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Abstract

Progress in the field of computational materials science is largely driven by the methods

available for simulating materials and predicting their properties. For optical excitations

in particular, successful ab-initio formalisms exist but their computational implementation

often faces challenges in terms of performance and numerical efficiency. Overcoming these

barriers by proposing and developing alternative methods for the calculation of linear and

nonlinear optical properties is therefore the overarching objective of this thesis.

The state of the art for the description of linear optical excitations in extended systems

is given by the Bethe-Salpeter equation (BSE) framework, in which the number of k-points

required usually leads to computational limitations. We then propose an efficient double

grid approach to k-sampling, involving a coarse k-grid that drives the computational cost

and a fine k-grid that is responsible for approximately capturing excitonic effects while

requiring minimal extra computation. Our approach is compatible with Haydock’s iterative

solution of the BSE and produces satisfactory results for systems with spatially-delocalised,

loosely-bound excitons. The validity of the approximations involved and the limitations of

the approach are also discussed.

The nonlinear optical regime is typically addressed with non-perturbative methods based

on explicit time propagation, which makes them computationally costly. We tackle this

issue by proposing a reformulation of the so-called real-time approach [Phys. Rev. B 88,

235113, (2013)] based on Floquet theory, which leads to a self-consistent time-independent

eigenvalue problem. The method presented here applies to periodically-driven quantum

systems with weak electric fields and remains valid for extended systems as it uses the
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dynamical Berry-phase polarisation.

The implementation of this Floquet scheme at the independent particle level reproduces

the results of the real-time approach for 2nd and 3rd order susceptibilities of a number

of bulk and two-dimensional materials, while reducing the associated computational cost

by one or two orders of magnitude. The inclusion of local fields and many-body effects

introduced instabilities in the Floquet self-consistent cycle that could not be yet mitigated,

leading to only a handful of converged results at the time-dependent Hartree level. These

divergencies are linked to high population inversions, according to insights gained following

the development of a Floquet analysis tool capable of extracting Floquet states from a

time-dependent solution produced by, e.g., the real-time approach.

After critically evaluating the contributions of this thesis to the field of computational

materials science, it was concluded that the methods proposed and developed here have the

potential to accelerate the ab-initio calculation of linear and nonlinear optical properties.

Avenues for future exploration on these topics are also identified in light of the findings

reported in this work.
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Chapter 1

Introduction

We introduce two overlapping research fields that provide the context for the present thesis.
First, we describe the optical phenomena to be studied in this work and present a short
account of their relevance for current and potential applications. Next, we assess our
ability to make quantitative ab-initio predictions of materials properties and discuss the
implications this has for computational materials science as a research area. We then focus
on currently available methods for the calculation of optical properties and the challenges
they face in terms of performance and numerical efficiency. These computational barriers
motivate the alternative formulations proposed and developed in this work, and help us
establish a number of key questions to be addressed throughout this thesis.

Quantum mechanics represents one of the great revolutions in twentieth-century physics [1],

and arguably, in all of science. More than a hundred years have passed since this radical

shift in our understanding of the world around us, yet it continues to puzzle even the bright-

est minds with counter-intuitive phenomena like entanglement and its deep philosophical

implications. This has warranted a characterisation of quantum mechanics as a strange

theory that became ubiquitous in science communication circles. While there may be an

element of truth in that depiction, an utilitarian (and somewhat contrasting) perspective

should have far greater prominence on the general perception of this theory, i.e., quantum

mechanics is a very powerful ‘engineering tool’ we have at our disposal. There is a great

deal we do understand about quantum mechanics, which has enabled or assisted the devel-

opment of remarkable technologies such as computers, electronics and lasers. It is in this
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context that the present thesis is conceived, as it relies on or relates to said technologies, and

it stands on the firm theoretical foundations of quantum mechanics. Moreover, it follows

a similar mindset of improving theoretical frameworks in pursue of further technological

developments.

The modelling and simulation of materials at the microscopic scale is often cited as

another technology derived from quantum mechanics [2] and the developments that followed,

e.g., the availability of computers. It implies the formulation of mathematical frameworks

for the quantitative prediction of certain properties, their computational implementation

and execution. This set of tasks form what is known as computational materials science, or

simply, computational materials. This field is at a momentous stage, establishing itself as

a central discipline within physics and reaching a growing variety of scientific areas as an

increasingly standard tool. At its core, the present thesis seeks to improve the capabilities

of this technology by means of devising and implementing alternative and more efficient

algorithms to overcome the limitations faced by currently available methods (See Section

1.2). As an overarching solution to these challenges is unlikely, progress is rather made by

addressing these issues with a particular problem in mind [3]. In this thesis, the motivating

question is given by optical phenomena, a subject that combines considerable theoretical

and computational complexity with significant relevance in terms of current and prospective

technological applications (See Section 1.1).

1.1 Optical phenomena

Light is arguably the most useful probe we have of the physical reality around us. Whether

it is coming at the James Webb Space Telescope from a distant galaxy, or probing the inner

structure of matter, electromagnetic radiation always reveals something about the media it

propagates through. Naturally, this is only possible thanks to the interactions between light

and matter, which are collectively referred to as optical phenomena. A deep understanding

and control of light-matter interactions has huge potential for applications, not only using
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light as a probe, i.e., designing ever more capable optical instruments, but also as a means

to achieve some goal, e.g., photovoltaic cells.

The present thesis will focus on optical phenomena between infrared to near-ultraviolet

radiation and the electrons in crystalline solids. In detriment of reflection and transmission,

we are interested in the propagation of light through a material, which can involve processes

such as optical absorption. This interaction implies the transfer of energy from the incoming

radiation to the electrons, thus promoting them from their ground state to a higher-energy

state in what we call an optical excitation. The latter is a central concept in this thesis,

which we intend to study from a theoretical standpoint. This will require a quantum-

mechanical description of the energy levels accessible to the electrons within a crystal (i.e.,

the electronic structure) as well as some account of the changes induced by the excitations.

Moreover, ab-initio formalisms will be used throughout the thesis, which implies dispensing

with any empirical parameters in favour of just the periodic table and the principles of

quantum mechanics. A critical assessment of existing theoretical frameworks (see Chapter

2) together with the development and implementation of new methods (see Chapters 3-6)

constitutes much of this thesis.

1.1.1 Linear optics

The effects of an electric field, E , in a material can be understood in terms of the polari-

sation they induce, P, i.e., the dipole moment per unit volume resulting from the charge

displacements generated by the electric field. These processes are mathematically con-

fined to a so-called response function or susceptibility, χ(E), a magnitude representing an

input-output relationship between E and P. While this response function is, in general, a

function of the intensity of the electric field, neglecting this dependency is usually a very

good approximation,

P = χ(E) E → P = χ E , (1.1)

3



where the tensorial nature of these variables is ignored for simplicity, as well as their time

and space dependencies. Eq. 1.1 embodies the physics of the linear regime, which captures

the predominant effects of optical excitations and successfully describes a wide variety of

optical phenomena, e.g., absorption.

The vast majority of optical phenomena that can be observed experimentally and ex-

ploited in practical applications can be well described within the linear regime. A deep

understanding of the processes involved in linear optics is therefore of utmost importance,

and the progress made so far has led to innumerable applications. We restrict this dis-

cussion to the field of optoelectronics since this thesis focuses on electronic excitations in

gapped materials, i.e., the applications for which this thesis could be relevant would prob-

ably fall within that area. Optoelectronic devices are nowadays ubiquitous, permeating

several aspects of our daily life. For instance, light-emitting diodes (LEDs) find numerous

applications in low-cost illumination (which warranted the 2014 Nobel Prize in physics [4]),

signals and digital displays, among others [5]. Together with optical fibres, they have rev-

olutionised telecommunications, playing a major role in the rise of information technology.

Optoelectronic devices also find applications in photovoltaic (solar) cells for sustainable

energy generation [6]. Photodetectors are also essential for optical instruments, enabling

a wide range of spectroscopies that allow us to further characterise materials. Moreover,

recent advances in optoelectronics relate to the role low-dimensional materials can play in

this area, in terms of new or tuneable physical effects and better device integration [7–9].

1.1.2 Nonlinear optics

The linearity proposed in Eq. 1.1 can be seen as the leading term of an expansion in powers

of the electric field,

P = χ(1) E + χ(2) E2 + χ(3) E3 +O(E4), (1.2)

where χ(n) is the nth-order susceptibility [10]. The fact that higher-order response functions

are several orders of magnitude smaller than χ(1) explains why the linear regime is such a
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good approximation and nonlinear effects can only be observed with high-intensity electric

fields. The latter became available only after the discovery of the laser (1960), which

provided a highly-coherent high-intensity monochromatic light beam. This allowed for the

observation of second optical harmonics (χ(2)) in crystalline quartz [11], in what constituted

the first nonlinear optics experiment of the laser era. This milestone marks the beginning

of a new chapter in the field of nonlinear optics, which has been flourishing ever since.

Nonlinear optics has developed into a vast and very rich subject, encompassing a wide

variety of optical phenomena and holding promise of potential applications in several areas

of photonics, e.g., all-optical switching [12,13]. An important distinction within this field is

determined by the intensity of the light beam required to observe a given nonlinear process,

resulting in the so-called ‘traditional’ and extreme nonlinear regimes. The transition to

the extreme regime occurs whenever the energy associated with said intensity becomes

comparable or surpasses the characteristic energy of the material under study [14], at which

point the power expansion in Eq. 1.2 is no longer a good approximation. The extreme

regime requires field intensities beyond 1 × 1012 Wcm−2, which could only be achieved

several decades after the discovery of the laser. At variance, the seminal experiments

by Franken et al. [11] were conducted with intensities around 1 × 107 Wcm−2, which is

high enough to generate measurable optical harmonics without affecting the validity of Eq.

1.2. The use of these so-called ‘weak’ electric fields, i.e., weak in comparison with the

extreme nonlinear regime, limits the extent to which electrons are expected to populate

excited states, a concept we will revisit in Chapter 6. The present thesis will focus on this

‘traditional’ regime and refer to it simply as nonlinear optics.

Progress in this field has resulted in several applications, among which we can distinguish

nonlinear optical spectroscopies as an invaluable tool for investigating materials properties.

This is largely due to second harmonic generation (SHG) and its symmetry dependence,

i.e., it is a forbidden process in systems with inversion symmetry. For this reason, it

has been traditionally used on surfaces and interfaces [15–17], and more recently for the

characterisation and imaging of two-dimensional flakes [18–21]. This nonlinear optical

5



phenomenon can also act as a highly sensitive probe of magnetic ordering in atomically-

thin materials [22–24] and multiferroics [25,26]. In particular, SHG presents itself as a useful

probe for two-dimensional antiferromagnets provided the phase transition breaks inversion

symmetry, thus filling a gap between traditional magnetometric techniques and magneto-

optical Kerr effect (MOKE) microscopies. While the former require large sample volumes,

the latter can detect two-dimensional magnetism only if the net magnetisation is non-zero,

which typically applies to ferromagnets [27]. Finally, due to the sensitivity to changes in

the electric polarisation, SHG can also probe the dynamics of excited systems, tracking,

for instance, the formation of excitons, exciton-phonon coupling and demagnetisation of

antiferromagnets [28,29].

1.2 Computational materials science

The field of computational materials has been growing fast over the past decades, primarily

due to the tremendous success of density functional theory [30] (DFT) and the ingenious

formulation of Kohn and Sham [31] (KS). Despite the fact that the underlying ideas of

DFT were present in the late 1920’s and were put on firm ground by 1964, the widespread

application of this framework only started in the 1990’s (which, in part, relates to the com-

putational resources available at the time). An almost exponential growth in the number of

DFT-related publications was registered since then, surpassing ten thousand yearly contri-

butions by the late 2000’s [32]. In terms of impact, a 2014 list of the most cited 100 papers

included twelve publications relating to DFT, two of which made it to the top 10 [33]. A

more recent scientometric study tracks citations of the 31 most used electronic structure

ab-initio packages based on DFT, also revealing an almost exponential growth of the yearly

number of publications citing said codes [34].

The other pillar of this rapid expansion is computational, i.e., the widespread availability

of high-performance computing (HPC) resources. Electronic structure methods benefited

from a steep and sustained increase in the computational power available to perform ab-

6



initio calculations, first growing according to Moore’s law 1 and, more recently, boosted by

the advent of GPU cards for highly intensive computing tasks. The rise to prominence of

ab-initio methods, particularly DFT, was also possible thanks to the development of a vast

number of commercial and freely-available codes implementing the KS scheme and other

approaches. The apparent threat this poses for the reproducibility of DFT results has been

recently addressed in a community-wide effort [35]. Crucially, it was concluded that most

of the codes and methods used nowadays predict essentially identical results, putting past

and future research efforts on a firmer footing.

All this remarkable progress in electronic structure theory and computation has greatly

contributed to many areas of research, in particular, as DFT codes became standard tools in

disciplines well beyond the communities that developed them. Numerous properties are rou-

tinely calculated with relative ease and quick turnarounds, specially ground state properties

via DFT, like atomic structures, elastic constants, magnetic orderings, etc. In essence, we

have a technology capable of computing several properties in quantitative agreement with

experiments, thus providing physical insights into various phenomena and complementing

experimental efforts. Crucially, the predictive power of ab-initio electronic structure meth-

ods has the potential to unlock the field of computational material exploration. This stems

from the fact that simulating materials can be more straightforward and cost-effective than

conducting the analogous experiments in the laboratory. Hence, one can use this technol-

ogy to perform a high-throughput screening of tens of thousands of materials in the quest

for a desired property, which has been facilitated since the advent of automation tools for

electronic structure calculations [36,37]. High-throughput studies can then contribute to a

more educated selection of materials for experimental trials, considerably reducing the cost

and time scales associated with materials discovery and functionalisation.

