Many-body theory calculations of positron scattering and annihilation in noble-gas atoms via the solution of Bethe–Salpeter equations using the Gaussian-basis code EXCITON+

Published in:
Frontiers in Physics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023 The Authors.

This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Many-body theory calculations of positron scattering and annihilation in noble-gas atoms via the solution of Bethe–Salpeter equations using the Gaussian-basis code EXCITON+

J. Hofierka1†, C. M. Rawlins1†, B. Cunningham1, D. T. Waide1,2 and D. G. Green1*

1School of Mathematics and Physics, Queen’s University Belfast, Belfast, United Kingdom, 2School of Physics, Trinity College Dublin, Dublin, Ireland

Scattering phase shifts and annihilation rates for low-energy positrons interacting with noble gas atoms are calculated ab initio using many-body theory implemented in the Gaussian-orbital code EXCITON+. Specifically, we construct the positron–atom correlation potential (self-energy) as the sum of three classes of infinite series describing the screened polarization, virtual positronium formation, and positron-hole repulsion found via the solution of Bethe–Salpeter equations for the two-particle propagators. The normalization of the continuum states is determined using the shifted pseudostates method [A. R. Swann and G. F. Gribakin, Phys. Rev. A 101, 022702 (2020)]. Comparison with the previous sophisticated B-spline many-body approach, which is restricted to atoms [J. Ludlow, D. G. Green, and G. F. Gribakin, Phys. Rev. A 90, 032712 (2014)], validates the EXCITON+ code, which can be used for multicentered targets including molecules, clusters, and condensed matter. Moreover, the relative effects of higher-order diagrams are quantified. It is found that the screening of the electron–positron Coulomb interaction represented by the infinite ring-diagram series (random-phase approximation) is compensated effectively by the additional electron-hole attraction corrections to it (the Bethe–Salpeter equation approximation) and that the use of the screened Coulomb interaction (screened at BSE level) in place of the bare Coulomb interaction in the virtual positronium and positron-hole ladder diagrams has negligible effect on both the phase shifts and Z_{eff}. Our scattering length for Ne and Kr is in improved agreement with the convergent close-coupling result, and for Ar, the scattering length is in better agreement with the experiment compared with the previous B-spline many-body approach.

KEYWORDS
positron, annihilation, scattering, many-body and correlation effects, Bethe-Salpeter approach, Gaussian basis set, electronic structure ab initio calculations, high-performance computing
1 Introduction

Positrons are unique probes of matter with important applications in medical imaging (positron emission tomography [PET]) [1]; astrophysics (understanding the composition of the galaxy) [2]; materials science as ultrasensitive diagnostics of surfaces, defects, and porosity [3, 4]; molecular spectroscopy [5]; and key to the formation and exploitation of positronium [6, 7] and antihydrogen [8–14], which are used for tests of fundamental symmetries and gravity.

Proper interpretation of the fundamental experiments and materials science experiments, as well as development of the antimatter-based technologies (traps, accumulators, ultra-high energy resolution beams, and next-generation PET), relies on the theoretical understanding of positron interactions with atoms, molecules, and condensed matter. The positron–atom system is, however, characterized by strong many-body correlations [15, 16]. A powerful method that accurately describes positron–electron correlations in a systematic, intuitive, and computationally scalable way is the many-body theory [16–26]. It has provided a full ab initio description of positron scattering and annihilation rates in atoms [16, 18], annihilation y spectra [27], and positron cooling in noble gas atoms [28, 29], solving a number of longstanding problems. Moreover, the approach enabled ab initio calculations of annihilation vertex enhancement factors that can be used to calculate core annihilation probabilities in condensed matter [24] and also enabled a many-body approach to calculations of Ps-atom scattering and pickoff annihilation [30, 31]. Most recently, we have developed the many-body theory for positron binding [32] in molecules, and extended to non-resonant scattering and annihilation [33] (in the fixed nuclei approximation) using a Gaussian-based approach that constructed the positron–molecule correlation potential via a solution of the Bethe–Salpeter equations for the two-particle propagators, implemented in our code EXCITON+ [32], which is an extended version of the all-electron EXCITON code of Patterson [34, 35] that additionally handles positrons.

