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Abstract  Peatlands represent globally important 
habitats and carbon stores. However, human impacts 
and climate change leave peatlands with a substantial 
management challenge. Degradation of peatland hab-
itats and their hydrological integrity is increasingly 
counteracted through the rehabilitation of peatlands 
including re-wetting and drain blocking. Research 
into how such management interventions affect peat-
land microbial assemblages is limited. Here, we inves-
tigate the response of testate amoebae (established 
unicellular amoeboid protist indicators of hydrologi-
cal conditions in peatlands) to drain blocking on three 
small lowland raised bogs in Northern Ireland, UK. 
We sampled Sphagnum adjacent to areas of focused 
flow near sites of damming in addition to control sites 
away from dam blocking. These restoration measures 

show complex but meaningful results after restora-
tion. We observe several key developments follow-
ing dam blocking: (i) species diversity increases; (ii) 
unambiguous wet indicator taxa appear in increasing 
abundance at dammed sites; (iii) and transfer-function 
reconstructed water-table depths show wetter condi-
tions in the dammed sites. These findings imply wet-
ter conditions after restoration, where routine moni-
toring presented no clear trend in water-table depths. 
We found no statistically significant assemblage-level 
response to experimental or environmental vari-
ables, which may be related to antecedent conditions 
and significant periods of drought during the study 
period. Thus, caution is advised when utilising tes-
tate amoebae for bioindication until their assemblage-
level response to restoration is better understood. 
Nevertheless, this study emphasises the potential of 
an indicator-taxa based approach to applying testate 
amoebae as contemporary bioindicators of peatland 
restoration—particularly on short-term timescales 
immediately following restoration.

Keywords  Peatland · Restoration · Testate 
amoebae · Sphagnum · Biomonitoring

Introduction

Peatlands represent critically important habitats 
that anthropogenic pressures are putting at great 
risk (Auterives et  al. 2011; Turner et  al. 2014; 
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Basińska et  al. 2020). Predominantly these habi-
tats are threatened by peat extraction, drainage, fire, 
afforestation, and land-use change (Schaible and 
Dickson 1990; Cooper et al. 2003; Tomlinson 2010; 
Douglas et  al. 2015). In extreme circumstances, 
peatlands have been converted wholesale into prof-
itable spaces (e.g., Oil Sands Mining—Rooney 
et  al. 2012). Where peatlands are protected from 
direct exploitation, climate change and pollution 
can have major negative impacts on these habitats 
(e.g., atmospheric ammonia deposition on protected 
peatlands—Kelleghan et  al. 2021). Peatlands pro-
vide several important ecosystem services. In the 
UK, peatlands provide flood relief (Edokpa et  al. 
2022), cultural heritage/public leisure spaces (Flint 
and Jennings 2022), and as sites for game  bird 
management (Douglas et  al. 2015). Internation-
ally, peatlands prove to be unsustainable yet unde-
niably valuable agricultural areas (e.g., rice farm-
ing on peatland soils—Verhoeven and Setter 2010; 
Surahman et  al. 2018). Most notably, peatlands 
have global carbon stores exceeding 600 GtC (Yu 
et  al. 2010) and act as carbon sinks when healthy 
(Schwieger et al. 2021).

Threats from anthropogenic activity leave peat-
lands with a substantial management challenge. 
Direct exploitation needs to be opposed and leg-
islated against, while omnipresent forms of large-
scale damage such as agricultural pollution and cli-
mate change need to be reduced or counteracted. If 
this is not accomplished, the sizeable global store 
of carbon in peatlands could potentially be released 
to the atmosphere at an alarming rate (Ribeiro et al. 
2021). Emissions from peatlands are around 23.1 Mt 
CO2 equivalent in the UK annually (Parliamentary 
Office of Science and Technology 2022), as high as 
1.91 Gt CO2 equivalent per year globally (Leifeld 
and Menichetti 2018), and > 3.26 Mt CO2 equivalent 
specifically for the island of Ireland (Wilson et  al. 
2013; Centre for Ecology & Hydrology 2017). The 
Intergovernmental Panel on Climate Change (IPCC 
2018) reported that a decrease of only 25–30 Gt CO2 
equivalent per year of current global emissions could 
represent the difference between 1.5 and 2 °C warm-
ing by 2030. The effects of 2  °C warming could be 
extreme; for example, it could cause an increase in 
permafrost thaw by 2.5 million km2 (IPCC 2018). 
International cooperation to see current emissions fall 
to acceptable levels is perhaps the largest challenge 

in generations. Adding 1.91 Gt CO2 of avoidable car-
bon equivalents per year from peatlands would thwart 
these efforts.