The rapid growth of computational materials science as a research field has been primar-

ily driven by DFT, which has a very high ratio of predictive power to computational com-

plexity. However, its most widely used formulation turns it into a ground-state method [31],

1Whether the limits of Moore’s law have been nowadays reached or not is currently debated.
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which has its obvious limitations, i.e., arguably more interesting physics comes from elec-

tronic excitations, like optical properties. Many-body perturbation theory (MBPT) offers a

suitable and very successful framework for tackling these problems, at the expense of being

much more computationally demanding than DFT [38–41]. Having benefited from a sus-

tained increase in the computational power available, MBPT methods came to represent a

growing contribution to the success story of electronic structure methods. Nonetheless, the

computational demands of MBPT methods are still their main shortcoming. Overcoming

these computational barriers can assist MBPT in following a similar trajectory as DFT in

terms of research impact and is therefore a key motivation in the present thesis.

1.2.1 Limitations and challenges

While MBPT presents an advantage respect to DFT regarding the physics it can success-

fully describe, it usually involves more cumbersome calculations [38–41]. DFT considers

one-particle equations for non-interacting electrons and approximates (non-local) electron-

electron interactions via a local mean-field scattering potential. At variance, MBPT theory

treats non-locality explicitly through the self-energy operator, which inevitably translates

into heavier computations. Another important factor determining the computational cost

of both frameworks lies in the need for convergence studies. This refers to the truncation

of parameters that should in principle be infinite, as required for any numerical imple-

mentation, and implies finding the minimum value of any such parameter that nonetheless

captures all the relevant physics. Examples of these parameters are the number of basis

states in a basis expansion or the density of sampling points in a numerical integral. In

comparison with DFT, MBPT requires more convergence studies and usually presents a

slower convergence, i.e., it requires larger values of the same parameters.

Among these parameters we can distinguish the so-called k-points. This relates to

the discrete sampling applied to a group of numerical integrals that play a crucial role

in periodic systems and will be discussed in Sections 2.1 and 2.2. As a general obser-
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vation on gapped materials, suffices to say that DFT presents a faster convergence with

respect to k-sampling than MBPT, i.e., it requires fewer k-points overall. Depending on

the system under study, this can render MBPT calculations prohibitively costly, particu-

larly when computing optical properties via the Bethe-Salpeter Equation (BSE). In fact,

more often than not, the BSE scheme runs into computational limitations while seeking

k-points convergence and, as a result, the calculation of optical spectra is not as straight-

forward or streamlined as that of DFT-based ground state properties. Overcoming these

computational challenges will boost our ability to calculate optical spectra effi-

ciently with currently available supercomputers, thus furthering the capabilities

of computational materials as a research field. This is therefore a key motivation of

the present thesis, which is addressed in Chapter 3.

The calculation of nonlinear optical properties represents another area of computational

materials science where successful theories exist but their implementation faces consider-

able barriers in terms of the computational resources required. Most successful approaches

for the calculation of nonlinear susceptibilities in extended systems, certainly beyond the

second order in Eq. 1.2, involve explicit time evolution governed by a given Hamiltonian,

e.g., the so-called real-time approach [42,43]. This method allows for a relatively straight-

forward inclusion of excitonic effects within the MBPT framework, as it only entails adding

the corresponding self-energy operator to the Hamiltonian. Another crucial advantage of

the real-time approach lies on the capability of computing susceptibilities to many orders

simultaneously, since it is not perturbative in the electric field. However, these benefits

are sometimes overshadowed by the computational cost it entails, which is very high even

by MBPT standards. It is therefore a central incentive of the present thesis to

reduce this barrier and bring the simulation of nonlinear optical processes into

the mainstream of computational materials science. The use of Floquet theory (in-

troduced in Section 2.4) holds promise in circumventing the elevated computational cost of

the real-time approach while retaining its main advantages, as will be explored in Chapters

4-6.

9



1.3 Structure of this thesis

As we tried to convey in the previous sections, the overlap between the research fields of

optics and computational materials science results both in remarkable opportunities and

sizeable challenges. The former refer to the idea of accelerating the discovery of functional

materials for applications in optoelectronics and nonlinear optical devices. The latter are

represented by the computational limitations faced by currently available methods in the

calculation linear and nonlinear optical properties. The present thesis contributes to tack-

ling these shortcomings and aims at enhancing the capabilities of computational materials

science.

The reminder of the thesis will be structured as follows. Chapter 2 describes the theo-

retical background regarding the currently available frameworks for the calculation of linear

and nonlinear optical properties, leading to a discussion on their shortcomings and previous

attempts to overcome them. The basics of Floquet theory are also presented here. The

methods in Chapter 2 represent a benchmark upon which improvements will be proposed

and tested in subsequent chapters. Chapter 3 is devoted to linear optics and proposes an

efficient approach to k-sampling in the BSE scheme. We seek to investigate whether this

approximation can still capture excitonic effects correctly and evaluate the computational

gains achieved by this method.

Chapters 4-6 focus on nonlinear optical properties. The key question to address here

relates to whether Floquet theory can be used to reformulate the time-dependent problem

of the real-time approach as a time-independent eigenproblem, and what conditions are

required of the Hamiltonian to achieve that. As equally important is to verify that the

above-mentioned advantages of the real-time approach are retained in the reformulated

eigenproblem. Moreover, it is also essential to quantify the speed-up attained by this Flo-

quet approach. We attempt this in two stages depending on the level of theory considered,

i.e., we reformulate the real-time approach at the independent-particle level in Chapter 4

and we defer the inclusion of excitonic effects to Chapter 5.
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Chapter 6 explores how the eigenstates of the Floquet eigenproblem can be obtained

from the solution of the real-time approach, and proposes a method to achieve that. This

attempts to reveal what kind of so-called Floquet states should be expected in each situa-

tion, and how they depend on the inclusion of excitonic effects.

Finally, Chapter 7 revisits the key questions set out here in light of the advances pre-

sented in Chapters 3-6, thus providing the conclusions of this thesis alongside an outlook

to future endeavours.
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Chapter 2

Theoretical background

We review the current theoretical frameworks for the ab-initio description of linear and
nonlinear optical processes, starting with a discussion on Density Functional Theory as
the method of choice for ground-state calculations. We then consider the linear regime,
covering from the Independent Particle Approximation (IPA) to the inclusion of many-body
effects for the description of excitons via the Bethe-Salpeter equation (BSE). Next, we
review the tools available for predicting nonlinear optical properties with particular focus
in time-dependent approaches. We highlight the challenges and bottlenecks affecting the
efficiency of these methods as a motivation for our own implementations. In addition, we
set out the basics of Floquet theory and its application to periodically driven quantum
systems. 1

The present thesis is broadly concerned with ab-initio optical excitations of electrons in

solids. In particular, we focus on neutral excitations, i.e., electron-hole pairs, as those

involved in spectroscopic measurements of optical absorption or second harmonic generation

(SHG). This is intrinsically a time-dependent problem, as we perturb a system with an

external field, E(t), and analyse its response in real time. Indeed, this logic motivates one

of the frameworks used to describe these phenomena from a theoretical standpoint, i.e., the

so-called real-time approach. The latter implies solving the time evolution of the system

with the perturbing field in order to access its dynamical properties. Among these, one can

1Chapter 2 includes content that first appeared in two published articles reporting work carried out as
part of this PhD, with some emendations and changes of phrase to better elaborate the work. In particular,
the last subsections of Section 2.2.2 were adapted from Alliati, Sangalli & Grüning, Frontiers in Chemistry,
9, 763946 (2022), and Section 2.3.1 first appeared in Alliati & Grüning, Electronic Structure, 5, 017001
(2023).
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obtain the dynamical polarisation, P(t), induced by the external field, which is a central

quantity in the study of light-matter interaction. This polarisation is usually expanded

in powers of the electric field (see Eq. 1.2), thus defining n-th order response functions

or susceptibilities, χ(n). Ultimately, these functions relate to the observables measured in

the experiments we intend to reproduce and can be easily obtained once the dynamical

polarisation is known as a function of time.

An alternative framework for describing optical excitations implies finding individual

expressions for the various susceptibilities based on transition probabilities between occu-

pied and unoccupied states, e.g., calculating correlation functions via response theory. This

can be achieved considering partial derivatives respect to the external field or the induced

charge density (rather than time derivatives), which results in a time-independent formal-

ism. The choice between the real-time or perturbative approaches usually depends on the

regime of optical excitation under consideration. The perturbative approach is preferred in

the linear regime, i.e., calculating χ(1) to obtain absorption spectra, and will be described

in Section 2.2. With the exception of some perturbative expressions available for χ(2),

nonlinear optical excitations in solids are normally addressed with real-time approaches, as

explained in Section 2.3. In any case, either as the unperturbed system or as a starting point

for the time-dependent problem, an ab-initio description of the electronic ground state is

required (see Section 2.1). Finally, Section 2.4 presents Floquet theory as an alternative

for reformulating the time-dependent formalism into a time-independent non-perturbative

eigenproblem, provided time periodicity is present in the system.

2.1 Ground state electronic structure

In the atomic scale, matter can be represented as a collection of atomic nuclei and their

corresponding electrons interacting with one another and among themselves via Coulomb

forces. Adding the kinetic energy of each particle to these electrostatic contributions, one

can obtain the Hamiltonian operator for a system of P nuclei and N electrons,
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Ĥ =−
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− e2
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I=1

N∑
i=1

ZI

|RI − ri|
,

(2.1)

where m, e and ri are the mass, charge and position of the electrons while MI , ZI and

RI represent the nuclear mass, charge and coordinates. In principle, all the information

included in Eq. 2.1 is known and one should be able to find the energy eigenstates of this

Hamiltonian, Ψ(R1,R2...RP , r1, r2...rN). The latter would provide the ground state many-

body wavefunction and a general solution to the time-dependent Schrödinger equation,

Ψ(R1,R2...RP , r1, r2...rN , t), from which any property of the system can be derived. In

practice, this is impossible to solve with the exception of very few simple systems. The

main issue with this Hamiltonian is the two-body nature of the Coulomb interaction, which

makes the Schrödinger equation non separable. Mathematically, it means that the 3(P+N)

degrees of freedom in the equation are coupled. Physically, that the position of, e.g., one

electron depends on that of the nuclei and all the remaining electrons.

For almost every system of interest, solving the Schrödinger equation will require us to

decouple some of these degrees of freedom, turning the solution into an inevitably approx-

imated one. Two of such approximations, on which most electronic structure methods are

based, separate the nuclear degrees of freedom from one another (classical nuclei approxima-

tion) and from the electronic ones (Born-Oppenheimer approximation [44] 2 ). The former

approximation amounts to neglecting exchange and correlation effects among the nuclei,

as well as considering each nucleus as an individual and well-localised wave packet. The

Born-Oppenheimer approximation is inspired in the classical picture of electrons moving

much faster than the nuclei owing to their mass difference. It is more accurate to describe

it as a separation in energy and time scales of the electronic excitations form the nu-

2While some of the sources cited in Section 2.1 are in German, the corresponding topics have been
covered in numerous solid state physics and electronic structure textbooks, e.g., [45–47].
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clear ones (phonons), which results in ignoring non-radiative transitions between electronic

states. This allows us to factor the wavefunction into a nuclear and an electronic part, i.e.,

Ψ = Θ(R1,R2...RP , t)Φ(r1, r2...rN), where the nuclear wavefunction, Θ, is also a product

of individual wave packets. The electronic wavefunction, Φ, depends only parametrically

on the nuclear coordinates and is an (adiabatic) eigenstate,

ĤeΦi(r1, r2...rN) = EiΦi(r1, r2...rN) (2.2)

of the so called electronic Hamiltonian,

Ĥe = −
P∑

I=1

ℏ2

2m
∇2

i +
e2

2

N∑
i=1

N∑
j ̸=i

1

|ri − rj|
− e2

P∑
I=1

N∑
i=1

ZI

|RI − ri|
, (2.3)

of a given nuclear configuration, {RI}.

These approximations have turned the original problem into a much simpler but still

unsolvable one, i.e., finding the eigenfunctions of the electronic Hamiltonian. This is re-

ferred to as the electronic problem and consists of N interacting electrons in the external

Coulomb field generated by the nuclei. The main obstacle in its solution is that this time

independent electronic Schrödinger equation is, again, non separable. Hence, its solution

depends, in principle, on the 3N electronic coordinates. Unsurprisingly, the origin of this

problem is the same as before, namely, the two-body nature of the Coulombic interactions

between electrons. However, in the case of electrons, correlation effects are very impor-

tant and cannot be safely ignored as in the case of nuclei (where a product of individual

wavepackets gives a good approximation to the nuclear wavefunction). Indeed, electron

correlation is the essence of the electronic problem, to which much of this thesis will be

devoted.

Mathematically, electron correlation means that the electronic wavefunction cannot be

written as a product of non-interacting one electron wavefunctions. Nevertheless, solving

the electronic problem via DFT will involve doing exactly that, but only as a reference
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system within a framework where correlation is nonetheless accounted for and, more im-

portantly, the wavefunction is no longer the fundamental variable.