High-quality many-body theory calculations of positron scattering and annihilation in noble gas atoms were performed by Green, Ludlow, and Gribakin in 2014 employing a single-centered B-spline basis approach (which is restricted to atoms) [16]. In that work, the positron–atom correlation potential (self-energy) was calculated (with diagrams constructed from Hartree–Fock states obtained from an atomic code [36]) including the bare polarization diagram \(\Sigma^{(0)} \) but included screening corrections at third-order only. Moreover, the virtual positronium contribution \(\Sigma^{(0)} \) was calculated using bare Coulomb interactions in the ladder series. Extrapolation of observable quantities with respect to angular momenta of intermediate states included in the diagram sums was performed. Here, we applied our Gaussian-basis Bethe–Salpeter approach to calculate elastic scattering phase shifts, cross sections, and annihilation rates of positrons with noble gas atoms. The purpose is two-fold: first, comparison with the accurate B-spline results allows verification of the suitability of Gaussian-basis expansion and veracity of the EXCITON+ code (which is also applicable to molecules, clusters, and condensed matter); and second, to quantify the relative effects of the higher-order diagrams omitted in the previous B-spline-based study, including the infinite random-phase approximation and electron-hole attraction corrections to

![Diagram](image.png)
Different approximations to the positron GW self-energy diagram [Figure 1A] dependent on the choice of the kernel K of the electron-hole propagator: (A) setting $K = 0$ reduces the electron-hole propagator to the bare propagator $\Pi(0)$ and results in the second-order bare polarization self-energy diagram $\Sigma(2)$; (B) setting $K = v$, the direct part of the Coulomb interaction only gives in addition to the $\Sigma(2)$ diagram, the infinite series of connected ring diagrams, the random-phase approximation (GW@RPA); (C) setting $K = v - v_{\text{exch}}$, i.e., including exchange, additionally gives rise to diagrams beyond RPA that include interactions within the rings. When the bare Coulomb interaction is used as the intra-ring interaction, one obtains the time-dependent Hartree–Fock approximation (GW@TDHF). When one instead uses the screened Coulomb interaction W, one obtains the Bethe–Salpeter approximation (GW@BSE).

Comparison of the present calculated scattering phase shifts (symbols) with previous MBT B-spline results (lines) [16]. Panels (A–C) show s-, p-, and d-wave positron scattering phase shifts, respectively, for both helium (blue) and neon (red). Panels (D–F) show that for argon (green) and krypton (black). The present $\Sigma^{(2)}$ results from EXCITON+ are shown as circles (Ne and Ar) and triangles (He and Kr), with the previous B-spline results shown as dot-dashed lines. The present $\Sigma^{(2+\Gamma)}$ results from EXCITON+ are shown as diamonds (Ne and Ar) and crosses (He and Kr), with the previous B-spline results shown as dashed lines.
the polarization diagram (so called GW@BSE), and determining the virtual positronium and positron-hole ladder series using dressed Coulomb interactions rather than bare Coulomb interactions.

The outline of the remainder of the paper is as follows. Section 2 gives an overview of the many-body theory and its numerical implementation in the Gaussian-orbital code EXCITON+. Section 3 presents results for helium, neon, argon, and krypton, including scattering phase shifts, cross sections, and annihilation rates, before concluding with a summary.

We use atomic units (a.u.) unless otherwise stated.

2 Theory and numerical implementation

In the many-body theory approach, the positron quasiparticle wavefunction ψ_ϵ of energy ϵ is found from the solution of the Dyson equation [37, 38] as follows:

$$\left(H^{(0)} + \Sigma \right) \psi_\epsilon (r) = \epsilon \psi_\epsilon (r),$$

where $H^{(0)}$ is the zeroth-order Hamiltonian, which is taken to be that of the positron in the Hartree–Fock field of the ground-state atom, and Σ.

![FIGURE 4](image-url)

Scattering phase shifts for positron on helium (A–C), neon (D–F), argon (G–I), and krypton (J–L) with s– (A,D,G,J), p– (B,E,H,K), and d–wave (C,F,I,L) results shown. Previous MBT B–spline results [16] (red squares) and current MBT results with different approximations: HF (dotted lines), $\Sigma^{(2)}$ (dot–dashed lines), Σ^{BSE} (dashed lines), $\Sigma^{BSE+\Gamma}$ (dot–dot–dashed lines), and $\Sigma^{BSE+\Gamma+\Lambda}$ with three alternative treatments of Γ and Λ terms: crosses, using unscreened (bare) Coulomb interaction; circles, using screened Coulomb interaction; and our most sophisticated approximation: solid lines with diamonds, using the screened Coulomb interaction and GW instead of HF energies in the energy denominators of the diagrams.
TABLE 1 Scattering lengths ν (a.u.) at the Σ^5He + ν^2He level of theory for the noble gas–atom sequence He–Kr determined using the fitting equations in Eq. 5. Here, α is the static dipole polarizability in a.u. computed at the BSE level of theory.