Through pervasive anthropogenic pressures, it is 
thought that > 60% of UK and Irish peatlands are in 
a degraded state (Wilson et  al. 2013; IUCN 2018; 
Tanneberger et  al. 2021). A marked trend towards 
drying has been observed across European peatlands 
(Charman et al. 2006; Marcisz et al. 2015), which is 
linked to direct and indirect anthropogenic pressures 
on peatlands (Swindles et  al. 2019). However, the 
last two decades have seen ambitious projects to re-
wet peatlands across UK and Ireland (e.g., Parry et al. 
2014; Holden et al. 2017). Re-wetting through drain-
age ditch damming can promote carbon sequestration 
(Beyer et  al. 2021; Wilson et  al. 2022). Re-wetting 
inhibits the decomposition of peat by reintroducing 
anoxic conditions by raising water-tables potentially 
causing peatlands that have shifted into becoming 
carbon sources to become carbon sinks again (Nugent 
et al. 2018). This process leads to peatlands becoming 
moderate sinks of CO2 while generally emitting more 
CH4, resulting in overall reductions in total green-
house gas emissions (Nyberg et al. 2022; Wilson et al. 
2022). Vegetation appears to recover in peatlands that 
undergo re-wetting restoration (Hancock et al. 2018), 
with important peatland species expanding, such 
as peat forming Sphagnum mosses (Malmer et  al. 
2003)—though this colonisation can take many years 
(Anderson and Peace 2017). Sphagnum colonisation 
following re-wetting can occur spontaneously (Graf 
et  al. 2008; Mahmood and Strack 2011). However, 
practices are being developed to improve peatland re-
vegetation, and to reduce greenhouse gas emissions, 
after re-wetting restoration (e.g., moss layer-transfer 
technique Lazcano et  al. 2018; Purre et  al. 2020). 
Evaluation of restoration success is a complex issue. 
The succession of vegetation, particularly Sphagnum 
in the case of peatlands, can be used to indicate resto-
ration success (Soini et al. 2010). Different indicator 
species may have merit in predicting restoration out-
comes in early stages post-restoration (González et al. 
2013). Despite this, even over multi-year time series 
it can be difficult to determine the effect of restoration 
in the hydrology of a site (Green et al. 2017). Further-
more, shifts in greenhouse gas emissions following 
restoration can be multi-faceted, with reductions in 
carbon emissions but increases in methane emissions 
(Strack et al. 2014; Nugent et al. 2018; Nyberg et al. 
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2022; Wilson et al. 2022). Improved understanding of 
how to quantify the effectiveness of peatland restora-
tion, which can be used to adapt and improve restora-
tion methods, would be an invaluable tool in future 
peatland restoration projects.

Testate amoebae are a cosmopolitan group of 
protists that fulfil the role of dominant microbial 
consumers in peatlands (Mitchell et  al. 2008; Jas-
sey et  al. 2013; Kuuri-Riutta et  al. 2022). Testate 
amoebae can be found living on the stems of Sphag-
num and in the still oxygenated layers of peat found 
close to the surface (Roe et  al. 2017; Kuuri-Riutta 
et  al. 2022). Testate amoebae have been shown to 
respond to a number of changing peatland conditions 
(Payne et al. 2012; Marcisz et al. 2020) and provide 
an established means of inferring past water levels 
from Holocene peat cores (Hendon and Charman 
1997; Booth et  al. 2010). The shell or ‘test’ (made 
from protective autogenous or xenogenous material) 
of these organisms generally resists decay, allowing 
them to preserve well in fossil peat (Charman et  al. 
2000). Assemblage response has been demonstrated 
to be quite rapid (Koenig et  al. 2018a, b), allowing 
them to be used as contemporary indicators of peat-
land conditions. Testate amoeba taxa respond to 
varying peatland conditions differently (e.g., changes 
in moisture availability; nutrients; light; pH), mean-
ing their response may be useful in inferring subtle 
changes in these habitats (Marcisz et al. 2020), where 
measured changes could take much longer to be fully 
understood. Testate amoebae could prove valuable 
for organisations trying to secure competitive fund-
ing for restoration work, where measured metrics are 
ambiguous or respond to management intervention 
too slowly.