2.1.1 Density Functional Theory

The density as a fundamental quantity

The idea that the electronic density could be as fundamental as the wavefunction in the

many-body problem was first intuitive [48–50]. In what is known as Thomas-Fermi-Dirac

(TFD) theory, an inhomogeneous electron gas was considered as locally homogeneous and

its energy was written as a functional of the electronic density. The obvious advantage of

this framework is that the density depends only on the three spatial coordinates, while the

electronic wavefunction has 3N degrees of freedom. This ideas of the late 1920’s formed the

basis for the later development of Density Functional Theory (1964), where these statements

were proven and formalised by Hohenberg and Kohn [30].

The first Hohenberg and Kohn (HK) theorem indicates that the external potential is, to

within a constant, a unique functional of the electron density [30]. The implications of this

statement arise from the fact that, by defining the external potential, the electronic Hamil-

tonian is completely specified and so are the many-body energy eigenstates Φ(r1, r2...rN).

As a result, the many-body ground state (and evidently the ground state energy) must be

a unique functional of the electron density. This means that there must exist a one-to-one

mapping between the ground state wavefunction of a system and its ground state electron

density. The latter is as fundamental as the wavefunction and both carry the same in-

formation. The second HK theorem, known as the variational principle, proves that the

energy functional assumes its minimum value for the correct electron density. This means

that obtaining the ground state energy and density of any external potential amounts to

minimising the energy functional of the electronic density, a function of the three spatial

variables. The complexities of the many-body problem are then confined to determining

the form of this energy functional.
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The HK theorems tell us that the energy functional exists, but not what it looks like.

In general, the energy functional, E[ρ], should have kinetic, electrostatic and exchange-

correlation terms,

E[ρ] = T[ρ] + Uext[ρ] + Uee[ρ] + EC [ρ] + EX [ρ] (2.4)

The electron-nuclei interaction, Uext[ρ], does not pose any problems at this stage. The

electron-electron interaction is formulated as that of a system of non-interacting electrons

(Hartree term), Uee[ρ], plus the exchange and correlation contributions, EX [ρ] and EC [ρ].

For the latter two terms, reasonably good approximations exist and will be discussed below.

We shall now focus on the kinetic energy term, T[ρ], for which the TFD expression (local in

density) poses severe limitations. The most widely used approach to this issue was proposed

by Kohn and Sham (1965) [31].

Kohn-Sham equations

As very often happens in many-body problems, the first approximation to a system of

interacting particles is one where they do not interact at all. In this case, the electronic

wavefunction would be given by a Slater determinant of many one-electron wavefunctions.

As stated above, this decoupling is not correct because electron correlation plays a very

important role in the physics being described. Nevertheless, Kohn and Sham (KS) managed

to find a non-interacting reference system that has some physical significance for the prob-

lem at hand. They defined an auxiliary, non-interacting system that nonetheless produces

the correct electron density, i.e., that of the interacting system. Therefore, the scheme of

KS results in the eigenproblem,

ĤKSϕKS
i (r) = EKS

i ϕKS
i (r), (2.5)
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where ϕKS
i (r) and EKS

i represent the eigenstates and eigenvalues of the so-called KS Hamil-

tonian,

ĤKS = −
N∑
i=1

ℏ2

2m
∇2

i + vKS(r), (2.6)

a one-particle operator that depends on three spatial variables. One can then obtain the

electron density of the interacting system via the KS wavefunctions,

ρ(r) =
N∑
i=1

fi|ϕKS
i (r)|2, (2.7)

where fi is the occupation factor of state i. The resulting density is then used in the energy

functional, E[ρ] (Eq. 2.4).

The re-introduction of some wavefunctions in an otherwise wavefunctionless theory is

particularly appealing when it comes to finding the expectation value of the kinetic energy

operator. One can then calculate the kinetic energy of the reference system exactly,

TR = − ℏ2

2m

N∑
i=1

fi⟨ϕKS
i |∇2|ϕKS

i ⟩, (2.8)

and carry over the difference with respect to the true kinetic energy, i.e., the kinetic cor-

relation energy, to the correlation functional. Computing the kinetic energy via Eq. 2.8

supposed a great improvement with respect to the density functionals derived from TFD

theory. Important shortcomings of the latter such as the prediction of infinite densities

around atomic nuclei and the lack of quantum density fluctuations in accordance to the

atomic shell structure are avoided by Eq. 2.8 [31].

All that is left is to formulate a reference potential, vKS, such that the energy eigenstates

of the KS Hamiltonian produce the same electron density as the true many-body system.

Applying the variational principle to both the reference and the interacting systems, and

equating the resulting chemical potentials leads to,

vKS(r) = vext(r) +

∫
ρ(r′)

|r− r′|
dr′ + vXC[ρ](r), (2.9)
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where vXC[ρ](r) =
δ(EC[ρ]+EX[ρ])

δρ
is the exchange-correlation potential and the integral term

represents the Hartree potential. We observe that the reference potential, vKS, depends on

the electron density, thus imposing the requirement for a self-consistent solution of the KS

equations.

Exchange-correlation functional

As mentioned before, electron-electron interaction is the main obstacle in the quantum

many-body problem, which includes complex physical effects as exchange and correlation.

An appropriate description of these effects is of utmost importance for the success of any

ab-initio framework and, within DFT, it is attempted via approximated functionals of the

electronic density.

A suitable starting point is the local density approximation (LDA), which was employed

in the seminal papers by Hohenberg, Kohn and Sham [30, 31]. It considers an inhomoge-

neous electron gas as locally homogeneous, therefore using available functionals for the

homogeneous electron gas. While this approach has been successful in describing many

solids over the years (e.g., Perdew-Zunger [51]), it also shows some limitations, particularly

around inhomogeneities of the charge density like those found in low-dimensional systems.

The obvious improvement over LDA consists on expanding the functional in terms of the

gradient of the density, which somehow introduces non-locality. This is the main idea behind

the so-called generalised gradient approximations (GGA), of which many formulations have

been proposed (e.g., PW91 [52] or PBE [53]). GGA functionals provided an improvement

over LDA in many respects and have been extensively used in electronic structure methods.

There is a wide variety of more advanced functionals one could choose from, like meta-GGA,

hybrid functionals incorporating Fock exact exchange, functionals including Van der Waals

interactions or those adding a Hubbard ‘U’ on-site interaction term (see, e.g., [46, 47]).

Nevertheless, we consider LDA and GGA to be reasonably good approximations for the

purposes of this thesis. This is because DFT will only be used as a starting point, while

electron-electron correlation will be accounted for via the many-body perturbation theory
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framework (see Section 2.2). Moreover, this thesis is generally concerned with validating

methods against each other, rather than making quantitative predictions in agreement with

experiments.

Bloch’s theorem and plane waves

There is an important aspect related to the form that the one-electron wavefunctions take in

a periodic potential, which is particularly relevant for DFT calculations on solids and other

systems with periodic boundary conditions. According to Bloch’s theorem [54], the eigen-

states of any operator with translational invariance, such as a single-particle Hamiltonian

with a periodic potential, will be of the form,3

ϕ(r) = eik·rµ(r), (2.10)

i.e., the product of a pure phase, where k is a vector in reciprocal space, and a periodic

function, µ(r), with the periodicity of the lattice. While any wavevector k should be

allowed in principle, it can be proven that only those in the first Brillouin zone (BZ) lead

to distinct wavefunctions. As this is still an infinite number of vectors, one has to sample

the BZ discretely with a grid of k-points. The latter must be carefully selected so that

results are roughly insensitive to the inclusion of additional k-points. This is referred to as

achieving convergence with respect to k-points or the sampling of the BZ.

Another key element in solving electronic structure methods involves representing the

one-electron wavefunctions in a way that facilitates their computational implementation.

The energy eigenstates are then expanded in a basis set and the problem is now to find the

coefficients of such expansion. The choice of basis sets will depend on characteristics of the

system under study, seeking to make the problem more amenable. Wavefunctions of elec-

trons in extended systems with periodic boundary conditions are usually expanded in plane

waves [46,47]. This would be equivalent to replacing the periodic part of the wavefunction,

3An analogous statement in one dimension had been proven earlier by Floquet in an analysis of differ-
ential equations with constant or periodic coefficients (see Section 2.4).
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µ(r), by its Fourier series. Importantly, these basis functions do not depend on energy, so

the Schrödinger equation becomes a linear eigenvalue problem [46]. In addition, the ki-

netic energy operator is a diagonal matrix in this representation, which is computationally

convenient.

Although the Fourier series of the one-electron wavefunctions is infinite, they must be

truncated to a finite number of terms for any computational implementation. This imposes

a maximum wavevector Gmax, or an energy cutoff, which also determines the the minimum

distance in real space that can be resolved. The number of functions in the basis set must

be carefully selected through convergence studies and, in this regard, plane-waves offer a

systematic way of doing so by simply increasing the energy cutoff [46].

Practical aspects

There are numerous practical aspects that must be considered when solving the KS equa-

tions and it is not possible to cover them all here, so we will briefly mention some of them.

The first one concerns the widely used pseudopotential approach (see, e.g., [55–57]), in

which only the valence electrons are treated explicitly. Conversely, the core electrons form

an effective core with the nucleus, thus screening the nuclear potential. Some numerical

aspects include the use of density-mixing schemes to prevent charge sloshing and facilitate

convergence of the self-consistent loop (see, e.g., [58]), or the inclusion of smearing in the

occupations to deal with integrals across the BZ (see, e.g., [59]). Much attention is also

devoted to the choice of minimisation algorithms to avoid full diagonalisation of the KS

Hamiltonian (see, e.g., [60]). Finally, it is worth mentioning that the DFT formalism can

be extended to consider spin polarisation in the so-called local spin density approximation

(LSDA – see, e.g., [46]). Non-collinear calculations can also be performed via the spinorial

formulation of DFT, which also takes into account the orientation of the spins in the lattice

and allows for the inclusion of spin-orbit coupling.
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2.2 Optical excitations in the linear regime

Let us start by discussing three approximations used throughout this thesis for the calcula-

tion of optical spectra, which are also widely adopted in the literature. First, we consider a

semi-classical approach to the problem, where the electrons are described quantum mechan-

ically while the electric field is treated classically, i.e., not quantised. Second, we assume

that the electric field is spatially constant within a unit cell and invoke the dipole approxi-

mation [61], which is reasonable considering the photon energy range explored in this work

in comparison with the atomic lengths involved. This approximation enables a gauge trans-

formation such that the effect of the electric field on the electrons can be expressed solely

by a scalar potential (i.e., the vector potential is zero within this framework) [61]. This

scalar potential is of the form −erE(t), where the electric field E is constant in space. We

therefore work within the so-called length gauge (or density-density approach), which is less

susceptible to numerical issues and instabilities than the velocity gauge (or current-current

approach) [62].

Finally, we use the fixed-nuclei approximation, thus ruling out any non-radiative elec-

tronic transition assisted by lattice vibrations (phonons). This eliminates an important

energy dissipation mechanism of electronic excitations, which has to be accounted for phe-

nomenologically instead. In practice, a phenomenological dissipation term is included when

calculating response functions, thus providing broadening to the spectra. This term can

take various forms depending on the formalism it is applied to, as will be pointed out

throughout this thesis. We note these three approximations, as well as the use of the

length gauge, will also apply to our study of the nonlinear regime (see Section 2.3).

2.2.1 Response functions via perturbative methods

As anticipated, the calculation of optical properties in the linear regime is usually carried

out via perturbative methods, i.e., formulating expressions for χ(1) based on the charge

density induced by an external potential. While real-time approaches can certainly be used
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to obtain this first-order response function, perturbative methods are much preferred in

the linear regime, as they are simpler and more efficient. The derivation of these pertur-

bative expressions has been predominantly conducted via two contrasting frameworks [38],

i.e., many-body perturbation theory (MBPT) and time-dependent density functional the-

ory (TD-DFT). The latter has been successfully applied to finite systems [63] and benefits

computationally from a mean-field treatment of the electron-electron interaction. However,

the use of approximated functionals in this framework, usually lacking spatial non-locality,

makes it difficult to properly account for excitonic effects [38]. This imposes severe limita-

tions on its ability to describe absorption spectra in semiconductors and insulators, where

excitons play a crucial role (see e.g., [64–66]). Therefore, this thesis will not address TD-

DFT specifically, only referring to it for comparison or completeness whenever appropriate.

We will focus on MBPT instead, which offers a well established framework for the descrip-

tion of excitons in solids via a non-local, energy dependent, multivariable object, i.e., the

self-energy [38, 39, 67]. This inevitably leads to a more cumbersome formalism, as it in-

volves four-point quantities such as the BSE kernel or the two-particle Green’s function.

As a result, MBPT entails higher numerical complexity than TD-DFT, which can be ex-

pressed in terms of a two-point kernel based on a local exchange-correlation potential [38].

Indeed, overcoming these computational limitations of MBPT by proposing methods with

improved numerical efficiency is a key motivation in this thesis (see Chapter 3).

