
FFTs and a complex multiplication unit which computes the
magnitute of the output of the two forward FFTs (F). Also it
is important to note that the input samples x[n] are in natural
order and the outputs X[k] are in bit-reverse order (N2B). Thus
to compensate for this scambling the two inverse FFTs (F−1)
are designed for bit-reverse inputs and natural outputs (B2N),
respectively, so the final ACF coefficients c[n] are in correct
order. Eventually, such a pipelined FD-ACF architecture of
Fig. 3 requires 6 log2 N − 2 real multipliers as each N sized
SDF architucture consist of log2 N/2−1 FFT rotators [12] (3
real multipliers per FFT rotator are utilized).

D. Challenges

Although the existing TD-ACF architectures have been
adopted in many signal processing applications and the full
FFT-based FD-ACF approach seems promising, there are some
clear design challenges that can be summarized as follows:

1) The MAC-based and systolic-based achitectures Fig. 2
scatterly proposed in [1–3, 5, 6, 8], are based on the direct
TD-ACF computation of (1), presenting high energy
consumption due to the the p total multipliers that are
required in order to achieve T = 1. Futhermore, their
computational complexity is O(pN) thus these architec-
tures are ideal for small values of p.

2) The full FFT-based architecture of Fig. 3 has a loglinear
computational complexity O(N log2 N) but it is outper-
formed by its TD-ACF counterparts for small values of
p. Furthermore the multiplicands of FFT rotators are
a-priori know, thus developing optimized multiplierless
techniques [17, 18], is crucial for further energy savings.

3) The low-complexity ACF calculation algorithm, proposed
in [14] may have reduced the required number of opera-
tion (O(N log2 P )) but it have not efficiently mapped in a
hardware architecture that leverages the partitioning of a
original sequence x[n] into smaller subsequences of size
p. Also the original algorithm targeted non-overlapping
windows neglecting the case of multi-channel windowing
(overlapping windows). Furthermore, additional microar-
chitecture optimizations can be achieved if the input
signal x[n] ∈ R.

4) All the previously proposed architectures where applied
on a specific case study. However, exploring the options
and identifying the best of the particular domain require-
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ments such as: the size N , p, the overlapping ratio R
(or channels Q) and the processing throughput T is chal-
lenging and is not yet done in literature. This is especially
needed now as several autocorrelation based applications
are quickly growing and need to be integrated in portable
devices with high energy efficiency.

III. PROPOSED APPROACH

To address the challenges discussed in the preceding section,
the ACOR design framework is introduced. This framework
enables the generation of optimized energy-efficient FD-ACF
architectures by taking into account the required input spec-
ifications, including N , p, R, Q, T , and accuracy level (W :
word length, F : fractional part) as shown in Fig. 4. The ACOR
framework comprises several optimization steps, beginning
with algorithmic optimizations derived from [14]. Following
that, the employed multiplierless architectures are introduced
for the design energy efficient FFT rotator. Eventually, based
on the required throughput, windowing scheme and input sig-
nal x[n] the various architecture optimizations are presented.

A. Algorithmic reformulation & Hardware mapping

Single-channel rectangular windowing: As previously men-
tioned in Section II-A, Alg. 1 was designed to achieve a
computational complexity of O(N log2 p). Furthermore, this
algorithm have been conceived [14] for a single-path non-
overlapping rectangular window. Thus, the root architecture
(SC-unrolled) of the proposed ACOR framework is based on
[14], for T = 1 is illustrated in Fig. 5a.