<table>
<thead>
<tr>
<th>α</th>
<th>Eq. 5a</th>
<th>Eq. 5b</th>
<th>Eq. 5c</th>
<th>Eq. 5d</th>
<th>Other calculations</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1.32</td>
<td>−0.465</td>
<td>−0.476</td>
<td>−0.467</td>
<td>−0.435, −0.53, −0.48, and −0.506</td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>2.45</td>
<td>−0.527</td>
<td>−0.537</td>
<td>−0.536</td>
<td>−0.467, −0.61, and −0.53</td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>10.7</td>
<td>−4.896</td>
<td>−5.084</td>
<td>−5.036</td>
<td>−4.41, −5.3, −4.3, −5.8, and −4.76</td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>16.2</td>
<td>−11.62</td>
<td>−11.79</td>
<td>−11.67</td>
<td>−9.71, −10.4, and −11.2</td>
<td></td>
</tr>
</tbody>
</table>

1. B-spline [16].
2. Polarized orbital calculations He [52, 53], Ne [54], Ar [55], and Kr [56].
3. Kohn variational [57].
4. Model potential [42].
5. CCC [58].
6. Experiment Ar [59] and Kr [60].

is a non-local, energy-dependent correlation potential (irreducible self-energy of the positron in the field of the atom). The self-energy is expanded in residual electron–electron and electron–positron interactions. Figure 1 shows the three infinite classes of diagrams considered, with the total self-energy given by their sum as Σ = Σ^{GW} + Σ^± Σ. The GW diagram [Figure 1A, the product of the positron Green’s function G and the dressed Coulomb interaction W] describes the polarization of the electron cloud by the positron and screening, and electron-hole interaction corrections to it. It can be calculated at the bare (Σ^{GW}), random-phase approximation (RPA), time-dependent Hartree–Fock (TDHF), or Bethe–Salpeter equation approximations depending on the kernel K used in the calculation of the electron-hole propagator Π [Figures 1D and Figure 2]. In this work, we present results obtained using GW at either Σ^{GW} or the BSE level. Figure 1B shows the infinite ladder series of (either bare or screened) electron–positron interactions, the “T-block,” which represents the non-perturbative process of virtual positronium formation. Finally, we also consider the infinite series of (either bare or screened) positron-hole Coulomb interactions Σ^± [Figure 1C].

The EXCITON+ program employs distinct Gaussian-basis sets to expand the electron (–) and positron (+) Hartree–Fock orbitals ψ_{nl}(r) as ψ_{nl}(r) = Σ n^{Nl}_{α} C_{nml}^α C_{nml}^β (r), where A labels the N^l basis centers and κ labels the N^l, different Gaussians on center κ, each taken to be of Cartesian type with angular momentum l^± + l^+ + l^+, viz., χ_{kl}(r) = N^l_{kl}(r^± + r^+ + r^±), where N^l_{kl} is a normalization constant and C is the expansion coefficients. We use diffuse-function-augmented correlation-consistent polarized aug-cc-pVQZ (TZ on Kr) Dunning basis sets [39–41] centered on atomic nuclei, enabling the accurate determination of the electronic structure including polarizabilities. For the positron, we additionally use a more diffuse even-tempered basis of the form 19s17p16d15f with exponents for the jth Gaussian for each angular momentum given as ζ_{kl} = ζ_{kl}^β l^β−1 (j = 1, . . . , N^l_{kl}), with β = 2 and ζ_{kl} = 10^4 for l = 0 − 1 and ζ_{kl} = 10^4 for l = 2 − 3. Convergence tests were performed, varying ζ_{kl}, β, N^l_{kl}, and l_{max} for the positron basis on the atoms. Moreover, to more accurately describe the virtual positronium formation process, which takes place away from the atom and requires large angular momentum to resolve the electron–positron distance, for He and Ne, we placed 12 additional hydrogen type aug-cc-pVTZ basis sets symmetrically on a sphere of radius ~ 1 a.u. from the atom (corresponding to the vertices of a regular icosahedron), and for Ar and Kr, 20 ghosts on a sphere of radius ~ 2 a.u. (corresponding to the vertices of a regular dodecahedron), finding this to be sufficient for the convergence of the final eigenstates.

2.1 Scattering calculations

For the positron–atom system, the solution of the Dyson equation (Eq. 1) in a Gaussian basis yields a discrete set of n continuum pseudostates of energy ε_n, which decay exponentially rather than oscillate at large positron–atom separations, and are normalized to unity instead of an asymptotic plane wave, as required by a true continuum state. Although these are not true continuum states, they can be used to extract information about positron elastic scattering from the target, as outlined in Swann and Gribakin [42]. First, we determine the s-type pseudostates of a free positron, i.e., eigenstates of the positron kinetic energy Hamiltonian in the Gaussian basis, with energies ε_0(0). Since these energies increase monotonically with n_0 (where n_0 = 1, 2, . . .), there exists an invertible function f such that

f(n_0) = ε_0(0).

Then, we determine the phase shift for the s-type pseudostates of energy ε_n for the positron in the dressed field of the atom as follows:

δ_0 = [n_0 − f(n_0) ε_0(0)].

where the inverse function f(n_0) is constructed by the interpolation of integer n_0 against ε_0(0). In practice, for even-tempered Gaussian-basis sets, the energies ε_0(0) and ε_n grow approximately exponentially with n_0. It is, therefore, easier to determine function g by the interpolation of n_0 vs ln(ε_0(0)), making g(ln(ε_n)) = f^−1(ε_n), which is nearly linear. The phase shift for positron energy ε_n is then given by

δ_0 = [n_0 − g(ln(ε_n))].