Swindles et  al. (2016) presented a contemporary 
time-series approach to testate amoebae assemblage 
response to changing peatland conditions before and 
after management inventions on a Welsh blanket 
bog—prior to this, similar research analysed testate 
amoebae assemblage changes in peat profiles after 
restoration (e.g., Davis and Wilkinson 2004; Valen-
tine et  al. 2013). Swindles et  al. (2016) described a 
complex assemblage response of testate amoebae 
following restoration, where diversity increased, and 
the appearance of key unambiguous wet indicator 
taxa reflected the observed shift towards wetter peat-
land conditions. Additionally, Swindles et  al. (2016) 
observed potential interactions between drainage 

ditches/treatment sites but could not easily discern 
this result due to the close proximity of control and 
treatment sites. For this study, control site locations 
were carefully considered to avoid obscuring poten-
tial interactions between drainage ditches or broader 
site-wide change. Creevy et al. (2018, 2023) demon-
strated promising signs of peatland and testate amoe-
bae assemblage recovery in a forest-to-bog restoration 
effort. Recent research highlights that further work 
is needed to provide a clear understanding of testate 
amoeba response to peatland restoration (Swindles 
et  al. 2016; Creevy et  al. 2018, 2023; Kuuri-Riutta 
et al. 2022). In this study, we investigate the response 
of testate amoebae to drainage ditch blocking from 
2019 to 2021 on a lowland raised bog in Northern 
Ireland. A site from the Collaborative Action for the 
Natura Network (CANN) project was selected, which 
underwent drain blocking restoration in early 2020. 
This project provided regular water-table monitor-
ing (Fig. 2) which continued for several years to align 
with restoration. This allowed us to collect Sphagnum 
samples months before the restoration began and have 
access to routine-monitoring data for the entire dura-
tion of the study.

Hypotheses

We tested the following hypotheses:

H1  Drain blocking leads to a change in testate 
amoebae assemblage dynamics.

H2  Unambiguous wet-indicator taxa abundance 
increases in response to restoration.

H3  Increased testate amoebae taxa diversity is 
observed following restoration.

Methods

Field site

This study was conducted at Cranny Bogs, a Spe-
cial Area of Conservation (SAC) close to the town 
of Fintona in County Tyrone, Northern Ireland (54° 
31′ 24.0″ N, 7° 20′ 37.0″ W). The site consists of 
three small, lowland raised bogs: Fallaghearn and 
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Killymoonan bogs to the east; and Cavan bog to 
the south-west (Fig.  1). The bogs are a combina-
tion of M18 Erica tetralix-Sphagnum papillosum 
raised and blanket bog, and M2 Sphagnum cuspida-
tum/recurvum bog pool communities under the UK 
National Vegetation Classification (NVC) (Rodwell 
2006; DAERA 2015). The bog-myrtle Myrica gale 
can be found across all three bogs with its highest 
presence felt on Fallaghearn bog and least on Kil-
lymoonan bog. Cranny bogs have been predomi-
nantly damaged by peat cutting. Although areas of 
old hand cutting have since begun to regenerate, the 
historic activity left exposed cut faces as high as 
2.5 m. A review of the site in 2015 (DAERA 2015) 
indicated that it is not known if an extant consent 
for peat cutting exists and that mechanised peat 

extraction has occurred in recent years. All drain-
age at the site is believed to be associated with this 
legacy of peat cutting. Sporadic burning is reported 
on all three bogs with the eastern bogs (Fallaghearn 
and Killymoonan bogs) having the largest extent 
of this past damage (DAERA 2015). The site also 
experiences nitrogen deposition (24.44  kg N/ha/
year) above the calculated critical load for raised 
and blanket bogs (5–10  kg N/ha/year) (DAERA 
2015; APIS 2020). The average annual rainfall at 
the site is between 1050 and 1650  mm  year, with 
average temperatures of 4.2  °C in January and 
15.4  °C in July (averages calculated from Edenfel 
Park and Castlederg MIDAS land surface weather 
stations for 2019, 2020, and 2021—Met Office 
2022a, b) with an elevation of around 110–120 m.

Fig. 1   Location map of the study site, Cranny Bogs (Cavan, 
Killymoonan, and Fallaghearn bogs) in County Tyrone, North-
ern Ireland. Sphagnum samples taken approximately 1 m from 
piezometer locations. Pink = control piezometer and sample 

(e.g., CY05); Blue = dammed piezometer and sample (e.g., 
CY01); White circles = dam locations; Green line = drainage 
ditches; Red line = SAC boundary (Sources: DAERA 2015; 
Google Earth 2022)
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Restoration measures

Sphagnum samples were collected from eight loca-
tions across the three bogs and were selected based 
on their proximity to the drainage ditches present on 
the site. The replicates were classified into one of two 
restoration measures, either ‘dammed’ or ‘control’. 
The five ‘dammed’ replicates were located in areas of 
focused hydrological flow near drains whilst the three 
‘control’ replicates were collected from areas away 
from drains and with no contributing hydrological 
catchment (Fig. 1). All five ‘dammed’ replicates were 
sampled from the two eastern bogs (Fallaghearn and 
Killymoonan bogs), whereas the ‘control’ replicates 
were located in each of the three bogs (Fallaghearn, 
Killymoonan, and Cavan bogs). The moss species 
chosen at each sample location were most commonly 
Sphagnum capillifolium. One dammed sample site 
(CY01) had a mix of S. capillifolium and Sphag-
num papillosum, with a second dammed sample site 
(CY16) having a mix of S. capillifolium and Sphag-
num magellanicum.