The proposed SC-unrolled architecture can be divided into
three stages, the input, intermediate and output stages. The first
and last stages are similar to the ones used in the conventional

Algorithm 2 Proposed multi-channel ACF algorithm

1: Inputs: R,N, p, Twin

2: Q← 1
1−R

3: for q = 0 : Q− 1 do ▷ Channels
4: for t = 0 : Twin − 1 do ▷ Windows/channel
5: x̂[n]← ϕ[n] · x( qNQ + tN : qN

Q + (t+ 1)N − 1)
6: Xold[k]← 0
7: C[k]← 0 where k ∈ [0, 2p− 1]
8: for i = 0 : N/p− 1 do ▷ Subsequencies
9: Xnew[k]← F

{
x̂[ip : (i+ 1)p− 1]∥⃗0p

}
10: C[k]← C[k] +X∗

new[k]
[
Xnew[k] + (−1)kXold[k]

]
11: Xold[k]← Xnew[k]
12: end for
13: c[q, t, n]← (1/N)F−1

{
C[k]

}
14: end for
15: end for
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Fig. 5: (a) Root SC-unrolled ACOR architecture. (b) MCQ-unrolled
ACOR architecture.

full FFT-based FD-ACF approach shown in Fig. 3, with the
only difference that p-sized FFTs are used instead of N -
sized ones. The input FFTs are used to computed the 2p-sized
forward FFT, stated in line 4 of Alg. 1, while its output coun-
terpart is utilized of the final 2p-sized IFFT, shown in line 8.
Additionally, at the intermediate stage, a p-sized shift-register
is placed after the outputs of the forward FFTs to save the val-
ues Xold. As the values Xnew and Xold are in bitreversed order
the top complex multiplier computes X∗

new[k]
[
Xnew[k] +Xold[k]

]
,

whereas the bottom one computes X∗
new[k]

[
Xnew[k]−Xold[k]

]
. After

that, a p-sized circular shift register and an adder are employed
to compute the summation of line 5. Finally the outputs of
the IFFTs are combined and the ACF coefficients c[n] are
computed in natural order.

Multi-channel windowing: In order to generalize and ex-
pand the SC-unrolled architecture (Fig. 5a) to the multi-
channel case, as discussed in Section II-B a modified ACF
algorithm is proposed in Alg. 2. The total number of channels
is computed as Q = 1

1−R , where R is the overlapping ratio,
and Twin are the total time-windows per channel. So for each
channel q (line 3) and time-window per channel t (line 4),
a N -sized windowed sequence x̂[n] is constructed (line 5).
Then, a single channel ACF calculation is performed (lines
6-12), and the final ACF coefficients c[q, t, n] of channel q
and time-window t are computed. As previously, mentioned
we define T = 1 for processing one input sample x[n] per
clock cycle for all Q channels.

The proposed multi-channel architecture (MCQ-unrolled),
for T = 1, is presented in Fig. 5b. It consist of four
stages: windowing stage, input stage, intemediate stage and
output stage. As Q total channels are needed, Q windowing
multipliers (windowing stage) are employed along with an
equal amount of input and intermediate stages, described in the
SC-unrolled architecture. Regarding the output stage as shown
in line 13 of Alg. 2, the IFFT is active once the summation
is C[k] (line 10) is computed for all the N

p subsequences of
x̂[n] (line 8). Furthermore, if Q ≤ N

p then the active time-
periods of the output stage of each channel are distict and do
not coincide, thus a single output stage can be shared for all
channels. For instance if N = 128, p = 16 then the output
stage can be shared for up-to Q = N

p = 8 channels.



B. Multiplierless architectures

The energy-dissipation of existing TD-ACF architectures
[1, 2, 5–7], is mainly attributed to the p generic multipliers
(Fig. 2). However, the multiplications of the FD-ACF methods
(Fig. 3, 5) can be further optimized. Specifically, the twiddle
factors of the SDF-FFT rotators lay on the unit circle and
depending on the SDF stage they are a-priori known. Thus
there have been many approaches [17, 18] aiming to achieve
energy savings by designing simpler rotators.