Screening

Much of the complexity of dealing with electronic excitations in solids can be ascribed to

the idea of screening. The latter will be intuitively introduced with an example involving

two electrons at positions r1 and r2 (they are considered static for simplicity). In a vacuum,

those electrons interact via a Coulomb potential vCo(r1, r2) =
1

|r2−r1| . Inside a material, one

must also consider the impact of these electrons on the system as a whole, comprising many

other electrons and charged particles. In particular, the presence of an electron at position

r1 will induce rearrangements of electrons leading to a charge density difference everywhere
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else in space, δρ(r3), that will then act on the electron at position r2,

WCo(r1, r2) = vCo(r1, r2) +

∫
dr3 vCo(r1, r3) δρ(r3), (2.11)

where the sum of both contributions is the screened Coulomb interaction, WCo. In the

linear regime, one can assume this so-called polarisation density is linear with respect to

the perturbation that created it,

δρ(r3) =

∫
dr4 χρρ(r3, r4) vCo(r4, r2), (2.12)

where χρρ, is the density-density linear response function. We can then formulate the

screened Coulomb interaction as,

WCo(r1, r2) =

∫
dr5 ε

−1(r1, r5) vCo(r5, r2), (2.13)

where the static inverse dielectric function was introduced,

ε−1(r1, r5) = δ(r1 − r5) +

∫
dr3 vCo(r1, r3) χρρ(r3, r5). (2.14)

As a result, the Coulomb repulsion between the two electrons is, in general, greatly reduced

by the presence of the material. This simple example misses a crucial aspect of the di-

electric function, i.e., its time/energy dependence, as the electrons were considered static.

Nevertheless, it provides an intuitive picture of the physics involved in charged excitations

like those occurring in photoemission spectroscopy experiments. One could also consider

a similar situation between an electron-hole pair created in the material by an incoming

photon, resulting in a screened Coulomb attraction between these particles. This sort of

neutral excitations dominate the physics involved in absorption spectroscopies. In these

experiments, it is also useful to think of an external potential applied to a material, Vext,

and the resulting total potential inside the material, Vtot = ε−1Vext , which includes a po-
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tential induced by the rearrangement of electrons. This picture will help us formalise the

dielectric function.

Linear response theory

We introduce this topic following the discussions in Refs. [39] and [68]. We start by

considering a system taken out of equilibrium by a time-dependent perturbation, e.g.,

a potential Vext(r, t) switched on at t0. This potential will couple to the density op-

erator adding a perturbing contribution to the Hamiltonian of the system, i.e., Ĥ(t) =

Ĥ0 +
∫
dr2 ρ̂(r2) Vext(r2, t). We now evaluate how a given observable evolves in time under

this Hamiltonian by taking the expectation value of the associated operator in the Heisen-

berg picture. In light of the previous discussion on screening effects, we are interested in

the density operator,

⟨ρ̂H(r1, t1)⟩ = ⟨U †
S(t1, t0)ρ̂(r1)US(t1, t0)⟩, (2.15)

with the time-evolution operators defined in the Schrödinger picture as,

US(t1, t0) = e−i
∫ t1
t0

dt2Ĥ0+
∫
dr2 ρ̂(r2) Vext(r2,t2). (2.16)

This exponential can be expanded as a power series in Vext,

US(t1, t0) ≈ e−i
∫ t1
t0

dt2Ĥ0

(
1− i

∫ t1

t0

dt2

∫
dr2 ρ̂(r2) Vext(r2, t2) +O(V 2

ext)

)
. (2.17)

The leading term of this expansion would recover the equilibrium density, ⟨ρ̂H(r1, t1)⟩0, in

Eq. 2.15 (the superscript indicates that the expectation value does not include the effect

of the perturbation Vext). Since we are interested in the linear response of the system, we

only consider terms up to first order in Vext and replace this expansion in Eqs. 2.15 and

2.16. In this process, a dynamical retarded correlation function between the two instances
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of the density operator is formed,

−iCR
ρρ(r1, t1, r2, t2) = −iΘ(t1 − t2)⟨[ρ̂H(r1, t1), ρ̂H(r2, t2)]−⟩ ≡ χ(1)

ρρ (r1, t1, r2, t2), (2.18)

where Θ is the Heaviside function. Defining the first order density-density response function,

χ
(1)
ρρ , as in Eq. 2.18, we arrive at the change in the electron density to first order in the

external perturbation,

δρ(r1, t1) ≡ ⟨ρ̂H(r1, t1)⟩ − ⟨ρ̂H(r1, t1)⟩0 =
∫
dt2dr2 χ

(1)(r1, t1, r2, t2) Vext(r2, t2), (2.19)

where we eliminated the ρρ subscript as we only work with density-density response func-

tions in this thesis. Moreover, in the MBPT literature, this response function is referred to

as the reducible polarisability, χred. We will use this nomenclature for the rest of Section

2.2 (we eliminate the superscript indicating first order as it should be clear from context).

We now calculate the total potential inside the material as the sum of the external and

induced potentials. We suppose the latter is created by the induced density of Eq. 2.19

through the Coulomb interaction,

δVtot(r1, t1) = Vext(r1, t1) +

∫
dt3dr3 vCo(r1, t1, r3, t3)δρ(r3, t3)

= Vext(r1, t1) +

∫
dt3dr3

∫
dt2dr2 vCo(r1, t1, r3, t3)χ

red(r3, t3, r2, t2)Vext(r2, t2).

(2.20)

We then re-write Eq. 2.20 as,

δVtot(r1, t1) =

∫
dt2dr2 ε

−1(r1, r2, t1 − t2)Vext(r2, t2), (2.21)
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with the inverse dielectric function defined as,

ε−1(r1, r2, t1 − t2) = δ(r2 − r1)δ(t1 − t2) +

∫
dr3 vCo(r1, r3)χ

red(r3, r2, t3 − t2)δ(t3 − t1).

(2.22)

We can write this magnitude in frequency space as,

ε−1(r1, r2;ω) = δ(r2 − r1) +

∫
dr3 vCo(r1, r3)χ

red(r3, r2;ω), (2.23)

thus making its energy dependence explicit. In addition, if the system presents translational

invariance, we can express the inverse dielectric function in G-space,

ε−1
G,G’(q, ω) = δG,G’ + vCo(q+G)χred

G,G’(q, ω), (2.24)

where q represents the transferred momentum.

Micro-macro connection

In order to transition from the microscopic quantities obtained via linear response to macro-

scopic properties that one can associate with experiments, the former should be averaged

over the spatial variables. To this end, the macroscopic dielectric function is defined as the

reciprocal of the long-wavelength part of the inverse dielectric function [69,70],

εM(q, ω) ≡
1

ε−1
G=0,G’=0(q, ω)

. (2.25)

In particular, the imaginary part of the macroscopic dielectric function in the limit q → 0

represents optical absorption, since the momentum of the incoming photon in the energy

range studied in absorption spectroscopies is negligible.

It is insightful to formulate an expression analogous to Eq. 2.23 but for the dielectric
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function instead of its inverse,

ε(r1, r2;ω) = δ(r2 − r1)−
∫
dr3 vCo(r1, r3)χ

irr(r3, r2;ω). (2.26)

Eq. 2.26 contains the so-called irreducible polarisability, χirr, which is related to χred via a

Dyson-like equation,

χred(r1, r2;ω) = χirr(r1, r2;ω) +

∫
dr3

∫
dr4 χ

irr(r1, r4;ω)vCo(r4, r3)χ
red(r3, r2;ω). (2.27)

Then, if χirr was available in some approximation (see Section 2.2.2), one should perform

a matrix inversion to solve Eq. 2.27 for χred before obtaining εM from Eqs. 2.23 and 2.25.

Alternatively, one could think of simply evaluating Eq. 2.26 and taking the head of the

dielectric matrix in reciprocal space, ε0,0(q, ω), in order to obtain εM without any matrix

inversion. However, this procedure would not be correct in general since the averaging

procedure has to be done over ε−1 and not ε. In order to understand this, we can apply

spatial averages on both sides of Vtot = ε−1Vext and realise that Vext could be taken out of

the average as it is a slowly varying potential. The same argument would not be true on

Vext = εVtot, since Vtot presents fluctuations in the inter-atomic scale, and we could only

obtain an average of the product εVtot. In fact, it is precisely these microscopic variations

of Vtot that we are concerned with in this section, the so-called local field effects. More

formally, the fact that all matrix elements of εG,G’ contribute to the head of the inverse

dielectric function, ε−1
0,0, through a matrix inversion reflects the local field effects and stems

from the inhomogeneities of the system. In an homogeneous system, all quantities would

depend on the distance |r1 − r2| rather than explicitly on r1 and r2. This would result in

the dielectric function being a diagonal matrix reciprocal space, in which case Eq. 2.25

would reduce to simply εM(q, ω) = εG=0,G’=0(q, ω), i.e., only a single matrix element would

need to be computed.

Given the computational incentives of potentially avoiding a matrix inversion inG-space
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or requiring only one matrix element, it would be useful to find an expression for εM with

the mathematical structure of the homogeneous case. This can be achieved by defining an

interacting polarisability [38],

χ = χirr + χirr vCo χ, (2.28)

where the integrals of Eq. 2.27 are implied. In Eq. 2.28, a modified Coulomb potential, vCo,

was defined as being equal to the regular Coulomb potential, vCo, except for the long-range

component (q + G = 0), which is set to zero. With these definitions, the macroscopic

dielectric function can be calculated as,

εM(q, ω) = 1− vCoG=0(q) χG=0,G’=0(q, ω) (2.29)

which will be useful in solving the Bethe-Salpeter equation (See Section 2.2.2).

2.2.2 Many-body perturbation theory

We now turn to MBPT 4 in order to find suitable approximations for the calculation of the

response functions introduced in Section 2.2.1. This vast formalism has been discussed at

length in several reviews [38, 40, 41, 67] and textbooks [39, 68, 71]. In this section, we only

present a brief account of some aspects of MBPT based on their relevance for the present

thesis.

A central quantity in this framework is given by the propagators, which are defined as

the probability amplitude of finding an electron at r2 and t2 having created an electron at r1

and t1 (this would represent a one-particle propagator). If an independent particle Hamil-

tonian is considered, it can be proven that the independent-particle retarded propagator is

the Green’s function (i.e., mathematically, the resolvent) of the corresponding Schrödinger

4Much of this thesis revolves around the comparison between perturbative and non-perturbative ap-
proaches for the calculation of optical properties. In this context, the term ‘perturbative’ refers to the
external electric field applied in spectroscopic measurements, and this is how it should be interpreted
within this thesis. As an exception, we clarify that what is treated perturbatively in the MBPT framework
is the electron-electron interaction.
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equation,

[i∂t2 − Ĥ0(r2)] G
0(r1, t1, r2, t2) = iδ(r1 − r2)δ(t1 − t2). (2.30)

For this reason, these propagators are normally referred to as Green’s functions in electronic

structure theory, be it at the independent particle level or beyond. These Green’s functions

carry important information about a given system of interacting electrons, e.g., charge

density, electron addition or removal energies, etc, and are a much simpler object to work

with compared to any approximation to a many-body wavefunction.

In trying to obtain an expression for a one-particle propagator, one usually resorts to

its equation of motion (EOM). However, it can be shown that said equation will contain a

two-particle Green’s function. If one tries to find the latter writing its EOM, four-particle

Green’s functions will appear in the expressions. With the exception of some particular

cases, this usually goes on indefinitely, i.e., the EOMs for the Green’s functions do not

close. This is normally referred to as a hierarchy of Green’s functions. An approach to deal

with this issue implies forcing the EOM of the one-particle Green’s function to close by

expressing the two-particle Green’s function as a functional derivative of the former respect

to an external perturbation. As a result, the self-energy operator is introduced, i.e., a non-

local frequency-dependent one-particle operator that holds information of all higher-order

Green’s functions. This technique eventually leads to a closed set of five coupled integral

equations known as the Hedin equations [72],

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σxc(3̄, 4̄)G(4̄, 2), (2.31)

Γ̃(1, 2, 3) = δ(1, 2)δ(1, 3) +
δΣxc(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)Γ̃(6̄, 7̄, 3), (2.32)

χirr(1, 2) = −iG(1, 3̄)G(4̄, 1)Γ̃(4̄, 3̄, 2), (2.33)

WCo(1, 2) = vCo(1, 2) + vCo(1, 3̄)χ
irr(3̄, 4̄)WCo(4̄, 2), (2.34)

Σxc(1, 2) = iG(1, 4̄)WCo(1
+, 3̄)Γ̃(4̄, 2, 3̄), (2.35)
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where the bar over a numeric coordinate denotes integration. Eq. 2.31 is the Dyson equa-

tion for the interacting one-particle propagator. The kernel of this equation is the above-

mentioned self-energy, which can be seen as a dynamical non-local exchange-correlation

potential acting on an excited electron or hole. Eq. 2.32 provides an expression for the

vertex function, which represents the interaction between an electron and a hole. Indeed,

in Eq. 2.33 for the polarisability, the vertex function modulates a product of said propaga-

tors which, on its own, would represent a non-interacting electron-hole pair (each Green’s

function in Eq. 2.33 represents a particle or a hole, depending on the time indexes). In

Eq. 2.34, an expression for the screened Coulomb potential is given along the lines of the

results found in Eqs. 2.13 and 2.14. Finally, the self-energy can be calculated with Eq.

2.35 as a function of already known quantities and fed into Eq. 2.31 to continue cycling

through this set of equations.

The Hedin equations constitute a central result of MBPT that allows one to calculate

the one-particle propagator of an interacting system including dynamical screening effects

via the self-energy. The self-consistent solution of this set of equations is a formidable task

and rarely pursued, not least because it has to be done analytically, rather than numerically.