Routine monitoring

Baseline-monitoring began in the summer of 2018, 
for the CANN project. Regular water-table moni-
toring started on 8th July 2019, concluding several 
months after the final Sphagnum samples were col-
lected for this study, on 25th October 2021. Damming 
of the drainage ditches on the site margins (Fig.  1) 
began on 30th January 2020 and was complete on all 
three bogs by 28th February 2020. Dams were con-
structed using peat, a common technique with smaller 
width drainage ditches (Armstrong et al. 2009; Parry 
et al. 2014).

Measurement of meteorological conditions

The Met Office Integrated Data Archive System 
(MIDAS) land surface station data was the source of 
meteorological data used in this study (Fig.  2) (Met 
Office 2022a, b), including air temperature (°C) and 
rainfall (mm) which the system reports on daily and 
hourly intervals. The closest station available for tem-
perature data was situated approximately 8.8  km to 
the north of the study site in Edenfel Park (54° 35′ 
38″ N, 7° 16′ 59″ W—Met Office 2022a), with the 
most suitable station for rainfall data being 24.8 km 

to the north-west of the study site in Castlederg (54° 
42′ 25″ N, 7° 34′ 37″ W—Met Office 2022b). Other 
potential weather stations that were considered were 
further from the site or had incomplete data for the 
time period required.

Measurement of water‑table depths

Sixteen piezometers were installed across Cranny 
Bogs in 2019 as part of the CANN project (The 
CANN Project 2022) to record water-table depth in 
areas of varying peatland condition (Fig. 2). Twelve 
piezometers were installed in areas of established 
raised bog. Of these, eight were located close to 
drains that were subsequently dammed, and three 
were placed far from the catchment areas and drains 
of the peatland. A single piezometer was positioned 
near catchment areas but away from proposed dams. 
All eight Sphagnum sampling sites (five ‘dammed’ 
and three ‘control’ restoration measures) were next to 
these piezometers on the raised bog. The remaining 
four piezometers were installed in areas of cutover 
bog are connected to the catchment areas of the 
peatland.

Sampling of testate amoebae

Live Sphagnum samples were collected 113 
(07/11/2019—t-2) and 81 (09/12/2019—t-1) days 
before, and 3 (02/03/2020—t0), 75 (13/05/2020—t1), 
175 (21/08/2020—t2), 242 (26/10/2020—t3), 293 
(16/12/2020—t4), 391 (24/03/2021—t5), and 485 
(28/06/2021—t6) days after ditch dam construc-
tion was concluded (28/02/2020), corresponding 
to dates in which routine monitoring occurred at 
Cranny Bogs. The upper-most part of the Sphagnum 
moss (including a minimum of approximately 2 cm3 
of capitulum, stem, and branches) was selected in 
the field because the aerobic portions of Sphagnum 
stems have been shown to have the most live testate 
amoebae (Booth 2002). Each date corresponds with 
a date of routine water-table monitoring on Cranny 
Bogs with piezometers near all eight sample sites. 
Sphagnum samples measured greater than 2 cm3 and 
were collected from a plot approximately 1 m from a 
piezometer and kept in individually labelled Ziplock 
bags. Samples were stored in a freezer until further 
preparation was carried out. Sphagnum samples were 
prepared using a mostly unmodified version of the 
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standard method (Booth et al. 2010) with the result-
ing testate amoebae samples being stored at 4 °C in 
the laboratory for analysis and identification over the 
following weeks. Sphagnum samples in boiling water 
were passed through a coarse-sieve of 300 μm, then 
back-sieved at 15  μm. Testate amoebae were then 
counted and noted as dead (only the test or partial 

test present) or ‘live’ (with a clearly visible cyto-
plasm) under transmitted light microscopy at × 200. 
Identification was performed at this time using illus-
trated taxonomic guides (Charman et  al. 2000; Sie-
mensma 2022). A minimum of 100 testate amoebae 
were identified and counted per sample (mean = 197). 
This minimum threshold is recommended by Payne 

Fig. 2   Environmental variables over the course of the experi-
ment. Water-table depths were routinely monitored on-site at 
dammed and control sample locations. Total monthly rainfall 

and mean monthly temperature data are from the Met Office 
Integrated Data Archive System weather stations (Met Office 
2022a, b)
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and Mitchell (2009) for peatland water-table depth 
studies. Two Lycopodium spore tablets  were added 
to samples and were later counted as recommended 
by the standard method (Booth et al. 2010), and test 
concentrations were calculated using an established 
formula (Stockmarr 1971).