The same procedure is used for p- and d-type pseudostates, utilizing p- and d-type free positron pseudostates to form invertible functions f_1(n_1) and f_2(n_2).
Since Σ depends on the energy E of the pseudostate involved and the pseudostate energies are not known \textit{a priori}, we first calculate Σ on a dense energy grid and interpolate to the energy of the pseudostate. For all of our calculations, we use a linear energy mesh for the self-energy, typically using 30 points between 0 and 0.3 a.u. We also tested a denser exponential energy mesh but found negligible improvement in accuracy, owing to the weak energy (E) dependence of the eigenvalues.

In addition to scattering phase shifts, we determined the scattering length a from the effective-range expansion of the s-wave phase shift for momenta $k = \sqrt{2E} \to 0$ [43], independently fitting to each of

\begin{align}
 k \cot \delta_0 &= -\frac{1}{a} + \frac{\pi a}{3a^2} k, \quad \text{(5a)} \\
 k \cot \delta_0 &= -\frac{1}{a} + \frac{\pi a}{3a^2} k + C_1 k^2 \ln C_2 k, \quad \text{(5b)}
\end{align}
where \(\alpha \) is the static dipole polarizability of the atom determined by EXCITON+ at the BSE level of theory and \(C_1, C_1, \) and \(C_2 \) are constants. We use the first four or five lowest energy discrete datapoints of \(\delta_i(k) \) for fitting. Finally, the elastic scattering cross section is obtained as a sum over the partial waves \(l = 0, 1, 2, 3, 4, 5 \) waves, which dominate at low positron energies [44]:

\[
\sigma_a = \frac{4\pi}{k^2} \sum_{l=0}^{2} (2l + 1) \sin^2 \delta_i(k). \tag{6}
\]

2.2 Annihilation rates

For a given number density \(n_p \), the positron annihilation rate is parametrized as \(\lambda = \pi r_e^2 c n_p Z_{\text{eff}}, \) where \(r_e \) is the classical electron radius, \(c \) is the speed of light, and \(Z_{\text{eff}} \) is the effective number of electrons that participate in the annihilation process. Formally, \(Z_{\text{eff}} \) is equal to the electron density at the positron position,

\[
Z_{\text{eff}}(k) = \int \frac{4\pi}{k^2} \sum_{l=0}^{2} (2l + 1) \sin^2 \delta_i(k) \, dr.
\tag{7}
\]

where \(\Psi_k \) is the total wavefunction of the system, with the electron coordinate \(r \) and positron coordinate \(r \). It describes the scattering of the positron of momentum \(k \) by the atom and is normalized asymptotically to the product of the ground-state target atomic wavefunction and positron plane wave. Using the finite basis approach, it can be approximated by \[Z_{\text{eff}} = 4\pi\delta_p A^{-2}, \] with the normalization factor \(A^2 = (2l + 1)^2 2\sqrt{2\pi c} \delta d n \), and the annihilation contact density in the independent-particle approximation is as follows:

\[
\delta_{pi} = 2 \sum_{l=1}^{N_p} \gamma_i \left| \psi_i(r) \right|^2 \left| \psi_i(r) \right|^2 dr. \tag{8}
\]

The summation in Eq. 8 runs over all occupied electronic orbitals \(\psi_i \) including vertex enhancement factors \(\gamma_i = 1 + \sqrt{1.31/[e_i]} + (0.834/[e_i])^2 \) for orbital \(i \) with energy \(e_i \) (in a.u.) that account for the effects of short-range electron–positron Coulomb attraction [24, 27]. The integral in Eq. 8 is calculated as a four-centered overlap integral over pairs of electron and positron basis functions \(\chi_i^p(r) \chi_i^p(r) \). To speed up calculations and reduce the memory cost, we employ density fitting (DF), which involves approximating the electronic density using \(N_{\text{max}} \) auxiliary (corresponding aug-cc-pVTZ or QZ type) basis functions \(\{ \chi_i^p(r) \}^{N_{\text{max}}} \) such that \(\chi_i^p(r) \chi_i^p(r) \approx \sum_{n=0}^{N_{\text{max}}} d_{nl} \chi_i^p(r) \) with optimal fitting coefficients \(d_{nl} \) determined using the Coulomb metric [35, 45–49]. The use of DF reduces four-centered integrals (which for basis size \(N \) requires memory \(\sim N^4 \)) to products of three-centered integrals and matrix elements of the Coulomb operator in the auxiliary basis (of order \(N^2N_{\text{max}} \), where \(N_{\text{max}} \ll N \)). We found DF implementation gives results within 0.5% of the exact calculation.