Nonetheless, part of the success behind the Hedin equations lies on including all the relevant

physical effects explicitly in such way that even the strongest approximation, i.e., no self-

consistency at all, leads to useful results (e.g., electron energy loss spectra at the RPA level

or quasi-particle energies via the G0W0 scheme).

Random-phase approximation

In the context of MBPT, the random-phase approximation (RPA) implies calculating the

inverse screening matrix, ε−1
RPA, with less than one cycle through Hedin’s equations. We start

by taking some approximation for the one-particle propagator, G0. In this thesis, we will

use the DFT ground state to formulate a non-interacting one-particle propagator, as it is
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often the case elsewhere in the literature. We achieve so using the Lehmann representation,

G0(r1, r2, ω) =
∑
i

ϕKS
i (r1) ϕ

KS
i

∗
(r2)

ω − EKS
i + iνi

, (2.36)

where νµ is a real infinitesimal that takes a negative or positive value for occupied or

unoccupied states, respectively. This means that the non-interacting propagator, G0, can

be readily calculated once the KS energies and wavefunctions are known, following the

solution of the KS eigenproblem (see Eq. 2.5). Next, we enter Hedin’s scheme in Eq. 2.31

with G0 and assuming Σxc = 0, thus obtaining G ≈ G0. This also results in neglecting the

vertex corrections, i.e., Γ̃ = 1 after evaluating Eq. 2.32. Then, Eq. 2.33 is simplified to,

χirr(1, 2) = −iG0(1, 2)G0(2+, 1). (2.37)

Using Eq. 2.36 in Eq. 2.37, we obtain

χirr(r1, r2, ω) =
∑
i,j

(fj − fi)
ϕKS
j

∗
(r1) ϕ

KS
i (r1) ϕ

KS
i

∗
(r2) ϕ

KS
j (r2)

ω − (EKS
j − EKS

i ) + iν
, (2.38)

where fi represent occupation factors and ν is a positive real infinitesimal. With this

irreducible polarisability, one can solve the Dyson-like Eq. 2.27 for χred and the calculate

the inverse dielectric function at the RPA level evaluating Eq. 2.23.

It is interesting to note that a perturbative first-order scheme derived from the TD-

DFT formalism arrives at a similar result [73]. Identifying the response function with the

functional derivative of the electron density respect to the external potential, one obtains

a Dyson-like equation,

χTD-DFT = χKS + χKS[vCo + fXC]χ
TD-DFT, (2.39)
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where the integrals are implied and the so-called exchange correlation kernel is defined as,

fXC(r1, r2) = δ(r2 − r1)
δvXC(ρ(r1), r1)

δρ(r1)
. (2.40)

In Eq. 2.39, χKS can be calculated with the KS wavefunctions and energies as shown in Eq.

2.38. Then, if one neglects fXC in Eq. 2.39, the RPA polarisability is recovered. Finally,

ignoring the local field effects, vCo, either in TD-DFT ( Eq. 2.39) or in the RPA (Eq. 2.27)

results in what we call the independent-particle response, ε−1
IPA.

In general, the RPA fails to reproduce absorption spectra, often even qualitatively, due

to a poor description of excitonic effects. This is because the polarisability is calculated in

terms of a non-interacting electron-hole pair, since the vertex function has been ignored (see

the product of propagators in Eq. 2.37). TD-DFT improves upon the RPA by including

exchange and correlation effects via the kernel in Eq. 2.39. However, despite this being

formally correct, currently available functionals for fXC usually fail to compute absorption

spectra of extended systems in agreement with experiments. Overall, the description of

excitons and the interactions between the electron and the hole are crucial for the quality

of theoretical optical spectra, particularly in semiconductors and insulators [64–66]. One

can account for these effects by computing the vertex corrections in a second iteration

through Hedin’s equations (see Eq. 2.35). This formulation introduces a two-particle

propagator for the electron-hole pair and a Dyson-like equation to obtain it, which is in

fact the Bethe-Salpeter equation.

Bethe-Salpeter Equation

In order to avoid a matrix inversion in G-space, we will use the interacting polarisability

defined in Eq. 2.28, χ, which allows us to take the q → 0 limit directly on the dielectric

33



function (see Eq. 2.29). This interacting polarisation is obtained as,

lim
q→0

χ̄G=0,G′=0(q, ω) = −i lim
q→0

∑
nmk

∑
n′m′k′

[Λ∗
nmk(q,G = 0)Λn′m′k′(q,G′ = 0)] L̄ nmk

n′m′k′
(ω),

(2.41)

which is analogous to Eq. 2.37 but replaces the product of one-particle propagators with

a single two-particle propagator. This electron-hole (e-h) two-particle Green’s function,

L̄ nmk
n′m′k′

(ω), is a key quantity in the BSE scheme as it describes the dynamics of an exciton.

We express this Green’s function in e-h space, i.e., a basis comprising all vertical transitions

at every k-point in the BZ between an occupied band v and an empty band c, {vck}. Eq.

2.41 implies a change of basis from e-h space to G-space, from which the oscillator strengths

emerge,

Λnmk(q,G) = ⟨nk|ei(q+G)·r|mk− q⟩. (2.42)

The Bethe-Salpeter equation is then a Dyson-like equation for L̄,

L̄ nmk
n′m′k′

(ω) = L0
nmk(ω)[δnn′δmm′δkk′ + i

∑
vck1

Ξnmk
vck1

(ω)L̄ vck1
n′m′k′

(ω)], (2.43)

where the matrix Ξ is the so-called BSE kernel,

Ξnmk
vck1

= Wnmk
vck1

− 2V̄nmk
vck1

. (2.44)

The first contribution to the BSE kernel is the e-h attraction,

Wnmk
vck1

=
∑
G,G′

Λnvk(q = k− k1,G)Λ∗
mck1

(q = k− k1,G
′) ε−1

G,G′(q, ω = 0) vCo(q+G′),

(2.45)

where the inverse dielectric matrix is calculated at the RPA level and, usually, in the static

limit, ω = 0. This term represents the statically screened interaction between the electron
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and the hole within an exciton. The second term is the e-h exchange,

V̄nmk
vck1

=
∑
G̸=0

Λnmk(q =0,G)Λ∗
vck1

(q =0,G) vCo(G), (2.46)

which depends on the bare Coulomb interaction.

In order to compute excitonic spectra at the BSE level, one option is then to solve the

Dyson-like Eq. 2.43 for L̄. However, this requires an inversion of the BSE kernel, which

can be prohibitively costly for systems with many electrons that require several unoccupied

states for convergence and dense sampling of the BZ. Alternatively, the problem can be

re-cast as a two-particle Hamiltonian in e-h space [38],

H2p
nmk

n′m′k′
= Enmk δnn′δmm′δkk′ + (fnk − fmk) Ξ nmk

n′m′k′
, (2.47)

where Enmk is the energy of the vertical transition from band n to band m at point k

according to either the KS or quasi-particle (QP) energies. The definition of H2p in Eq.

2.47 allows us to express the two-particle Green’s function as,

L̄ nmk
n′m′k′

(ω) = [H2p − Iω]−1
nmk

n′m′k′
(fmk − fnk), (2.48)

where I is the identity matrix. Replacing Eq. 2.48 in Eqs. 2.41 and 2.29 leads to,

εM(ω) = 1− lim
q→0

4π

|q|2
∑
nmk

∑
n′m′k′

Λ∗
nmk(q, 0)Λn′m′k′(q, 0) [H2p − Iω]−1

nmk
n′m′k′

. (2.49)

We seek to express the matrix [H2p − Iω]−1
nmk

n′m′k′
in its spectral representation, for which we

need to solve the eigenproblem,

H2p
nmk

n′m′k′
An′m′k′

λ = Eλ A
nmk
λ , (2.50)

thus obtaining the excitonic energies, Eλ, and wavefunctions, An′m′k′

λ . We therefore arrive
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at an expression for the calculation of optical spectra at the BSE level,

εM(ω) = 1− lim
q→0

4π

|q|2
∑
nmk

∑
n′m′k′

[Λ∗
nmk(q, 0)Λn′m′k′(q, 0)]

∑
λ

Anmk
λ [An′m′k′

λ ]∗

ω − Eλ

. (2.51)

However, computing spectra with Eq. 2.51 requires the diagonalisation of H2p (see Eq.

2.50), which can become prohibitively costly as the size of the e-h space increases.

Haydock solution of the BSE

Apart from the above-mentioned inversion and full diagonalisation approaches for solving

the BSE, Lanczos-based methods [74] offer a cost-effective alternative for sparse matri-

ces [75]. Lanczos approaches eliminate the need for inverting the BSE kernel or fully

diagonalising the two-particle Hamiltonian. Rather, the latter is re-expressed as a tri-

diagonal matrix based on recursive relations, which leads to an iterative solution of the

problem that is computationally cheaper than full diagonalisation. While previously de-

scribed solvers produce the full set of both excitonic energies and wavefunctions of the

system at hand, Lanczos schemes lead to a partial solution of the problem, e.g., it may

only provide the eigenvalues. In particular, Haydock’s implementation [76] of the Lanczos

approach can only provide matrix elements of the resolvent of the eigenproblem in Eq.

2.50), ⟨V0|(H2p − Iω)−1|V0⟩, in a given initial (normalised) state, |V0⟩. Defining the latter

as |V0⟩ = |P ⟩
∥P∥ with,

|P ⟩ = lim
q→0

1

|q|
∑
nmk

Λ∗
nmk(q,G = 0) |nmk⟩, (2.52)

allows us to re-write the macroscopic dielectric function in Eq. 2.49 simply as,

εM(ω) = 1− 4π∥P∥2 ⟨V0|(H2p − Iω)−1|V0⟩, (2.53)

and make use of this resolvent. Therefore, Haydock’s algorithm can provide the optical

spectrum, but not the excitonic wavefunctions [65, 76, 77]. Haydock’s scheme [76] is based

on mapping a stationary quantum problem into a semi-infinite chain model consisting of
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basis states |Vit⟩, which we call Haydock vectors. The subscript it stands for iteration and

highlights the fact that these states are obtained recursively. In this basis, the Hamiltonian

of the problem is a tri-diagonal matrix described by the coefficients ait and bit. Haydock

then provides a set of recursive relations to compute these coefficients and basis vectors

iteratively starting from |V0⟩,

ait = ⟨Vit|H2p|Vit⟩, (2.54)

bit+1 = ∥(H2p − ait)|Vit⟩ − bit|Vit−1⟩∥, (2.55)

|Vit+1⟩ =
1

bit+1

[(H2p − ait)|Vit⟩ − bit|Vit−1⟩]. (2.56)

Eqs. 2.54-2.56 correspond to Hermitian Hamiltonians (the pseudo-Hermitian case has a

slightly more complicated form [78]). Finally, Haydock’s algorithm provides a recipe for

the calculation of the resolvent matrix element in the form of a continued fraction of the

Hamiltonian coefficients, ait and bit. We can then use this continued fraction to calculate

the optical spectrum at each iteration it according to,

ϵ
(it)
M (ω) = 1− ∥P∥2 1

(ω − a1)− b22

(ω−a2)−
b23
...

, (2.57)

until the difference between spectra of successive iterations is below an acceptable thresh-

old. We note that the number of denominators in the continued fraction of Eq. 2.57 is

determined by the iteration, e.g., the dielectric function at the tenth iteration, ϵ
(10)
M (ω), is

calculated with coefficients up to a10 and b10.

Despite the numerical advantages offered by Lanczos solvers, a given system could still

be too big for computing optical spectra at the BSE level. As the diagonalisation itself

ceases to be a problem with Lanczos schemes, the bottleneck now shifts to the previous step

of computing and storing the BSE kernel, which can render the calculation impracticable

depending on the size of the e-h basis. For instance, a material with 10 bands that requires

a 30×30×30 k-grid would imply a (resonant) BSE kernel matrix of dimension 675000, thus
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requiring a few TB of memory. While this may be covered by some state-of-the-art high-

memory nodes, it is quite close to the limits of today’s supercomputers. Any increase in the

size of the system could easily become prohibitive, e.g., duplicating the number of bands to

include spin-orbit coupling or requiring a supercell. At this point, there is little alternative

for solving the BSE and computing optical spectra, which is the challenge we intend to

tackle in Chapter 3. We attempt to do so by proposing double-grid approach to k-sampling

compatible with Haydock’s solution of the BSE. Our method prioritises simplicity and

distinguishes from previous double-grid approaches (see brief review below) by requiring

minimal extra computation and memory.

Double k-grid strategies for BZ sampling

A crucial point in the efficiency of BSE calculations lies in the dense k-grids required

to achieve an accurate description of excitons. This is because excitonic wavefunctions are

usually quite spread out, with a periodicity well beyond the unit cell, and in order to expand

them in a basis of transitions {vck}, very dense k-grids are required. The computational

requirements imposed by k-sampling then represent a major bottleneck in the BSE scheme.

Therefore, the introduction of alternative numerical methods and approximations that can

effectively deal with k-point convergence in the BSE is of utmost importance.