Statistical analysis

Statistical analysis and data presentation was car-
ried out using R version 4.2.1 (R Core Team 2022). 
The R package ‘vegan’ (version 2.6-2) was used for 
Non-metric Multidimensional Scaling (NMDS), per-
mutational MANOVA (PERMANOVA), and Analy-
sis of Similarity (ANOSIM), for use in investigating 
the response of testate amoebae assemblages to sev-
eral experimental and environmental variables (time, 
restoration measure, rainfall, temperature, and meas-
ured and reconstructed water-table depth). Nonmetric 
multidimensional scaling (NMDS), PERMANOVA, 
and ANOSIM analysis were carried out using the 
Bray–Curtis dissimilarity index. The Shannon Diver-
sity Index (Shannon and Weaver 1949) was calculated 
for each sample to explore species diversity. Water-
table depth reconstructions were generated using the 
pan-European testate amoeba-based transfer function 
of Amesbury et  al. (2016) using weighted average 
tolerance downweighing with inverse de-shrinking 
(WA-Tol). To achieve precision in the testate amoeba-
based transfer function reconstructed water-table 
depths, a minimum count of 100 testate amoebae was 
strictly adhered to (Payne and Mitchell 2009).

Results

The most commonly occurring testate amoebae 
taxa identified at Cranny Bogs were Nebela tincta, 
Assulina muscorum, Archerella flavum, Hyalosphe-
nia elegans, Euglypha ciliata, and Heleopera sylvat-
ica (Fig. 6). The six most common taxa represented 
the vast majority (75%) of the 38 testate amoebae 
taxa identified. In total, 12,850 individuals were 
counted (mean 27.65% live testate amoebae—3463 
individuals).

The Shannon Diversity Index (SDI) scores of the 
assemblages ranged from 0.35 to 2.46 and generally 
increased both in the control and dammed restora-
tion measures after damming occurred (t0 onwards) 

(Fig.  3). At the dammed sites the SDI scores/values 
were variable before management occurred, showing 
a high range and including the largest recorded value 
(CY07 t-2—2.46) of the study prior to t0 (Fig.  3). 
Additionally, the diversity in the control sites was 
substantially lower than the dammed sites prior to t0.

Measured water-table depths at Cranny Bogs 
(Fig.  4a) appeared to be dominated by seasonal-
ity, with the data collected showing a trend towards 
deeper and drier water-tables in summer 2021 (t6)—
coinciding with lower observed rainfall during this 
period. Water-table depths were also reconstructed 
using a pan-European transfer function (Ames-
bury et al. 2016) (Fig. 4b) which showed substantial 
changes to the water-table depths of the dammed 
restoration measure sites. Reconstructed water-table 
depths were shallower and wetter in the dammed sites 
before intervention compared with the control sites.

A number of environmental variables were meas-
ured to test against this assemblage dataset. Observed 
and reconstructed water-table depths, air temperature, 
rainfall, time, and restoration measures could all be 
used in association with the testate amoebae assem-
blages to infer significant effects. Nonmetric multidi-
mensional scaling with ANOSIM and PERMANOVA 
were used to evaluate the effect these environmental 
variables might have had on the assemblage composi-
tion of testate amoebae (NMDS – ‘stress’ ~ 0.25). All 
combinations of the dataset were considered, includ-
ing how the results differed through time (before and 
after management). None of these variables were 
found to have a statistically significant effect on the 
testate amoebae assemblage composition (95% level).

The occurrence of non-ambiguous wet indica-
tor taxa was notable in that prior to installation of 
drainage ditch dams (t-2 and t-1) the only occur-
rence of these key taxa was a single occurrence 
(0.43% abundance, n = 1 specimen) of Amphitrema 
wrightianum in a control site (CY13, t-1) and a peak 
of 24.89% abundance of Archerella flavum in a 
dammed site (CY14, t-1) (Fig. 5). After management 
occurred (t0 onwards) these key taxa did not appear 
in greater abundance in control sites (Fig. 5), where 
A. wrightianum was never observed again and A. 
flavum appeared in a single occurrence (CY13, 
t1—0.45% abundance). Amphitrema flavum was 
observed in increasing abundance in the dammed 
sites, peaking at 66.19% relative abundance (CY14, 
t6) (Fig.  5). Additionally, the key indicator taxa A. 
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wrightianum, Amphitrema stenostoma, and Centro-
pyxis aculeata type were recorded in a dammed site 
(CY07) after management occurred (Fig.  5). The 
single occurrences of A. wrightianum and A. fla-
vum in the control sites is not likely to be through 

interaction between the five dammed sites of this 
study as these taxa occurred at CY13, the sole sam-
pling location on the southernmost bog. Cavan Bog, 
where CY13 is located, is separated from the two 
northern bogs by a road and farmland (Fig. 1).