When analyzing the results of the many-body calculations, it is instructive to consider the physically motivated form of the s-wave \(Z_{\text{eff}} \) at low momenta \(k \) [16, 50]

\[
Z_{\text{eff}}(k) = \frac{F}{k^2 + k^2 + A k^2 + B}, \tag{9}
\]

where \(F, B, A, \) and \(k \) are constants. We also compute the Maxwellian average \(Z_{\text{eff}} \) at room temperature:

\[
\tilde{Z}_{\text{eff}} = \int_0^\infty Z_{\text{eff}}(k) \exp(-k^2/2k_B T)/(2\pi k_B T)^{3/2} \, 4\pi k^2 \, dk,
\tag{10}
\]

where \(k_B \) is the Boltzmann constant and \(k_B T = 9.28 \times 10^{-4} \) a.u. at room temperature \(T = 293 \) K.

3 Results

3.1 Positron scattering on noble gas atoms

3.1.1 Benchmarking the Gaussian-basis approach against previous B-spline many-body theory calculations

First, we benchmark our method against the previous B-spline atomic MBT [16] at \(1^+(3) \) and \(2^+(1) \) levels of theory. Figure 3 shows comparisons of the \(s-\), \(p-\), and \(d-\) wave scattering phase shifts for the noble gas sequence He–Kr (He and Ne shown on top panels, and Ar and Kr shown on bottom panels). Overall, there is

2 Both methods can calculate the self-energy at these levels, and so, they provide for faithful comparisons. Beyond those levels, the present method and B-spline calculations diverge in how they include screening effects, e.g., the B-spline method accounts only for third-order screening diagrams, while the current approach calculates the infinite ring series (random-phase approximation) and corrections to it, via a solution of the Bethe–Salpeter equation for the dressed electron-hole propagator.
very good agreement. The Σ(2) results are in excellent agreement, validating the Gaussian-basis many-body implementation and its combination with the shifted pseudostate method. The present Σ(2+Γ) results are, in some cases, slightly less positive compared to the B-spline reference. Accurate calculation of the virtual positronium formation contribution to the correlation potential is perhaps the most challenging aspect of positron–atom calculations. In the previous atomic MBT B-spline method [16], B-spline basis functions were used for the expansion of the radial part of the positron wavefunction with angular integrations carried out analytically (via diagrammatic angular momentum algebra), reducing the numerics to a one-dimensional problem. Moreover, extrapolation to infinite angular momenta in the

FIGURE 7
Elastic scattering cross section for argon. Partial s-, p-, and d-wave contributions (A–C), and their sum (D), calculated presently using MBT in different approximations: HF (dotted lines), Σ(2) (dot-dashed lines), ΣΣ(2) (dashed lines), ΣΣΣ(2) (dot-dot-dashed lines), and ΣΣΣΣ(2), our most sophisticated approximation (solid lines). Previous MBT B-spline results [16] are shown as the red line; (E) Comparison of theory and experiment. Previous calculations: present MBT (black solid line), B-spline MBT [16] (magenta dot-dot-dashed line), polarized orbital [55] (red dot-dashed line), previous MBPT of [17] (green dashed line), CCC [58] (blue dotted line), and relativistic polarized orbital [70] (purple dot-dot-dashed line). Experiment: [73] (red squares), [71] (blue circles), [74] (brown stars), [66] (magenta diamonds), [59] (purple up triangles), and [70] (black crosses).
of virtual states by adding multiple ghost centers, as explained previously. Agreement could be improved by including larger angular momentum functions in the Gaussian-basis approach\(^3\). With these considerations in mind, the overall agreement of the current Gaussian-basis implementation in EXCITON+ and the previous B-spline reference \(\Sigma^{(2+3+7)}\) results are excellent.

3.1.2 Effect of higher-order diagrams

With the EXCITON+ implementation validated, we now go beyond the previous B-spline study and consider the relative effects of higher-order diagrams, including Bethe–Salpeter equation treatment of screening of the electron–positron Coulomb interaction, and screening corrections to the ladder series in \(\Gamma\) and the inclusion of the \(\Lambda\) block (Figure 1).