This issue has been the target of many research efforts over the years, usually approached

with the use of double k-grids. Rohlfing et al. introduced a scheme to interpolate the BSE

matrix in the BZ [66, 79]. Their strategy is based on a double grid approach by which the

kernel matrix elements are properly calculated on a coarse k-grid and approximated on a

fine k-grid. As a function of q, the k-point difference between two transitions in e-h space,

the BSE kernel is sharply peaked at the origin and a regular interpolation in the BZ would

fail. However, expressing these matrix elements as aq−2+bq−1+c results in the coefficients

varying slowly in the BZ. These coefficients are then interpolated by virtue of knowing them

exactly in the coarse k-grid. Their approximation also considers the varying phases of the

single-particle states in the BZ, which requires knowledge of the wavefunctions in the fine
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k-grid. This crucial point becomes a drawback when one is limited by memory and disk

storage rather than computation, which is increasingly the case nowadays.

More recently, Fuchs et al. proposed the use of hybrid k-meshes in the form of a coarse

k-grid for the whole BZ and a denser k-grid around the Γ-point [80]. Even though the

kernel matrix elements are properly calculated on both grids, this method allows to refine

k-sampling only where is needed, resulting in fewer k-points in total. The downside of

using non-uniform grids becomes apparent in the calculation of the electron-hole attraction

term of the BSE kernel, since it requires knowledge of the screening matrix, ε−1(q, 0), at

q = k − k′ (see Eq. 2.45). If k and k′ are part of a non-uniform grid, q will likely not

belong to this grid. This poses no complication for model dielectric functions, as is the case

in Ref. [80]. However, if one intends to use the RPA screening, non-uniform grids require

computation of the screening matrix at many more q-points than if a uniform grid had

been used (or at least an interpolation).

Kammerlander et al. applied double grid techniques to solving the BSE by inversion [81].

In the latter, the BSE kernel is calculated on the coarse k-grid while the fine k-grid is

used to compute the independent particle part of the two-particle response function. This

technique, which also benefits from Wannier interpolation of the KS wavefunctions, has

proven successful in accurately reproducing the spectra of several materials. However, as it

ultimately relies on matrix inversion, its application is limited to small systems, i.e., systems

which could be computed by the inversion solver in the coarse grid, albeit underconverged.

Finally, an interesting generalisation of the method in Ref. [66] has been proposed by

Gillet et al. [82], where the interpolation of the BSE kernel matrix element at a given fine-

grid k-point considers eight coarse-grid k-points around it. Importantly, this method is

compatible with Haydock’s solution scheme to the BSE. Moreover, substantial savings in

memory requirements and disk storage are achieved by interpolating kernel matrix elements

on the fly. Nevertheless, this method still requires knowledge of the KS wavefunctions in

the fine grid. Depending on the number of bands and density of the fine grid, this can

entail prohibitive memory requirements.
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2.3 Non-linear optics

We now focus on the study of response functions beyond the linear regime, i.e., χ(n) with

n > 1. High-harmonic generation (HHG) phenomena can reach orders of around a few

tens and beyond, which requires real-time non-perturbative methods for its theoretical

description. On the opposite end of the nonlinear regime, we find second and third harmonic

generation (SHG and THG), i.e., n = 2− 3. In this area of nonlinear optics, and for χ(2) in

particular, there may still be an argument for perturbative approaches as an alternative to

real-time, non-perturbative formalisms. Therefore, both perturbative and non-perturbative

methods are available in the literature (see below). However, the latter are usually preferred

over perturbative approaches due to their relative simplicity, especially when electron-

electron correlation is included.

As far as nonlinear optics is concerned, this thesis focuses on SHG and, to a lesser

extent, THG (See Chapters 4-6). We note that the three approximations stated at the

beginning of Section 2.2 are still used in our study of the nonlinear regime.

2.3.1 Perturbative vs non-perturbative approaches

Perturbative approaches are often extensions of frameworks that proved successful for linear

optics. For instance, Sipe et al. presented a scheme for the calculation of nonlinear optical

response of semiconductors at the IPA level and derived expressions for the second order

susceptibility, χ(2) [83]. A study by Dal Corso et al. introduced a Sternheimer approach for

the second order response of insulators based on the TD-DFT action functional within the

LDA [84]. Luppi et al. derived perturbative expressions for χ(2) in extended systems from

TD-DFT [85]. The latter included excitonic effects by means of a long-range contribution

to the exchange-correlation kernel and proved valid for weakly bound excitons [85]. Finally,

the inclusion of many-body effects at the BSE level warranted a few attempts up to the

second order [86, 87]. Crucially, perturbative approaches require a specific formulation

for each order in the response one intends to calculate and their generalisation to higher

40



orders is not straightforward. Indeed, the resulting expressions for nonlinear susceptibilities

become extremely complex with increasing orders in the perturbation and increasing levels

of theory as regards correlation.

At variance, non-perturbative approaches involve explicit time propagation and can

describe nonlinear phenomena to several orders in the electric field simultaneously, thus

offering a convenient workaround to the shortcomings described above. Moreover, they are

flexible in the sense that including many-body effects amounts to just adding the relevant

operators into the effective Hamiltonian. In these methods, the integration of an EOM

allows for the calculation of the dynamical polarisation, from which susceptibilities to any

order (in principle) can be extracted. The quantity evolved in the EOMs varies among the

different time-propagation methods. For instance, TD-DFT implies the time evolution of

the electron density and is typically applied to isolated systems [63,88–91]. Propagating the

Green’s function was proposed in the so-called Kadanoff-Baym equations (KBE) [92]. A

simplification of the KBE using the time-diagonal of said Green’s function, i.e., the density

matrix, was proposed by Attaccalite, Grüning and Marini [93]. Subsequently, Attaccalite

and Grüning proposed a scheme based on evolving the periodic part of the Bloch functions

[42]. Crucially, this method is valid for systems with periodic boundary conditions (PBCs)

since it is based on the modern theory of polarisation [94–96] and uses the Berry-phase

formulation of the dynamical polarisation [97] (see Section 2.3.2). This real-time approach

[42] has been successfully applied for the calculation of nonlinear optical properties in

extended systems [98–102]. We proceed to describe this real-time method in detail since

much of the present thesis focuses on improving it (See Chapters 4-6).

2.3.2 Real-time approach

We consider the Hamiltonian of a crystalline solid coupled to a time-dependent electric

field,

Ĥ = Ĥ0 + ĤE , (2.58)
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where Ĥ0 is the zero-field unperturbed Hamiltonian while ĤE represents the perturbation.

We denote the Bloch eigenstates of the cell-periodic unperturbed Hamiltonian, e−ik·rĤ0eik·r,

as µkn(r). Then, the wavefunctions ψkn(r) = eik·r µkn(r) are the eigenstates of the unper-

turbed Hamiltonian, Ĥ0. In what follows, the periodic part of these functions will be

referred to as the zero-field time-zero states, |µkn⟩, and will be used as a starting point for

time integration or as a basis. In practice, these time-zero states will be defined at the DFT

level, i.e., ψkn(r) ≡ ϕKS
kn (r).

Equation of motion

The real-time approach to nonlinear optics, as referred to within this thesis, was set out

by Attaccalite and Grüning [42, 43], and follows the scheme introduced by Souza et al.

for the dynamical Berry-phase polarisation [97]. The central objects in this formalism are

the time-dependent Bloch states, |vkn⟩, which represent the periodic part of the states,

ψkn(r, t) = eik·r vkn(r, t). The states |vkn⟩ are obtained upon time-evolution of the time-

zero states, |µkn⟩, according to the EOM,

(
Ĥeff

k − i∂t

)
|vkn⟩ = 0, (2.59)

with the boundary condition,

|vkn⟩(t = 0) = |µkn⟩, (2.60)

and the effective Hamiltonian,

Ĥeff = Ĥ0 + Ŵ (E). (2.61)

The unperturbed Hamiltonian in Eq. 2.61, Ĥ0, is a single-particle operator that varies

according to the level of theory considered [43,103] while the perturbation, Ŵ (E), represents

the coupling with the external field, E .

The real-time approach is then based on integrating the EOM (Eq. 2.59) numerically,
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for which the linearised Crank-Nicolson method is used [42,97],

|vkn⟩(t+∆t) =
1− i∆t/2 Ĥeff

k (t)

1 + i∆t/2 Ĥeff
k (t)

|vkn⟩(t). (2.62)

This is carried out in KS space, thus resulting in several EOMs for the projections, ⟨µki|vkn⟩(t).

The accuracy and stability of this numerical integration depends on having a short time-

step, usually in the order of 1-10 as. The latter parameter is material-dependent and

reflects how fast the dynamics of a given system are. Ultimately, having access to the

time-dependent Bloch states, |vkn⟩, will allows us to compute dynamical properties, such

as the polarisation as a function of time. From the latter, susceptibilities to any order in

the electric field can be extracted (see below).

Levels of theory

Three levels of theory are considered in the real-time approach as regards electron-electron

correlation, which manifest in the expressions for the effective Hamiltonian in Eq. 2.61.

Let us start by the IPA level [42, 93],

Ĥ IPA = ĤKS[ρ0] + ∆̂QP[ϱ0]︸ ︷︷ ︸
ĤIPA,0

+ Ŵ (E), (2.63)

where Ĥ IPA,0 represents the corresponding unperturbed Hamiltonian. This includes the

KS Hamiltonian, ĤKS[ρ0], which is a functional of the ground-state density, ρ0, plus the

quasi-particle corrections, ∆QP[ϱ0]. The latter could simply reflect a rigid shift (scissor

operator) or involve QP corrections obtained from a G0W0 scheme, thus formally depending

on the ground-state density matrix, ϱ0. In any case, H IPA,0 is a functional of only ground-

state quantities and, therefore, time-independent. The time dependence of the effective

Hamiltonian at the IPA level is then confined to the electron-field coupling operator, Ŵ (E).

The first step beyond the IPA level is including the Hartree potential, V̂ H [ρ], in the
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effective Hamiltonian [43,93],

ĤTDH = ĤKS[ρ0] + ∆̂QP[ϱ0] + V̂ H [ρ] + Ŵ (E), (2.64)

which represents the so-called time-dependent Hartree (TDH) level. The Hartree term

is simply the classical Coulomb potential originating from the time-dependent electron

density. Its expression can be derived from the Poisson equation in G-space,

V H [ρ(G, t)] = (ρ(G, t)− ρ0(G))
4π

|G|2
, (2.65)

leading to a linear functional of the density, V H [ρ(G, t)], which we will write as V H(G, t)

for simplicity. In Eq. 2.65 the G=0 term is omitted for the reasons explained in Section

2.2.1. V H(G, t) represents a local potential that inherits its time dependence from the

density. We note that the ground-state Hartree potential is already taken into account at

the DFT level (see Uee in Eq. 2.4) and, therefore, included in Ĥ IPA,0. As a result, the

Hartree potential added at the TDH level should represent the difference respect to the

ground state contribution. This is achieved by subtracting the ground state density, i.e.,

ρ− ρ0 in Eq. 2.65, which takes advantage of the linearity of the functional.

Finally, we turn to the inclusion of correlation effects in the real-time approach. In

principle, this could be done by adding a time-dependent exchange-correlation functional to

Eq. 2.64, thus arriving at the TD-DFT level. However, currently-available approximations

to this functional face limitations when attempting to describe excitons in extended systems

[38], as explained above. Therefore, we chose to consider correlation effects through the

addition of the screened-exchange self-energy, ΣSEX[ϱ], into the effective Hamiltonian [43,

93],

ĤH+SEX = ĤKS[ρ0] + ∆̂QP[ϱ0] + V̂ H [ρ] + Σ̂SEX[ϱ] + Ŵ (E), (2.66)

as a functional of the density matrix, ϱ. We will refer to this as the Hartree plus screened

exchange (H+SEX) level of theory. Formally, this implies taking the static limit of the GW
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self-energy to arrive at the Coulomb hole plus screened exchange (COHSEX) self-energy,

ΣCOHSEX = −1/2 WCo(r1, r2; ϱ) δ(r1 − r2)︸ ︷︷ ︸
ΣCOH

+ i WCo(r1, r2; ϱ) ϱ(r1, r2, t)︸ ︷︷ ︸
ΣSEX

, (2.67)

where the screened Coulomb interaction, WCo, is calculated at the RPA level in the static

limit (ω = 0). A further approximation entails neglecting the functional derivative δWCo

δϱ
,

in which case ΣCOH becomes time independent [93]. Therefore, the EOM is only concerned

with ΣSEX (see Eq. 2.66), provided we remove the initial contribution at time zero. Since

ΣSEX is now a linear functional of the density matrix, ϱ, this can be achieved by subtracting

the ground state density matrix, ϱ0, before evaluating said functional. This operator is then

obtained in KS space as,

ΣSEX
ii′k =

∑
jj′q

M ii′k
jj′q

(ϱjj′k−q(t)− ϱ0jj′k−q), (2.68)

where the Coulomb integrals,

M ii′k
jj′q

=
∑
G,G′

Λijk(q,G
′) Λ∗

i′j′k(q,G) WCoG,G′ (q), (2.69)

are pre-computed and stored in a database. As a result, each step in the time evolution

requires computing the density matrix, ϱ, and evaluating Eq. 2.68.