Fig. 3   Boxplot of testate amoebae assemblage Shannon Diversity Index from control and dammed sample sites. Results prior to res-
toration (t-2 and t-1) are highlighted
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Fig. 4   a Boxplot of meas-
ured water-table depths. 
Results prior to restoration 
(t-2 and t-1) are highlighted. 
b Boxplot of testate-amoe-
bae based transfer function 
reconstructed water-table 
depths. Results prior to 
restoration (t-2 and t-1) are 
highlighted
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Discussion

Peatland restoration at Cranny Bogs was characterised 
by a complex response of testate amoebae. Measured 
water-table depth indicated no clear response follow-
ing management intervention (t0 onwards) (Fig.  4a). 
Unseasonably dry conditions towards the end of the 
experiment (t4  −  t6) appear to manifest as a slight 
trend towards deeper water-table depths (Figs. 2, 4a). 
Contrary to the measured results, testate-amoeba 
based transfer function reconstructed water-table 
depths show a notable trend toward shallower water-
table depths in dammed restoration measure sites 
(Fig.  4). The appearance and proliferation of key 
unambiguous wet indicator taxa in the dammed sites 
(e.g., A. flavum) (Fig.  5) implies that restoration is 
having its intended effects. A general increase in 
SDI across the sites may indicate that management is 

having a wider ecohydrological impact across Cranny 
Bogs (Fig. 3). The large increase in wet indicator taxa 
specifically in the dammed sites (Fig.  5) suggests 
that this diversity increase is not caused by interac-
tions between control and dammed sites as seen with 
similar studies (Swindles et al. 2016). Environmental 
variables and restoration measures had no statistically 
significant effect (95% level) on the testate amoebae 
assemblages. This lack of significance could be in 
part due to the antecedent conditions of the sites prior 
to the start of data collection. We believe N. tincta 
may have caused the lack of significance in our mul-
tivariate analysis. Nebela tincta, a ubiquitous taxon 
which is regarded as a poor hydrological indicator 
(Mitchell and Buttler 1999; Charman et  al. 2000; 
Beaulne et al. 2018), often appears in very wet condi-
tions (Warner 1987) but is commonly interpreted as 
a dry indicator (Booth 2008; Koenig et al. 2018a, b). 

Fig. 5   Abundance (%) of unambiguous wet indicator taxa before and after restoration (t0 onwards). Sample site codes (e.g., CY16) 
are denoted with time of collection (e.g.,  − 2,  − 1, 0 etc.) as seen in Fig. 1
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We observed very high abundances of N. tincta in our 
samples (Fig.  6), with this taxon even appearing in 
post-restoration samples at as much as 90% of the tes-
tate amoebae identified. The dominance of N. tincta 
in this site is problematic given the taxon’s indifferent 
or ambiguous response to hydrological conditions. 
Nevertheless, the abundance of unambiguous wet 
indicator taxa increased substantially in the dammed 
sites (Fig.  5), despite decreased rainfall that could 
have led to drier conditions in 2021 (t5 and t6), sug-
gesting improved hydrology at Cranny Bogs follow-
ing management intervention.

Although the response of testate amoebae to peat-
land drain blocking in this study has been complex, 
we can accept two of our three proposed hypotheses. 
The appearance and proliferation of unambiguous 
wet-indicator taxa in dammed restoration measure 
sites and the general increase of SDI on Cranny Bogs 
allows us to accept our second and third hypotheses 
(H2—Unambiguous wet-indicator taxa abundance 
increases in response to restoration; H3—Increased 
testate amoebae taxa diversity is observed following 
restoration). Despite promising signs of testate amoe-
bae assemblage change (e.g., increasingly wet recon-
structed water-table depth), the remaining hypoth-
esis (H1—Drain blocking leads to a change in testate 
amoebae assemblage dynamics) must be rejected, as 
NMDS, PERMANOVA, and ANOSIM multivariate 
analysis illustrated a lack of statistically significant 
change at the testate amoebae assemblage-level.