Rotator design: The rotator is a hardware unit widely em-
ployed in pipelined FFT architectures [12, 17]. Essentially, a
FFT rotator performs, during a butterfly operation, a complex
multiplication on a complex input z = x + jy with a set of
constants ci + jsi|i ∈ [0, ..., N − 1] as stated in (3).

z(ci+jsi) = (x+jy)(ci+jsi) = x(ci+jsi)+y(jci−si) (3)

Regarding the ACOR framework, the multiplications x(ci +
jsi) and y(jci − si) are conducted by designing single input
dual output (SIDO) multipliers. Thus the real part of the output
is computed as cix− siy and the imaginary part as six+ ciy,
as shown in Fig. 6. Also due to the underlining symmetry
over the unit circle, additional input/output multiplexers, that
interchange the real and imaginary parts, can be employed
to perform rotations over all four quadrants, with minimal
hardware overhead.

Designing SIDO multipliers has been extensively stud-
ied in previous works [17, 18] and various techiques have
been employed, with the most promising being the use of
the time-multiplexed direct acyclic graph (TM-DAG) method
[15, 16, 22]. A TM-DAG is network of interconnected adders
and multiplexers, that can produce different intermediate and
output multiplication products based on the select signals of
the multiplexers. Note that the multiplication/division by a
multple of 2 corresponds to a no-cost left/right bit-shift. For
instance in Fig. 7c a SIDO multiplier employed in a W16

rotator is presented. It is designed to multiply an input signal
with the complex twiddle factors 8027, 7416 + j3072 and
5676+j5676 which are unity scaled by a factor of 8027.05677
[17] (for unity scale the first real twiddle factor must a multiple
of 2).

SIDO multiplier design: In order to design energy-efficient
TM-DAGs, both the number adders and multiplexers and
must be minimized. Existing SIDO design methods have
only focused on the total adders [17, 18] neglecting the
multiplexers, leading to suboptimimal architecures. While in

Fig. 6: Microarchitecture of a FFT rotator with two SIDO multipli-
erless cores and I/O multiplexers.

[15, 16] the authors attempted to jointly minimize the multi-
plexers alongside the adders for the single input single output
(SISO) case, the proposed optimizations produced normalized
TM-DAGs by exploring graphs with only odd intermediate
values. Furthermore the applied optimizations depended on
random DAG permutation-based algorithms and multiplexed
minimization heuristics that are applied at the last stages of
the TM-DAG generation algorithm, leading to an excessive
number of multiplexers.

To this end a new optimization method have been de-
veloped and integrated in the ACOR framework to produce
enegry-efficient SIDO multipliers with the least number of
multiplexers and adders given a twiddle factor set. Thus, the
proposed optimization based on the MAG2 algorithm [22]
initialy produces the all the normalized DAG representations
for twiddle factor sets proposed in [17]. After that we relax
the condition of normalized DAGs which imposes that one
node input should not be bit-shifted [15], by allowing more
admissable bit-shifts in order to increase the probability of
common edge sharing, during the DAG merging stage. This is
achieved by applying an edge weight transform (EWT) on a
normalized DAG which basically reallocates a bit-shift for the
output edges of a node, to both inputs (or vice versa) as shown
in Fig. 7a, 7b for 8027. Consequently, for each normalized
DAG, that correspond to a coefficient, several non-normalized
ones are derived which result in high quality TM-DAGs, in
terms of the utilized mutliplexers.

Following the graph denormalization, the time-multiplexing
procedure is conducted. Initially, we perform a node matching
followed by a common edge merging check, similarly to the
multiplierless method, i.e. DAG FUSION [15]. Furthermore,
for our approach instead of using a random permutation based
merging heuristic (as in DAG FUSION), we have implemented
a depth first search (DFS) combined with a threshold metric,
which is based on the number of 2-1 multiplexers. As shown
in Fig. 8 all the possible graph merging can be depicted with
a N level connected super-graph, where GSi are all the DAGs
of the coefficient ci|i ∈ 0, 1, ..., N − 1 (∪ stands for the time-
multiplexing operation). Initially we perform a DFS from level
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5676+j5676 with 3 less multiplexers compared to [17]



Fig. 8: DFS based search DAG merging algorithm.