Overall, the real-time approach includes electron-electron correlation in a non-perturbative

framework, thus allowing for the description of excitonic effects in nonlinear optical phe-

nomena [43]. We note that the TDH and H+SEX levels of theory reduce to the RPA and

BSE, respectively, in the linear response limit [93]. Crucially, Eqs. 2.63, 2.64 and 2.66

highlight one of the main advantages of the real-time approach, i.e., the inclusion of many-

body effects is as simple as adding terms to the effective Hamiltonian in Eq. 2.59 [43]. This

flexibility is in stark contrast with perturbative approaches, where the complexity of the

formulations increases dramatically as correlation is added into the formalism (e.g., [83]).
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Berry-phase formulation of the electron-field coupling operator

A direct coupling to the electric field in the length gauge, i.e., −erE , should be avoided

in extended systems since the position operator is ill-defined in the presence of periodic

boundary conditions [94–96]. In the linear regime, this is usually circumvented using the

commutation relation [Ĥ, r̂] = p̂+[Vnl, r̂], where Vnl is the non-local part of the Hamiltonian.

However, since the real-time approach is meant to describe nonlinear optical processes, an

electron-field coupling operator valid beyond the linear regime is required.

This is achieved by a Berry-phase formulation of the dynamical polarisation, resulting

in a dipole operator in the form of a covariant k-derivative that makes its way into the

electron-field coupling operator [97],

Ŵk(E) = ŵk(E) + ŵ†
k(E). (2.70)

In Eq. 2.70, ŵk(E) is the electron-field coupling operator in its Berry-phase formulation as

outlined in Refs. [42] and [97],

ŵk(E) = i
e

4π

3∑
α=1

N∥
α (E · aα)

∑
σ

σP̂kkσ
α
, (2.71)

where aα represents a lattice vector and N
∥
α is the number of k-points along a string parallel

to the direction of the corresponding reciprocal lattice vector bα. Also, σ = ±1 and

kσ
α = k + σ∆kα, i.e., the next k-point in the grid along the direction of bα (the definition

of next depends on the sign of σ). The projector operator in Eq. 2.71 has the form,

P̂kkσ
α
=

M∑
m=1

|ṽkσ
αm⟩⟨vkm|, (2.72)

where m runs over the occupied bands, M . The state |ṽkσ
i m

⟩ is the so-called dual of the

state |vkm⟩, namely,

|ṽkσ
αn⟩ =

M∑
m=1

[S−1
kkσ

α
]m,n |vkσ

αm⟩, (2.73)
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with the overlap matrix elements

[Skkσ
α
]n,m = ⟨vkn|vkσ

αm⟩. (2.74)

Within this Berry-phase scheme [97], the Lagrangian of the system leads to the EOM

for the time-dependent Bloch states used in the real-time approach, Eq. 2.59 [42, 43]. As

mentioned above, numerically integrating Eq. 2.59 allows us to obtain the time-dependent

states |vkn⟩ at every time step ti, with which we can update the overlaps [Skkσ
α
]n,m (Eq.

2.74). Ultimately, we can use these overlaps to calculate the polarisation in its Berry-phase

formulation,

Pα = − e f

2πv

aα

N⊥
α

∑
k⊥
α

Im

 ln

N
∥
α−1∏
i=1

det (Skikσ
α
)

 , (2.75)

with the electron charge e, occupation factor f , unit cell volume v. Eq. 2.75 provides

the dynamical polarisation in the direction α of the lattice vector aα. The corresponding

reciprocal lattice vector bα is used to determine the number of k-points in a string along

its direction, N
∥
α, as well as the number of k-points in a plane perpendicular to bα, namely

N⊥
α .

Response functions

Within the regime where the dynamical polarisation is time-periodic with the periodicity

of the perturbation, ω0, it can be formulated as a Fourier series,

P(t) =
∑
n

p(n)einω0t, (2.76)

where scalar magnitudes are used for simplicity. In addition, one can consider its expansion

in orders of the electric field E (cf. Eq. 1.2),

P(t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) +O(E4(t)), (2.77)
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where the tensor nature and time dependence of the susceptibilities χ(n) are omitted for

brevity. Comparing Eqs. 2.76 and 2.77 finally allows us to extract susceptibilities to any

order. The relation between the Fourier coefficients, p(n), and the desired susceptibilities

will depend on the order, n, and the shape of the electric field, typically chosen to be a sine

function, (eiω0t − e−iω0t)/2i.

This procedure shows another main advantage of the real-time approach. As a non-

perturbative scheme, it allows for the simultaneous determination of susceptibilities to

different orders in the electric field. This is also facilitated by having a Berry-phase derived

electron-field coupling operator that remains valid to every order in the electric field. At

variance, perturbative approaches require a different formulation for each order they intend

to consider.

Dephasing

The electronic systems solved throughout this thesis are perfectly isolated due to the ap-

proximations introduced, e.g., Born-Oppenheimer, fixed nuclei, etc. This implies neglecting

important dissipative effects that occur in excited electronic systems, such as inelastic elec-

tron scattering or scattering processes with other degrees of freedom like phonons or defects.

These effects represent the interaction of the electrons with the environment and contribute

to the decay of excited electronic populations, providing a finite lifetime to the excitations.

Ignoring these processes altogether results in failing to reproduce the dynamics of open

systems.

In order to mitigate this shortcoming, dissipation effects are included phenomenolog-

ically in the real-time approach by means of a dephasing term. This implies adding the

dephasing operator,

Γph = −iν (|vkn⟩⟨vkn| − |µkn⟩⟨µkn|) (2.78)

to the EOM for state |vkn⟩, Eq. 2.59. In Eq. 2.78, ν is a positive number in eV chosen to

provide a desired broadening to the spectra. In the EOM, this operator acts as a restoring
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force proportional to the departure of the state |vkn⟩ from equilibrium, |µkn⟩, thus limiting

the population of empty states upon excitation.

Another function of this dephasing term relates to the fact that, in order to extract non-

linear response functions at frequency ω0, one must drive the system with a monochromatic

perturbation of the same frequency, which in turn produces a time-periodic dynamical po-

larisation with the same period. This is a necessary condition for the expansion of the latter

as a Fourier series (see Eq. 2.76) and the extraction procedure described above. Only then

one can ensure that, e.g., p(2) of Eq. 2.76 contains the information for χ(2) in Eq. 2.77.

Let us, for the sake of argument, add a second electric field to the system, E ′(t), of fre-

quency ω′ = 2ω0. It becomes clear that the Fourier transform of the dynamical polarisation

evaluated at 2ω0, i.e., p̃(2ω0) (which was equal to p(2) in the case with only one electric

field), will now contain information about the second order response of the system to the

original electric field, χ(2), plus the first order response, χ′(1), to the new electric field, E ′(t).

Moreover, this first order response will overshadow χ(2), as the latter is orders of magnitude

smaller. The situation would be worse if one had multiple electric fields, e.g., if one has

a non-periodic field that has non-zero Fourier components at a continuum of frequencies

(i.e., infinitely many electric fields). At this point, the Fourier transform of the polarisation

at frequency ω will only be able to provide the linear response of the system at ω (plus

various higher order contributions due to excitations at different frequencies that would be

impossible to pick apart).

In a real-time calculation, the system is taken out of equilibrium by switching on an

electric field at t0. Essentially, the electric field around this initial time is non-periodic,

implying the above-described complications. Hence, regardless of how smoothly one tries

to introduce it, the system feels a kick at t0, which excites every electronic transition in

the material. These unwanted excitations are then suppressed by means of the dephasing

term until the system is purely driven by a monochromatic electric field with frequency

ω0, at t ≫ t0. At this point, the periodicity of the solution is restored, the dynamical

polarisation is time-periodic with the same frequency as the perturbation and nonlinear
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susceptibilities can be extracted. The amount of simulated time required to reach this

point, i.e., to properly dephase the response, is therefore a convergence parameter of the

real-time approach (see Section 4.2 and Fig. 4.5).

Computational cost

Despite its many virtues, the real-time approach often presents challenges regarding its

elevated computational cost. This is its biggest disadvantage and originates from its time-

propagation nature, due to the the short time steps and long simulated times required. This

implies repeating a handful of operations, e.g., building a Hamiltonian matrix, for tens of

thousands of time steps. The computational cost of these schemes renders the calculation of

nonlinear optical properties prohibitively costly in many cases, certainly for large systems

and complex materials. Therefore, finding alternative formulations and methods that could

alleviate these computational demands is of utmost importance.

Arguably, there is a particular case in which much of this cost is avoidable, i.e., com-

puting nonlinear optical susceptibilities. In these calculations, the system is driven by a

periodic perturbation and the response is sampled at a handful of times within one period,

i.e., only one period worth of dynamical polarisation data is needed to extract suscepti-

bilities. However, a considerably longer time is required to dephase the response before

sampling it, in order to filter out all the eigenfrequencies that are excited when the electric

field is first introduced. This amounts to a total simulated time that greatly exceeds the

time window actually used to probe the response and, combined with the expensive numer-

ical integration of the EOMs (often with short time steps), is responsible for the elevated

computational cost of this scheme. It would then be desirable to devise a strategy where the

dephasing is not needed, numerical time-evolution is avoided and/or the problem becomes

time-independent altogether. Floquet theory, outlined in Section 2.4, offers a framework in

which all of the above are possible for periodically-driven systems, which motivates much

of the present thesis (see Chapters 4-6).
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2.4 Floquet theory

The semi-classical approximation to light-matter interaction phenomena usually results

in Hamiltonian operators exhibiting time periodicity in their explicit time dependence

(Schrödinger picture), which originates from the coupling of the electrons to, e.g., a monochro-

matic light beam. The intrinsically time-dependent problem posed by optical excitations

could certainly benefit from this characteristic. However, neither response-based perturba-

tive methods nor the real-time approach make use of the time periodicity in the Hamiltonian

governing the time evolution. In fact, this extra symmetry of the Hamiltonian is exploited

to a much lesser extent than its spatial counterpart, i.e., the analogous translational invari-

ance of extended systems that motivates Bloch’s theorem and underpins much of solid-state

electronic structure theory.

2.4.1 Quasi-energy eigenproblem

Floquet theory offers a suitable framework to address the time evolution of so-called

periodically-driven quantum systems in light of the additional symmetry given by time-

periodicity, as initially proposed in the seminal works of Shirley [104], Sambe [105] and

Salzman [106]. This relies on the fact that, provided a time-periodic Hamiltonian, the

corresponding time-dependent Schrödinger equation is a differential equation with periodic

coefficients,

(Ĥ − i∂t) ψ(r, t) = 0, (2.79)

where Ĥ(t+T ) = Ĥ(t). A differential equation of these characteristics admits the applica-

tion of Floquet’s theorem [107] 5, which states that its solutions would be of the form,

ψ(r, t) = e−iξt ϕ(r, t), (2.80)

5Floquet theory has been covered in numerous textbooks, e.g., [108,109]
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i.e., a pure phase times a periodic function that retains the periodicity of the Hamiltonian,

ϕ(r, t+ T ) = ϕ(r, t). The latter represents a so-called Floquet state while the argument in

the pure phase contains the Floquet quasi-energy, ξ. Given their periodicity, Floquet states

can be expanded in a Fourier series,

ϕ(r, t) =
+∞∑

γ=−∞

e−iγω0t ϕ̃γ(r), (2.81)

where the coefficients, ϕ̃γ(r), receive the name of time-independent Floquet states, γ runs

over the Floquet modes and ω0 = 2π
T

is the frequency of the perturbation in Ĥ. These

exponentials form an orthonormal basis for the Hilbert space of periodic functions of time,

L2[0, T ], with the inner product,

1

T

∫ T

0

dt e+iηω0t e−iγω0t = δη,γ. (2.82)

In this basis, the time derivative operator, ∂t, is multiplicative, much like the momentum

operator in the space of eigenfunctions of the translation operator, i.e., plane-waves. With

this in mind, we replace Eqs. 2.81 and 2.80 in Eq. 2.79, take the inner product with e+iηω0t

and arrive at the eigenproblem,

+∞∑
γ=−∞

K̂η,γ ϕ̃γ(r) = ξ ϕ̃η(r), (2.83)

where the matrix elements of the so-called quasi-energy operator, K̂ ≡ Ĥ − i∂t, take the

form,

K̂η,γ = ⟨η|Ĥ|γ⟩ − γω0δη,γ. (2.84)

The matrix element formed in Eq. 2.84, ⟨η|Ĥ|γ⟩, can be written in terms of an unperturbed

time-independent Hamiltonian, Ĥ0, and a time-dependent part which represents the cou-

pling of the electrons with the electric field, ĤE (cf. Eq. 2.58). Since the latter is time
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periodic, one can expand it as a Fourier series,

ĤE(t) =
+∞∑

ζ=−∞

e−iζω0t H̃E
ζ . (2.85)

This Fourier expansion together with the orthonormality condition in Eq. 2.82 leads to,

⟨η|Ĥ|γ⟩ ≡ 1

T

∫ T

0

dt e+iηω0t Ĥ e−iγω0t = Ĥ0δη,γ +
∑
ζ

H̃E
ζ δζ,η−γ, (2.86)

which has a diagonal part arising from the time-independent unperturbed Hamiltonian

plus an electron-field coupling operator which is given by the Fourier coefficient of Eq. 2.85

evaluated at ζ = η − γ. It is precisely the time dependence of this operator that makes it

non-diagonal in Floquet space, thus coupling different Floquet modes in the eigenproblem

of Eq. 2.83. Finally, using Eq. 2.86 in Eq. 2.84, we write the quasi-energy operator as,

K̂η,γ = H̃E
η−γ + (Ĥ0 − γω0)δη,γ. (2.87)

Eqs. 2.79-2.87 show how Floquet theory offers a suitable framework for reformulating

the time-dependent Schrödinger equation as a time-independent eigenproblem (a more de-

tailed account of this procedure will be presented in Section 4.1). In this eigenproblem, the

time-independent Floquet states represent the eigenvectors while the Floquet quasi-energies

assume the role of the eigenvalues. While the quasi-energy operator in Eq. 2.87 takes the

form of an infinite matrix, any practical implementation of this formalism would truncate

the number of Floquet modes to a well-converged ηmax.