Sample collection at Cranny Bogs began oppor-
tunistically, including antecedent conditions that may 
have caused a lack of significance in our multivariate 
analysis of testate amoebae assemblages. However, 
several previous experiments have demonstrated the 
significant influence environmental factors have at the 
testate amoebae assemblage-level. Variables associ-
ated with anthropogenic pressures have been shown 
to effect testate amoebae assemblages significantly. 
Daza Secco et  al. (2018) reported that as much as 
75% of the difference between testate amoeba assem-
blages in samples from three raised bogs in Finland 
were driven by land use. Further understanding of 
how these assemblages respond to environmental var-
iables may be critical for restoration success. Creevy 
et  al. (2018, 2023) examined forest-to-bog restora-
tion sites where even after 17 years testate amoebae 
communities had not recovered due to limited expan-
sion of Sphagnum after restoration. There is evidence 

to suggest that peatlands may be more resistant to 
hydrological change than previously thought (Lamen-
towicz et al. 2019), meaning a detailed paleo record 
at Cranny Bogs could aid in interpreting the sites’ 
ability to recover from present and future disturbance. 
Further knowledge of the assemblage response of tes-
tate amoebae to restoration and critical environmental 
variables could inform effective restoration efforts. 
Our results show that these testate amoebae can 
respond rapidly to restoration, which could avoid dec-
ades of stagnant or ineffectual management practice.

Specific methods for testate amoebae sample 
preparation and analysis can be contentious (e.g., 
peat/Sphagnum sample boiling—Avel and Pensa 
2013). Of note to this study, and our employed Sphag-
num preparation methods (Booth et  al. 2010), is the 
issue of micro-sieving (e.g., 15 μm back-sieve) which 
has been shown to exclude small testate amoebae 
taxa (Avel and Pensa 2013; McKeown et  al. 2019). 
Many unambiguous wet indicator taxa, such as those 
found on Cranny Bogs (A. flavum, C. aculeata type, 
A. stenostoma, and A. wrightianum), are too large 
(> 45 μm) to be affected by these issues with micro-
sieving. However, the multivariate analysis carried 
out for this study may have been affected by the omis-
sion of these small testate amoeba taxa. For instance, 
the common taxon Cryptodifflugia oviformis, was 
not found to be widespread on Cranny Bogs before 
or after restoration occurred. Other widespread but 
notably larger taxa (e.g., Assulina muscorum) were 
observed, which could highlight a loss of small taxa 
in this study.

At present the use of testate amoebae as bioindi-
cators of peatland restoration success is better under-
stood through an indicator-based approach, where 
known responses to changing environmental vari-
ables by specific taxa are used to infer the condition 
of the peatland. In this study we demonstrated that 
this method can be applied relatively simply and can 
be effective in scenarios where antecedent conditions 
and climatic events may cause issue with other forms 
of analysis. Here we used this approach to understand 
the hydrological response of a raised bog before and 
after re-wetting occurred. Using key unambiguous 
wet indicator taxa (A. flavum, C. aculeata type, A. 
stenostoma, and A. wrightianum) we have been able 
to infer wetter conditions over the course of nearly 
two years. In this same time frame, direct observation 
of water-table depths did not clearly indicate wetter 
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Fig. 6   a Percentage testate 
amoebae data for dammed 
sample sites (CY01, 
CY04, CY07, CY14, and 
CY16—Fig. 1). Measured 
water-table depth and the 
percentage of live testate 
amoebae are included. 
Red line denotes date of 
restoration. Samples were 
collected on the follow-
ing dates: 07/11/2019 
(− 2); 09/12/2019 (− 1); 
02/03/2020 (0); 13/05/2020 
(1); 21/08/2020 (2); 
26/10/2020 (3); 16/12/2020 
(4); 24/03/2021 (5); and 
28/06/2021 (6). b Percent-
age testate amoebae data for 
control sample sites (CY05, 
CY08, and CY13—Fig. 1). 
Measured water-table 
depth and the percentage 
of live testate amoebae are 
included. Red line denotes 
date of restoration. Samples 
were collected on the fol-
lowing dates: 07/11/2019 
(− 2); 09/12/2019 (− 1); 
02/03/2020 (0); 13/05/2020 
(1); 21/08/2020 (2); 
26/10/2020 (3); 16/12/2020 
(4); 24/03/2021 (5); and 
28/06/2021 (6)
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conditions due to periods of drought. Koenig et  al. 
(2015) highlighted how straightforward this approach 
can be, by demonstrating that the use of as few as 
ten easily identifiable testate amoebae taxa, can be 
used to outperform bryophytes and vascular plants 
in ‘bioindication value’. Furthermore, the use of tes-
tate amoeba indicator taxa may have applications in 
monitoring other forms of anthropogenic pressures on 
peatlands (e.g., ammonia pollution indicators—Payne 
et al. 2013).