1 to level N−1 highlighted as search 1 with the red path in Fig.
8. After that an estimation of the threshold metric is evaluated
(in our case the total number of required multiplexers) for
the candidate GS0 ∪ ... ∪ GSN−1

merging. Thus, during the
next searches we can truncate all the graph merges (note as
colored ×) at level < N − 1 that violate the initial estimation
of the threshold metric and we continue with the second DFS
in order to find a better metric estimation (e.g. a solution that
utilizes less multiplexers). So in general an exhaustive search
is guaranteed if the condition of (4) is met:

If best est = METRIC(
⋃N−1

i=0 GSi
)

Discard all mergings such that:

METRIC(
⋃k

i=0 GSi
) ≤ best est

where k < N − 1 is the current search level

(4)

If the admissible TM-DAGs meet the required the number
of multiplexers #MUXes, the RTL of the TM-DAGs is
produced, written in SystemVerilog. We applied this TM-DAG
generation algorithm for the design of SIDO multipliers used
several FFT rotators proposed in [17, 18] for various precision
levels and we incorporated them in the pipelined SDF-FFT
architectures (Fig. 5) used in the ACOR framework.

C. Architecture optimizations

As previously discussed, depending on the input data (com-
plex or real), the input processing throughput and windowing
requirements the ACOR framework can adaptively construct
an ACF architecture based on the SC-unrolled root architecture
of Fig. 5a. Therefore in this section we elaborate on the differ-
ent optimizations that are enabled by the ACOR framework,
suitable for various applications with different specifications.

Reconfigurable throughput: The SC-unrolled root architec-
ture depicted in Fig. 5a consists of two parallel datapaths (top
and bottom) that operate in tandem to achieve a throughput
T = 1. However, for applications with a lower processing
rate, such as single lead ECGs [1], a datapath (DP) folded
architecture is preferable to minimize power consumption. In
this regard, in Fig. 9a, a modified version of the SC-unrolled
architecture is illustrated (SC-DP-folded), that can achieve a
throughput of T = 0.5 by utilizing a single datapath along with
two p-sized register files inserted at the input and output of the
architecture. So this design reduces the number of hardware
units by nearly half and results in lower power consumption.

In the case of a multi-channel ACF (Fig. 5b), it is possible
to adjust the throughput by effectively reusing the input and
intermediate stages. In Fig. 9b, a Q = 2 channel architecture
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Fig. 9: (a) SC-DP-folded ACOR architecture. (b) MCQ2-channel-
folded ACOR architecture.

(R = 0.5) is presented (MCQ2-channel-folded), achieving
T = 0.5 . To accomplish this, three p-sized shift registers are
introduced: one at the input of the architecture to perform the
initial multiplication with the window function and its delayed
version, and two at the end of the intermediate stage to store
the required C[k] values for both channels. This approach
can be extended to any number of channels Q by folding
the architecture in Fig. 5b λ times to achieve a throughput of
T = 1/λ, resulting in approximately λ times less hardware
and power consumption. Additionally, the throughput of the
architecture in Fig. 9b can be further reduced by a factor of
two (T = 0.25) by folding the two parallel datapaths as in
Fig. 5a (MCQ2-fully-folded).

Microarchitecture optimizations: To achieve further energy
savings, several microarchitecture optimizations can be applied
to reduce the number of needed hardware units. In this regard,
we propose three additional (Fig. 10) real-valued optimizations
(x[n] ∈ R), and one final optimization that can be applied
when the output stage of an ACOR ACF architecture is
50% active. Indeed, if x[n] ∈ R, the half outputs of the
initial two SDF-B2N FFT are needed due to the conjugate
symmetry, thus only one complex multiplier is needed to
perform half of the multiplications for each datapath per clock
cycle interchangeably. Additionally, the register files of the
intermediate stage, which consist of p total complex memory
cells, can be reduced by a factor of two due to the underlying
conjugate symmetry by replacing them with a modified dual-
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Fig. 10: (a) Complex multiplier optimization (b) Dual-port memory
optimization (c) I/O rotators optimization (d) Output stage FFTs
optimization.