Elastic scattering phase shifts for the noble gas atoms are shown in Figure 4 for different approximations: HF, \(\Sigma^{(2)}\), \(\Sigma^{\text{BSE}}\), \(\Sigma^{\text{BSE}+\text{F}}\), and \(\Sigma^{\text{BSE}+\text{F}+\text{R}}\), with three alternative treatments of \(\Gamma\) and \(\Lambda\) terms: using unscreened (bare) Coulomb interaction; using screened Coulomb interaction; and using screened Coulomb interaction and \(GW\) instead of HF energies in the energy denominators (see also Table 1 for scattering lengths). For the ease of comparison, we also show in Figure 4 the previous B-spline MBT calculations, which were calculated at the \(\Sigma^{2+3+7}\) level, i.e., including the second-order bare polarization diagram, third-order screening diagrams, and the virtual positronium formation contribution. The general features of the phase shifts as functions of the positron momentum \(k\) are mostly the same for all studied atoms. In HF approximation, the phase shifts are negative and linear, indicating a repulsive electrostatic field, as expected for positrons. Inclusion of the second-order polarization diagram, \(\Sigma^{(2)}\) makes the phase shifts positive at low \(k\), reaching a maximum and then fall off with increasing \(k\) and passing through zero (Ramsauer–Townsend effect). Going from \(\Sigma^{(2)}\) to \(GW\)@BSE increases the low-energy positive phase shifts for He and Ne; there is little difference between them in Ar, and the opposite is found in Kr. Compared to \(\Sigma^{(2)}\), \(GW\)@BSE includes, on one hand, the infinite random-phase approximation ring series of screening diagrams, and on the other hand, intra-ring attractive electron-hole dressed Coulomb interactions. Thus, we find that for the smaller atoms, the intra-ring electron-hole attractions give a larger effect than the repulsive screening effects from the ring series. The latter only start to dominate in krypton (Figure 4). The inclusion of virtual positronium (\(\Sigma^\Lambda\)) significantly increases the phase shifts of the BSE calculations by nearly a factor of 3 at the peak values. The inclusion of positron-hole repulsion (\(\Sigma^\Lambda\)) reduces the overall phase shifts, sitting between the results of BSE and BSE+\(F\). There are also multiple ways to treat \(\Sigma^\Lambda\) and \(\Sigma^\Lambda\) (see [32] for more details): using screened interactions in the ladders reduces the strength of the dominant virtual positronium diagram and correspondingly reduces the phase shifts, but by a small amount. The effect of the screened ladders are, however, compensated and almost

\(^3\) Including higher angular momentum functions is a major challenge: see the discussion in [51], where an efficient algorithm was recently proposed for 4-centered integrals only (i.e., not including 3-centered integrals, which are central to the density-fitting approach we use).
FIGURE 10
Z_{eff} for positrons on helium showing the s (A), p (B), and d (C) wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.

FIGURE 11
Z_{eff} for positrons on neon showing the s (A), p (B), and d (C) wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.
FIGURE 12
Z_{eff} for positrons on argon showing the s (A), p (B), and d (C) wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.

FIGURE 13
Z_{eff} for positrons on krypton showing the s (A), p (B), and d (C) wave contributions to the total (D). Legend is the same as in Figure 4 with the addition of total results by Ref. [84] (blue circles). For the s-wave results, the solid line is the fit based on Eq. 9 and the parameters in Table 2.
TABLE 2 Annihilation rates Z_{eff} both at room temperature and thermally averaged for noble gas atoms at the Σ^{2+3}_{2+3} level of theory, using enhancement factors to account for the short-range electron–positron attraction, compared with other theories and experiments.

<table>
<thead>
<tr>
<th>Atom</th>
<th>$Z_{\text{eff}}(k_{\text{BL}})^a$</th>
<th>Z_{eff}^b</th>
<th>Other theories</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>4.08</td>
<td>4.08</td>
<td>3.79, 3.88, and 3.95d</td>
<td>3.94 ± 0.02a</td>
</tr>
<tr>
<td>Ne</td>
<td>7.28</td>
<td>7.28</td>
<td>5.58 and 6.98b</td>
<td>5.99 ± 0.08b</td>
</tr>
<tr>
<td>Ar</td>
<td>30.9</td>
<td>31.4</td>
<td>26.0e, 30.5e, 44.3e, and 31.0d</td>
<td>26.77e and 33.8d</td>
</tr>
<tr>
<td>Kr</td>
<td>68.8</td>
<td>74.5</td>
<td>66.1b and 56.3f</td>
<td>65.7 ± 0.3e and 90.1g</td>
</tr>
</tbody>
</table>

aFitting parameters (F, κ, B, and A) in Eq. 9 are (0.50, 0.45, 1.71, and 0.003) for He; (0.55, 0.35, 2.94, and 0.004) for Ne; (0.48, 0.12, 3.45, and 0.02) for Ar; and (0.46, 0.07, 4.31, and 0.002) for Kr.

bB-spline [16].

cKohn variational calculations [80].

dPolarized orbital calculations Ne [54], Ar [55], and Kr [56].

eDense gas experiment He, Ne, Ar [81], and Kr [82].

fPositron trap-based experiment [83].

gTable 1 compares the scattering lengths extracted from the s-wave phase shifts with other theoretical and experimental results. The scattering length increases along the noble gas atom sequence. The results of the fits to Eqs. 5a–d all agree within 5%. For neon and krypton, we observe very good agreement (notably closer than the previous B-spline result) with the convergent close-coupling (CCC) calculations [58]. Otherwise, our present results tend to be of larger magnitude than other theoretical predictions, including the previous many-body theory calculations [16]. The scattering length of argon is in better agreement (and within the error bars) with the experimental result [59], while the result for krypton is of slightly larger magnitude but within error bars of the measurement [60].

