The caveats of wearable stress monitoring technology – in response to MacQuarrie et al., 2023


Published in:
International Journal of Healthcare Simulation

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023 The Authors. This is an open access article published under a Creative Commons Attribution-ShareAlike License (https://creativecommons.org/licenses/by-sa/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited, and new contributions are distributed under the same license.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Dear Editor,

We read with interest, the article by MacQuarrie et al. on wearable physiologic monitoring in healthcare simulation [1]. The phenomenon of psychological stress has intrigued researchers for generations. In recent years, the advent of wearable technology has afforded the research community the ability to track stress through a variety of metrics. However, there are number of device-related caveats that may not be immediately apparent to researchers when designing a study. We wish to highlight two potential areas of interference in relation to tattooing. With a typical prevalence of 10–20% in USA, Europe or Australia [2], having a tattoo on the skin in contact with any physiological sensor is an important consideration for the manufacturers of such devices.

Take, for example, galvanic skin response (GSR), otherwise known as electrodermal activity. Whilst GSR supposedly offers an insight to the human stress response by analysing the electrical conductivity of the skin, researchers may not consider that tattooed participants can cause an issue. Whilst the field is not large, research has shown that the process of tattooing can damage eccrine sweat glands, thus generating less sweat [3]. In this instance, wrist-worn GSR monitors may be at risk of obtaining data that is not reflective of the stress response, due to the lack of moisture lowering the electrical conductivity of the skin.

The wrist-worn heart rate (HR) monitor is another piece of technology that can be susceptible to tattooed skin. Whilst research in this area is understandably sparse, two leading manufacturers of this technology, Apple and Garmin, have stated that tattoo ink directly impacts the ability of wrist-worn photoplethysmography HR monitors to obtain accurate values [4,5], as the ink can increase light absorption and skew data. Considering the above, it may be prudent of researchers to use a device availing of finger electrodes when evaluating GSR, as the distal region of the fingers may be less prone to tattooing than the wrist. Whereas, it may be of benefit to use a chest-worn HR monitor, that employs electrocardiography as opposed to photoplethysmography, if a participant is extensively tattooed on the distal region of the forearms.

The excellent recent article by MacQuarrie et al. [1] places forth both the Astro and Hexoskin as emergent alternatives to the current array of stress monitoring devices. Can the authors comment on any issues that may potentially impact the validity of data concerning the aforementioned biometric shirts?

Aaron Vage*, Paul Hamilton

Centre for Medical Education, Queen's University Belfast, Whitla Medical Building, Lisburn Road, Belfast BT9 7BL, Ireland

Corresponding author: Aaron Vage, avage01@qub.ac.uk

https://ijohs.com/article/doi/10.54531/JQHO1742

* Corresponding author.

LETTER TO EDITOR

The caveats of wearable stress monitoring technology – in response to MacQuarrie et al., 2023

Aaron Vage*, Paul Hamilton

Centre for Medical Education, Queen's University Belfast, Whitla Medical Building, Lisburn Road, Belfast BT9 7BL, Ireland

Corresponding author: Aaron Vage, avage01@qub.ac.uk

https://ijohs.com/article/doi/10.54531/JQHO1742

Dear Editor,

We read with interest, the article by MacQuarrie et al. on wearable physiologic monitoring in healthcare simulation [1]. The phenomenon of psychological stress has intrigued researchers for generations. In recent years, the advent of wearable technology has afforded the research community the ability to track stress through a variety of metrics. However, there are number of device-related caveats that may not be immediately apparent to researchers when designing a study. We wish to highlight two potential areas of interference in relation to tattooing. With a typical prevalence of 10–20% in USA, Europe or Australia [2], having a tattoo on the skin in contact with any physiological sensor is an important consideration for the manufacturers of such devices.

Take, for example, galvanic skin response (GSR), otherwise known as electrodermal activity. Whilst GSR supposedly offers an insight to the human stress response by analysing the electrical conductivity of the skin, researchers may not consider that tattooed participants can cause an issue. Whilst the field is not large, research has shown that the process of tattooing can damage eccrine sweat glands, thus generating less sweat [3]. In this instance, wrist-worn GSR monitors may be at risk of obtaining data that is not reflective of the stress response, due to the lack of moisture lowering the electrical conductivity of the skin.

The wrist-worn heart rate (HR) monitor is another piece of technology that can be susceptible to tattooed skin. Whilst research in this area is understandably sparse, two leading manufacturers of this technology, Apple and Garmin, have stated that tattoo ink directly impacts the ability of wrist-worn photoplethysmography HR monitors to obtain accurate values [4,5], as the ink can increase light absorption and skew data. Considering the above, it may be prudent of researchers to use a device availing of finger electrodes when evaluating GSR, as the distal region of the fingers may be less prone to tattooing than the wrist. Whereas, it may be of benefit to use a chest-worn HR monitor, that employs electrocardiography as opposed to photoplethysmography, if a participant is extensively tattooed on the distal region of the forearms.

The excellent recent article by MacQuarrie et al. [1] places forth both the Astro and Hexoskin as emergent alternatives to the current array of stress monitoring devices. Can the authors comment on any issues that may potentially impact the validity of data concerning the aforementioned biometric shirts?
Declarations

Authors’ contributions
None declared.

Funding
None declared.

Availability of data and materials
None declared.

Ethics approval and consent to participate
None declared.

Competing interests
None declared.

References