TABLE I: Hardware complexity of windowed: (a) single-channel
ACF architectures. (b) multi-channel ACF architectures.

(a)

Architecture Multipliers Adders MemoryThrough-
put (T )

TD-ACF MAC [5–7] p+ 1 p 3p− 2 1
TD-ACF Systolic [3, 8] p+ 1 p 5p− 1 1

FD-ACF FFT-based [9, 10]2 log2 N -2 rot. +7 mul.16 log2 N + 12 8N − 8 1
ACOR SC-unrolled 3

2 log2 p-1 rot. +4 mul. 12 log2 p+ 11 10p− 8 1
ACOR SC-DP-folded log2 p rot. +4 mul. 8 log2 p+ 8 8p− 8 0.5

(b)

Architecture Multipliers Adders Memory Through-
put (T )

TD-ACF MAC [5–7] Q(p+ 1) Qp Q(3p− 2) 1
TD-ACF Systolic [3, 8] Q(p+ 1) Qp Q(5p− 1) 1

FD-ACF FFT-based [9, 10] Q(2 log2 N -2) rot. +7Q mul. Q(16 log2 N + 12) Q(8N − 8) 1
ACOR MCQ-unrolled 2Q log2 p-1 rot. +4Q mul. ≈ (10Q+ 2) log2 p+ 9Q ≈ 8pQ 1

ACOR MCQ-channel folded Q
λ log2 p-1 rot. +4Q

λ mul. ≈ (10Q
λ + 2) log2 p+ 9Q

λ ≈ 6pQ
λ 1/λ

ACOR MCQ-fully folded log2 p1 rot. +4 mul. 8log2 p rot. +8 ≈ 8pQ 1/2Q

port memory buffer similar to that used in [19]. Moreover, the
input and output rotators in Fig. 5a can be constructed by a
single SIDO and two SISO architectures as x[n], c[n] ∈ R.
Finally, if the output stage is underutilized, a single SDF-B2N
FFT can be employed, combined with two p-sized memories.

IV. RESULTS

To demonstrate the efficacy of the proposed ACOR frame-
work we perfomed a hardware complexity analysis for several
ACF architectures. After that we implemented some of the
generated architectures and individual components in 45 nm
technology using Design Compiler, and compared them with
the existing TD-ACF architectures in terms of area, energy-
consumption expressed as power-delay-product (PDP) and
throughput for various cases studies, as shown in Fig. 4.
A. Complexity Analysis

Table I presents a comparison of the hardware complexity of
the existing TD-ACF [3, 5–8] and FD-ACF FFT-based archi-
tectures [9–11] with those generated by the proposed ACOR
framework for the windowed single and multi-channel cases.
Notably, these estimations are based on the assumption that
x[n] ∈ R thus the real-valued microarchitecture optimizations
presented in Section III-C were applied. Additionally, for the
single-channel case, the output stage optimization was also
applied, i.e., one output SDF-B2N FFT. The SDF-FFT radix
22 architecture [12] was utilized for the FFT implementations.
Moreover, it is important to distinguish the FFT rotators from
the generic multipliers since the ACOR framework utilizes
multiplierless architectures for their implementation.

Therefore, in Table Ia, we observe that the proposed ACOR
architectures utilize 3

2 log2 p-1 and log2 p rotators plus 4
generic multipliers for the SC-unrolled and SC-DP-folded
cases, respectively, while the full FFT-based FD-ACF ap-
proach requires 2 log2 N -2 rotators and 7 generic multipliers,
and the TD-ACF approaches require p + 1 multipliers. It is
evident that the ACOR architectures exhibit superior scaling
(O(log2 p)) with respect to the number of multipliers, com-
pared to the other approaches. For instance, for N = 256 and
p = 32, assuming a rotator is constructed with 3 generic multi-
pliers, the SC-unrolled (T = 1) and SC-DP-folded (T = 0.5)