Although it is more illuminating to compare the results of the different self-energy approximations at the level of phase shifts, in panels A–D in Figure 5, for completeness, we also show the s-, p-, and d-wave partial-wave contributions to the elastic scattering cross section for He and their sum, using different approximations and corresponding to the phase shift results in Figure 4A–C. The HF s-wave cross section stands out as weakly energy-dependent and much larger than those calculated with higher-order approximations. Furthermore, one can see that the effect of the virtual positronium diagram with respect to Σ^{π}_{-1} or BSE is to increase the s-wave cross section at energies below approximately 2.5 eV and decrease it above that threshold. For p- and d-waves, the cross sections closely mirror the phase shift data in Figures 4B, C. Our total elastic scattering cross sections for He–Kr are compared with previous results in Figure 5E, Figure 6–8, respectively. Of the theoretical reference data, our results are in very good overall agreement with, although slightly larger at small energy than, the previous B-spline MBT method [16]. For He and Ne, there is also close agreement with recent experimental measurements of [70, 75], which are recommended as the best in recent reviews [78, 79]. It should be noted that the Ramsauer–Townsend minimum, which is very prominent in He and Ne, is not visible in Ar and Kr. This is due to the shift of the minimum in the s-wave scattering cross section toward higher energies, where it combines with p and d partial wave contributions to produce a characteristic plateau in the cross section, which stretches from approximately 2 eV to 8–10 eV. For Ar, the present MBT results are very similar to the previous B-spline MBT, although slightly larger at small energy, and in good agreement with the CCC calculations [58] and more recent measurements of Refs. [59] and [70]. For Kr, the present results are in good agreement with the measurements of [77] at small energy and in good agreement with the CCC calculations. At the larger energies, where the higher partial waves contribute, our calculations are likely to be underconverged compared with the atomic B-spline MBT calculations, and thus underestimate experiment.

3.2 Positron annihilation on noble gas atoms

Figure 9 shows Z_{eff} calculated for s-wave positron on He using the zeroth-order annihilation vertex [setting the enhancement factor $y_1 = 1$ in Eq. 8] for different approximations of the positron Dyson wave function: calculated at HF, Σ^{π}_{2+3} and Σ^{π}_{2+3} from the present Gaussian-based approach and the previous B-spline MBT approach. The HF results are in excellent agreement, confirming the veracity of the Gaussian basis combined with shifted pseudostate method (including the use of density fitting for the integrals, as described previously). The Σ^{π}_{2+3} and Σ^{π}_{2+3} annihilation rates are in good agreement, although the Gaussian-basis results are slightly smaller than the B-spline results, mirroring what was found previously for the phase shifts. Regardless, we can here assess the relative effect of the higher-order diagrams on Z_{eff}.

cancelled by the introduction of GW electronic energies in place of the HF energies in the construction of the diagrams. Overall, we find the full Σ^{2+3}_{2+3} B-spline results in good agreement with the Σ^{2+3}_{2+3} B-spline results across all atoms and partial waves, although our current results typically sit higher than the B-spline results. Given that our approach slightly underestimates the virtual positronium contribution, as discussed in the previous section, the overall effect of the higher-order diagrams has been to increase the strength of the attractive positron–atom potential. This has resulted from a delicate balance of attractive polarization, screening via the random phase approximation, intra-ring electron-hole attractive corrections to screening, attraction from the virtual positronium block, and repulsion from the positron-hole block.
Figures 10–13 show the s-, p-, and d-wave partial-wave contributions to the total momentum-dependent positron annihilation rate Z_{eff} for the sequence He–Kr. It should be noted that at low-positron momenta k, the s-wave contribution always dominates and the annihilation rates increase as one moves along the noble-gas sequence. The second-order diagram $\Sigma^{(2)}$ provides the largest contribution to the s-wave Z_{eff} at low momenta for all atoms except for krypton. In all atoms except for helium, the BSE approximation lowers $\Sigma^{(2)}$ Z_{eff} due to screening of electron-hole interactions. For helium p- and d-waves, the higher-order MBT diagrams modify Z_{eff} only slightly. The virtual positronium diagram increases the annihilation rates significantly, and it becomes more important as the atom size increases. In argon and krypton, it contributes more to low-energy Z_{eff} than the second-order $\Sigma^{(2)}$ diagram (see [16] for more details). Finally, the positron-hole ladder series diagram decreases Z_{eff} in all cases. We found that (static) screening of the ladder diagrams has a negligible effect on the Z_{eff} results. Specifically, using dressed instead of bare Coulomb interactions in the ladders results in $<1\%$ decrease in Z_{eff} for He and Ne, and 6% and 10% decrease for Ar and Kr, respectively. However, using dressed (GW) energies instead of HF energies in the screening kernel mostly cancels out these changes (to within 2%). When compared with the previous B-spline results, our s-wave results are noticeably larger for all of the atoms. The opposite is true for d-wave and p-wave results (with the exception of neon). This is reflected in the total Z_{eff} results, with the current MBT results being higher at low k, but B-spline being higher as k increases (with the exception of neon, where the difference between the s-wave results are too much for the additional partial waves to overcome). When compared with the semi-empirical results of Ref. [84], He and Ne match the shape well but are noticeably larger (5% for He and 20% for Ne), Ar stays within 15%, and Kr matches the shape well but is about 25% lower.