If more is not done to understand the effectiveness 
of peatland restoration efforts, greenhouse gas emis-
sions from degraded peatland sites could worsen. 
Emissions estimates from degraded peatlands are 
contentious (Leifeld and Menichetti 2018; Xu et  al. 
2018) with estimates of global total emissions and 
carbon stores of peatlands consistently uncertain (e.g., 
Congo Basin peatland extent; Dargie et  al. 2017). 
Degraded UK peatland emissions were only formally 
included in the national greenhouse gas inventory as 
late as 2019 (Parliamentary Office of Science and 
Technology 2022). Official estimates for the Repub-
lic of Ireland have historically had considerable error 
ranges (Wilson et al. 2013; Donlan et al. 2016). Trop-
ical peatlands account for the majority of peatland 
greenhouse gas emissions at this time (Leifeld and 
Menichetti 2018; Ribeiro et al. 2021), though notably 
they account for a major part of the global store of 
peatland carbon (Xu et al. 2018; Ribeiro et al. 2021). 
The response of tropical peatlands to restoration is 
poorly understood, particularly in terms of green-
house gas emissions changes following management 
intervention (Kumar et al. 2020). Uncertain estimates 
for global peatland greenhouse gas emissions already 
suggest that as much as 1.91 Gt of CO2 equivalents 
are released per year (Leifeld and Menichetti 2018). 
If global emissions are actually much higher, the case 
for understanding and implementing improved peat-
land restoration is urgent. Testate amoebae could be 
a vital part of these future restoration efforts, inform-
ing management practice and aiding in accurate and 
effective monitoring. However, the use of testate ame-
bae in this manner is not well understood in tropical 
peatlands (Swindles et al. 2014; Liu et al. 2019; Kra-
shevska et  al. 2020) so we extend recommendations 
of further research on testate amoebae and restoration 
effectiveness in these regions, and investigations into 
the use of testate amoebae as bioindicators in agricul-
ture and forestry on drained peatlands. In Germany 

greenhouse gas emissions from drained peatlands 
make up the largest part of emissions from agriculture 
(Tiemeyer et al. 2020), nevertheless a growing body 
of research suggests that agriculture and forestry on 
drained peatlands could potentially remain produc-
tive while greatly reducing emissions (Tanneberger 
et  al. 2020; Evans et  al. 2021). However, study of 
testate amoebae assemblage response to agricultural 
systems and forestry on drained peatlands is limited: 
Daza Secco et al. (2018) demonstrated the use of tes-
tate amoebae assemblages as bioindicators on drained 
peatlands for forestry; and Qin et al. (2020) presented 
their use on drained peatlands used for agricul-
tural. In this study we have noted that restoration at 
Cranny Bogs has likely influenced the hydrology of 
the site—creating wetter conditions that favour these 
wet-indicator taxon (e.g., Archerella flavum and Cen-
tropyxis aculeata type). However, testate amoebae 
assemblages also respond to a number of ecological 
controls (Arrieira et  al. 2015; Roe et  al. 2017) such 
as: food availability; temperature; light; oxygen; and 
access to minerals for ‘test’ construction. The ways in 
which re-wetting influences these controls should be 
studied in greater detail.

Swindles et  al. (2016) advised caution when 
using testate amoebae for biomonitoring of peatland 
restoration, especially when trying to analyse their 
assemblage-level response, due to this method need-
ing further and more robust experimentation. Here we 
extend that recommendation of caution and highlight 
that more research needs to be targeted at understand-
ing the assemblage-level response of testate amoebae 
following restoration. However, we note that the use 
of unambiguous wet indicator taxa has merit in rapid 
bioindication for early stages of peatland restoration.

Conclusions

This study investigated the use of testate amoebae as 
contemporary bioindicators of peatland hydrology 
following restoration on three small lowland raised 
bogs in Northern Ireland. Unambiguous wet indica-
tor taxa (A. flavum, C. aculeata type, A. stenostoma, 
and A. wrightianum) were observed in increasing 
abundance on dammed restoration measure sites 
after management intervention (t0 onward)—with 
some taxa appearing for the first time. These unam-
biguous wet indicator taxa were not observed in 
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increasing abundance on any of our control sites. 
Diversity increased in both the control and dammed 
sites. This increase of unambiguous wet indicator 
taxa on dammed sites, lack of proliferation of these 
taxa in control sites (despite single occurrences of 
A. flavum and A. wrightianum), and a general site-
wide diversity increase, suggest management has led 
to wetter conditions in and around former drainage 
ditches. Multivariate analysis was conducted to eval-
uate the assemblage-level response of testate amoe-
bae in relation to experimental and environmental 
variables. Drought and the antecedent conditions of 
the study site appear to have affected the findings 
of this analysis, and as such we observed a lack of 
statistically significant assemblage-level change in 
response to these variables. Though complex, the 
findings of this investigation contribute to the grow-
ing body of research illustrating the value of testate 
amoebae as contemporary bioindicators of peat-
land restoration. An indicator-taxa based approach 
remains the clearest way of utilising testate amoe-
bae for bioindication, with their assemblage-level 
response remaining complex and in need of further 
study at this time.
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