TABLE II: Individual component hardware resources.
Component p=16

W=32, F=12 @1.1V, 45nm Area (µm2) Power (mW) Max delay (ns)

Real multiplier 7522 2.69 6.53
Complex multiplier 24631 8.9 7.11

DC rotator W16 19289 4.55 8.10
DC input rotator W32 11665 5.45 7.32
DC output rotator W32 12526 5.31 6.92
Proposed rotator W16 7797 3.24 7.14

Proposed input rotator W32 6309 4.61 6.31
Proposed output rotator W32 10463 3.8 6.93

Shift register 4075 0.16 -

ACOR architectures achieve savings of 37.5% and 73.68%
compare with the MAC/systolic approaches (T = 1). The
ACOR architectures can achieve additional savings (discussed
in Section IV-B) by utilizing multiplierless rotators. For the
multi-channel case (Table Ib), all the existing approaches
require Q parallel single-channel architectures to achieve
T = 1, while the MCQ-unrolled ACOR architecture requires
Q parallel input and intermediate stages and a single output
stage as shown in Fig. 5b, resulting in even further savings
in terms of the number of multipliers compared to the single-
channel case. Finally, the MCQ-channel folded architecture
reduces the required hardware units and processing throuput
by a factor of λ, while for the MCQ-fully folded architecture
a single datapath is used as the the SC-DP-folded architecture
and the achieved througput is 1/2Q.

In terms of adders and memory cells, it is observed that for
small values of p, the ACOR architectures are surpassed by
the simpler TD-ACF ones. However, in the multi-channel case,
the overhead of adders and memory cells is lower compared
to the single-channel case. It should be noted that the savings
and optimizations achieved in multipliers, as discussed in the
following section, compensate for the overhead in adders and
memory. This leads to lower power consumption for a given
throughput and, in some cases, lower area as well.
B. Measurements

To evaluate the achieve area, energy/power consumption
and processing throughput of all the proposed circuits, we
synthesized several ACF architectures and individual hardware
components targeting maximum clock frequency.

Component-level: In Table II, a comparison is made be-
tween the hardware components utilized in the TD-ACF
architectures [3, 5–8] and the proposed ACOR architectures
in terms of area, power, and maximum delay for p = 16. Note
that for the implementation of all the rotators, multiplierless
architecture have been generated with our optimized frame-
work (Section III-B) for a W=32 bit datapth, F=12 fractional
bits and they were compared with the same coefficient rotators
produced by Design Complier optimizations. Particularly, the
complex multiplier is found to require approximately 3.2 times
more area and power compared to the real multiplier, while
having slightly more maximum delay (8.9%). The W16 rotator
(Fig. 6) exhibits a 68.36% reduction in area and requires
16.98% less power compared to the complex multiplier, while
also having a shorter maximum delay by 8.52%. Similarly, the
W32 input rotator (Fig. 10c left) displays a 74.38% reduction
in area and requires 41.47% less power compared to the
complex multiplier, albeit having a slightly longer maximum
delay by 3.49%. The W32 output rotator (Fig. 10c right)
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Fig. 11: (a)-(b) PDP vs Throughput comparison of existing TD-ACF
and ACOR-ACF architectures. (c)-(d) Area comparison of existing
TD-ACF and ACOR-ACF architectures.

exhibits a 57.61% reduction in area and requires 29.21% less
power compared to the complex multiplier, while also having
a slightly shorter maximum delay by 5.77%. Comparing our
proposed mutliplierless rotators with the ones produced by De-
sign Compiler optimizations, it is evident that we have achieve
better area, power and max delay by up-to 59.57%, 40.43%
and 16% respectively. Furthermore, the power consumption
of a p = 16 sized shift register is only 0.16mW, which is
significantly smaller than that of multiplier units. The observed
slight increase in the maximum delay of the proposed W16

rotator can be attributed to the longer critical path of the three
adders and multiplexers connected in series, compared to a
generic multiplier used by Design Compiler.