Table 2 shows the values of Z_{eff} at room temperature ($k = 0.053$ a.u.) and thermally averaged values using the fit in Eq. 9 for our best calculation (BSE $+ \Gamma + \Lambda$) compared with the previous results. Overall, our thermalized Z_{eff} results tend to be higher than the previous theoretical data. Notably, the agreement with previous MBT results [16] is worse than in the case of phase shift results. This could be due to the (energy-dependent) enhancement factors that approximate the annihilation vertex correction. We note that a proper ab initio description of the annihilation vertex is beyond current capabilities of our approach. The calculated thermally averaged annihilation rate \bar{Z}_{eff} is in excellent accord with a previous measurement of [81] for He (within 2.8%), while for neon, argon, and krypton, we calculate \bar{Z}_{eff} values that are 20%, 16%, and 12% larger than measurements of [81, 82], respectively. However, our Z_{eff} results for Ar and Kr are lower than positron trap measurements of [83] by 8% and 18%, respectively.

4 Summary

Many-body theory calculations of positron scattering and annihilation in the noble gas atoms have been performed, using a Gaussian-basis approach implemented in the EXCITON+ program [32] combined with the recent shifted pseudostate method of [42]. The veracity of the EXCITON+ code was confirmed by comparing the scattering phase shifts calculated using bare polarization, and additionally including virtual positronium formation, with the previous atomic B-spline MBT method [16]. The previous B-spline approach included self-energy diagrams up to third order and additionally the infinite ladder series of electron–positron interactions that describe the virtual positronium contribution to the positron–atom correlation potential. We considered the relative effects of higher-order diagrams, going beyond the previous B-spline approach, including e.g., the infinite random-phase series of ring diagrams, dressed with intra-ring electron-hole interactions, known as GW@BSE, calculated by solving the Bethe–Salpeter equation for the electron-hole propagator. We found that the screening of the infinite series of ring diagrams (random-phase approximation) was compensated by the electron-hole intra-ring attraction corrections (BSE) to it. We also found that using screened Coulomb interactions in the ladder series for the virtual positronium contribution and positron-hole interactions had negligible effects. The importance of the electron-hole intra-ring attraction leads to phase shifts that are larger than those calculated in the B-spline approach for all the atoms considered. For Ne and Kr, our calculated scattering length is in better agreement with the CCC [58] calculations than the previous B-spline MBT results, and for Ar, we find a scattering length in better agreement with the experiment, and Z_{eff} in better agreement with the trap-based measurement [83]. For Kr, our Z_{eff} is larger than the previous B-spline calculation and dense gas experiment [81] but is closer to the trap-based measurement [83]. Overall, as the various higher-order diagrams act to somewhat compensate, our results for the scattering lengths and Z_{eff} are in reasonable agreement with the previous B-spline values.

Ultimately, the spherical symmetry of the positron–atom problem is better suited for the B-spline approach, in which angular integrations can be carried out analytically. The present study, however, has demonstrated that the strong positron–atom and positron–electron many-body correlations can be described via a Gaussian-basis approach. The importance of the latter is that it can be used to calculate positron scattering and annihilation on molecules, clusters, and condensed matter, the multicentered nature of which makes a single-centered B-spline basis unsuitable.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Materials. Further inquiries can be directed to the corresponding author.

Author contributions

JH and CR implemented the scattering and Z_{eff} routines incorporating the approach of [42] in the EXCITON+ many-body code developed by JH, CR, BC, and DG, based on the EXCITON all-electron code of Patterson [34, 35]. JH and CR performed the EXCITON+ calculations and data analysis. DW performed additional
B-spline calculations. DG conceived and supervised the work. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the European Research Council, StG 804383 “ANTI-ATOM,” and used the Northern Ireland High-Performance Computing service funded by EPSRC (EP/T022175).

Acknowledgments

The authors thank Jack Cassidy, Sarah Gregg, Gleb Gribakin, Charles Patterson, and Andrew Swann for useful discussions.

References

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