Architecture-level: In Fig. 11a-b, a comparison between
the achieved energy efficiency, expressed as PDP, and the
input processing throughput is presented for various ACF
architectures with p=16 and p=32 for a W=32 and F=12
datapath. The tested architectures achieve are designed to
achieve three input proccesing throughputs of approximately
130MB/s, 260MB/s and 520MB/s which meet the re-
quirements for emerging low-power applications. Furthermore,
the tested ACF architectures are categorized based on their
implementation, including the proposed ACOR, the MAC-
based, and the systolic-based, with distinct symbols (∗, ◦,
⋄) used to represent each. Additionally, the architectures are
distinguished based on the number of channels and the folding
method, with 5 different colors: blue for the single-channel
unrolled case shown in Fig. 5a (SC-unrolled), black for the
single-channel with folded datapath case shown in Fig. 9a
(SC-DP-folded), red for the dual-channel (Q=2) unrolled case
shown in Fig. 5b (MCQ2-unrolled), pink for the dual-channel

channel folded case shown in Fig. 9b (MCQ2-channel-folded),
and green for the dual-channel channel and data folded case
(MCQ2-fully-folded). Note that channel/datapath folding for
the MAC and systolic architectures is achieved by using half
the number of multipliers for each folding in order to match the
input processing throughput (T = 1, T = 0.5 and T = 0.25)
of their ACOR-based counterparts.

In all test cases, for both p = 16 and p = 32, the
ACOR-ACF approach consistently produced more energy-
efficient architectures, except for one case when p = 16
for the SC-DP-folded architecture which was outperformed
by the MAC-based approach by 25.14% in terms of PDP
as p is relatively small. For the remaining test scenarios, the
ACOR-ACF approach achieved energy savings ranging from
6.55% to 14.56% for p = 16 compared with the MAC-
based and systolic-based approaches. For p = 32, the energy
savings were even greater due to the O(log2 p) scaling of the
multipliers, ranging from 30.91% to 51.47% compared with
the MAC-based and systolic-based approaches. Also for all
test scenarios, the ACOR-ACF approach achieved a slightly
smaller throughput, by approximately 8%, due to the larger
maximum delay of the multiplierless rotators used in our
proposed architectures.

In Fig. 11c-d, we present a comparison of the achieved
area for the three ACF architecture implementations (ACF,
MAC, systolic) across 5 different number of channel and
folding methods for p = 16 and p = 32. As depicted in
Fig. 11c, for p = 16, the proposed ACOR-ACF method
exhibits a slightly higher area requirement, ranging from
8.94% to 22.71%, compared to the best-performing MAC-
based approach. This additional area overhead is primarily
attributed to the utilization of extra memory cells in the ACOR
approach but as previously discussed (Fig. 11a) the ACOR
approach requires less energy for all cases except one (SC-
DP-folded). However, when considering p = 32 (Fig. 11d), the
ACOR approach clearly outperforms the MAC-based approach
due to the advantageous O(log2 p) scaling of the multipliers,
achieving improvements of up to 27.18% for the MCQ2-
unrolled case.

V. CONCLUSION

This paper presents ACOR, a framework that enables the
adaptive generation of ACF architectures based on the specific
requirements of a target application. Utilizing a modified ACF
algorithm, the proposed framework optimizes the architecture
mapping for any desired number of lags, sampling window
size and function and throughput. This allows designers to
explore various design options and select the most suitable ar-
chitecture. In addition, several architecture optimizations have
been proposed within the framework, including the utilization
of multiplierless architectures and microarchitecture enhance-
ments, aimed at minimizing energy dissipation typically as-
sociated with power-hungry multipliers commonly found in
existing approaches. By incorporating these optimizations, the
proposed framework achieves significant energy savings while
maintaining high throughput, due to the pipelining.
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