The use of Floquet theory to solve the time-dependent Schrödinger equation resulted

in ab-initio methods like Sturmian-Floquet theory [110, 111] and R-matrix-Floquet the-

ory [112, 113], typically used to describe atomic multiphoton processes in intense laser

fields [114, 115]. Floquet approaches to the time evolution of the density matrix operator

of atoms and molecules have also been attempted, leading to the Liouville supermatrix

framework [116, 117]. More recently, Floquet formulations of TD-DFT have been pro-
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posed (see below a discussion on its limitations) and applied to atomic and molecular

systems [118–120]. In Chapter 4, we present yet another Floquet method, obtained by

reformulating the EOMs of the real-time approach to nonlinear optics [42, 43] (Eq. 2.59).

Nonetheless, a crucial feature of our scheme, which distinguishes it from previous Floquet

approaches, is that it can be applied to extended systems. This is achieved by deriving the

electron-field coupling operator from the dynamical Berry-phase formulation of the polar-

isation [97], thus remaining valid in the presence of PBCs. Besides, the proposed method

shows some similarities respect to Floquet-TD-DFT, like the effective nature of the Hamil-

tonian operators involved, the requirement for a self-consistent solution and the use of the

adiabatic approximation [121] (see below). In fact, the addition of an exchange-correlation

potential to the TDH level of our Floquet formulation (see Section 5.1.1) would repre-

sent a Floquet-TD-DFT scheme. However, the proposed Floquet scheme can also include

many-body effects via a non-local COHSEX self-energy (see Section 5.1.4).

2.4.2 Practical aspects

In practical implementations, it is customary to further expand the time-independent Flo-

quet states, ϕ̃γ(r), in the basis of eigenstates of the unperturbed Hamiltonian, Ĥ0, which

we can call µ(r) in agreement with Section 2.3.2. These functions form an orthonormal set

for the Hilbert space we denote R. Therefore, the eigenproblem in Eq. 2.83 is solved in a

composite Hilbert space, L2[0, T ]⊗R, with the inner product,

⟨⟨·|·⟩⟩ ≡ 1

T

∫ T

0

dt ⟨·|·⟩, (2.88)

where ⟨·|·⟩ is the usual inner product in R. This composite space was originally introduced

by Sambe as the Hilbert space for Floquet steady states and the functions e−iηω0tµ(r) form

an (infinite) orthonormal basis for it [105].

Another interesting feature of this Floquet formulation relates to the fact that the quasi-

energies are defined modulo ω0. In essence, if ϕ0 is an eigenstate of the quasi-energy operator
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with eigenvalue ξ0, then ϕn = e−inω0tϕ0 is also an eigenstate with eigenvalue ξn = ξ0 − nω0.

Therefore, ϕ0 and ϕn lead to the same physical state, ψ, in Eq. 2.80. This is equivalent to

the folding of reciprocal space into the BZ for periodic systems. Indeed, we can define any

interval of length ω0 in the real axis as an ω-BZ, e.g., [−ω0/2, ω0/2].

Since all quasi-energies can be mapped into a finite interval of length ω0, the use of an

infinite basis set determines that the quasi-energy spectrum becomes dense in the ω-BZ, i.e.,

there are infinitely many eigenfunctions, infinitely close to any quasi-energy in ω-BZ, which

also adds complexity to the structure of avoided crossings of the quasi-energy operator. This

problem has been identified as the absence of an adiabatic limit [122], meaning that the state

to which the system evolves in an adiabatic switching-on of the electric field is not unique. It

was nonetheless concluded that these pathologies are circumvented whenever a finite basis

for L2 ⊗R is employed, which is, in any case, required for practical implementations [122].

A somewhat related issue concerns the compatibility between Floquet theory and the

TD-DFT formalism. The initial Floquet formulation of TD-DFT [118] was met with strong

criticism, as it was later recognised that the mapping between a time-periodic density

of a Floquet state and the time-periodic potential it evolves in is not unique, certainly

for strong electric fields [123]. The application of the TD-DFT equations to Floquet

states is nonetheless correct [124], given an initial state that will determine the form of

the exchange-correlation functional. However, the requirement of time-periodicity in the

exchange-correlation functional is in general not met [121]. Two assumptions are needed

to achieve this, which are only valid for weak fields. First, that the memory effects of

the exchange-correlation potential, inherently incompatible with time periodicity, can be

neglected in favour of a functional that is local in time, e.g. adiabatic LDA (ALDA). Such

functional would be periodic provided the density presents periodicity. However, the latter

is also not true in general and requires, as a second assumption, that each zero-field state

evolve adiabatically to a single Floquet state. This so-called adiabatic approximation will

also be used in the Floquet method proposed here (see Sections 4.1.1 and 5.1.1 for details).

Finally, we briefly mention that the Floquet quasi-energies do not have a direct phys-
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ical interpretation. Despite being the eigenvalues of an eigenproblem resembling a time-

independent Schrödinger equation, it has been argued that their identification with the

energy of the system as a physical magnitude is misleading [125]. Moreover, the so-called

average energy has been proposed as the ‘energy’ of a Floquet ground state. In analogy

with Bloch’s theorem, the quasi-energies play the role of the quasi-momentum or crystal-

momentum, while the band energies would find their counterpart in the average energy.

This lead to a variational formulation of the Floquet eigenproblem in terms of the average

energy [126], which disputes previous attempts based on the quasi-energy alone [127]. The

average energy formalism is revisited in Section 6.3.2.
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Chapter 3

Double grid for k-sampling in

BSE-Haydock

We propose an efficient double-grid approach to k-sampling for the calculation of absorption
spectra compatible with Haydock’s iterative solution of the BSE (see Section 2.2.2). Our
method relies on a coarse k-grid that drives the computational cost, while a dense k-grid is
responsible for approximately capturing excitonic effects with minimal extra computational
requirements. Tests performed on bulk Si, bulk GaAs and monolayer MoS2 produced spectra
in relatively good agreement with data reported elsewhere. The validity of the approxima-
tions involved and the strong limitations of the approach are also discussed, particularly
regarding strongly-bound excitons. 1

As discussed in Section 2.2.2, k-point convergence is a critical issue for the calculation of

optical absorption spectra via the BSE scheme. The dense k-grids required for the descrip-

tion of excitonic wavefunctions often render these calculations prohibitively costly. Double

k-grid approaches where the full BSE is solved in a coarse k-grid while a denser k-grid is

included in some approximated way have been useful in reducing the computational cost

of these calculations [66,80–82] (See Section 2.2.2). Nonetheless, the availability of efficient

Lanczos-based solvers of the BSE results in the computational limitations gravitating to-

wards memory footprint and disk storage rather than computational power, i.e., being able

1The work presented in Chapter 3 was carried out as part of this PhD and first appeared published in
Alliati, Sangalli & Grüning, Frontiers in Chemistry, 9, 763946 (2022). Content from the published article
is used here, with some emendations and changes of phrase to better elaborate the work.
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to compute and store the two-particle Hamiltonian matrix. In this Chapter, we propose

a double k-grid approach compatible with the Haydock solver of the BSE that requires

no additional memory compared to a coarse k-grid calculation and implies minimal extra

computation. In particular, knowledge of the wavefunctions in the fine k-grid is not needed,

nor is the calculation of the RPA screening at any extra k-point. Therefore, the computa-

tional cost remains roughly at the level of the coarse k-grid. The proposed method and its

computational implementation are described in Section 3.1. Absorption spectra computed

with this method for a number of materials are presented in Section 3.2 and compared with

experimental results where available. This is followed by a discussion on several aspects

of the approach, including its computational cost, the approximations it entails and its

limitations. Supplemental material regarding this development is provided in Appendix A.

3.1 Implementation

We start by considering a coarse k-grid where no new approximations are introduced by our

approach, i.e., the BSE kernel and two-particle Hamiltonian are computed for all vertical

transitions involving k-points in this grid, which requires knowledge of the KS wavefunctions

and energies at each of these k-points (see Eqs. 2.44-2.47). The solution of the BSE in this

grid would typically be computationally manageable but produce underconverged optical

spectra. Therefore, a much denser fine k-grid will be added to the system. We will denote

k-points belonging to the fine grid with the letter κ, while those in the coarse grid will be

labelled K. Moreover, κ-points will be grouped in domains centred around the K-points

in such way that Dom(Ki) will be composed by the κ-points that are closer to Ki than to

any other K-point (as an example, see Fig. 3.1 for a visual representation of these domains

in monolayer MoS2). The number of k-points in this fine grid would ordinarily be too large

for the BSE to be solved in full, and hence, additional approximations will be introduced

for the fine grid. The two-particle Hamiltonian in Eq. 2.47 can be thought of as a shift

(the diagonal matrix containing the energies of each transition) plus a rotation (the BSE
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kernel). The approximation proposed here implies that the diagonal matrix is calculated in

the fine k-grid, for which knowledge of only the KS energies of each band at every κ-point

is required. The BSE kernel, however, will not be calculated in the fine k-grid but rather,

only in the coarse k-grid. Hence, every matrix element involving at least one transition in

the fine grid will be approximated based on the kernel matrix elements in the coarse grid.

This allows us to dispense with the KS wavefunctions in the fine k-grid, which has a great

impact on memory requirements.

Coarse 
grid

Fine 
grid

12x12x1

48x48x1
Domains

Around Gamma point Full BZ

Γ

Figure 3.1: Visual representation of the coarse 12×12×1 and fine 48×48×1 k-grids in
monolayer MoS2. There is a fine-grid κ-point underneath every coarse-grid K-point. The
fine-grid domains centred around a selection of K-points are shown in different colours (key
in bottom-right corner). Both the full BZ (right panel) and the region around the Γ point
(left panel) are represented.

The way in which the BSE kernel is extended from the coarse to the fine k-grid has

been carefully considered as it has significant impact on the results. The best agreement

with experimental spectra was achieved with an approach we refer to as diagonal kernel

extension (DKE). Let us consider one k-point in the coarse grid, KI. There will be a group

of κ-points in the fine grid that map to it, namely those in the domain Dom(KI). We will

label those with a second numerical sub-index as κI1 ,κI2 ,κI3 , ...,κIi , .... Given that the fine

grid contains the coarse grid, we have that κI1 = KI, while κIi with i ̸= 1 are other fine
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grid points close to KI. Having established the nomenclature in this way, then the DKE

would imply the definition

Ξ nmκIi
n′m′κI′i′

≡ Ξ nmKI
n′m′KI′

δii′ , (3.1)

where the R.H.S can be calculated according to Eqs. 2.44-2.47 while the L.H.S is the

unknown matrix element we are trying to approximate (see Eq. A.4 in Appendix A for

a visual representation of Eq. 3.1). Thus, Eq. 3.1 is only exact for transitions involving

k-points that belong both the coarse and the fine grids simultaneously (i = i′ = 1), and

approximated otherwise. Even though the BSE kernel is not, in general, a diagonally-

dominant matrix, it is true that the diagonal matrix elements usually have values orders

of magnitude higher than those of immediately close off-diagonal elements. The DKE

approach preserves this character when extending the kernel from the coarse grid to the

fine grid. Essentially, each matrix element of the coarse grid BSE kernel expands into a

block in the fine grid matrix. The DKE method ensures that each block is strictly diagonal,

which is very relevant when expanding one of the diagonal matrix elements of the coarse grid

matrix. In practice, Eq. 3.1 implies setting to zero some fine-grid kernel matrix elements

(if not most, depending of the ratio between the number of κ-points and K-points). The

remaining fine-grid matrix elements are made equal to a corresponding coarse-grid matrix

element (see Eq. A.4). Other possible strategies for kernel extension that ignore this guiding

principle of the DKE tend to produce poorer results (see Section 3.2.3).

Finally, let us discuss how this double grid method fits within Haydock’s algorithm.

It is apparent from Eqs. 2.54-2.56 that this scheme relies mainly on the matrix vector

multiplication H2p|Vn⟩, so we will focus on how this is adapted to account for the fine k-

grid. The matrix in question (H2p) has already been described above, i.e., the BSE kernel

is approximated by DKE (Eq. 3.1) and the diagonal part needs no such approximation as

the KS energies are known in the fine k-grid. All there is left is then to define how the

Haydock vectors |Vn⟩ are extended to the fine grid and initialised. The initial Haydock

vector |V0⟩ is calculated in the coarse k-grid according to Eq. 2.52. Each component is
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associated to one transition vck and thus, when moving from the coarse to the fine grid, the

number of components will increase according to the ratio between the number of κ-points

and K-points. From Eq. 2.52, it is clear that the KS wavefunctions at the κ-points would

be required to properly initialise the Haydock vector in the fine k-grid. As our method

is designed so that these fine-grid wavefunctions are not needed nor loaded into memory,

those components will be initialised as being equal to the corresponding transition in the

coarse k-grid. In other words,

|P ⟩FG =
∑
vcKI

lim
q→0

1

|q|
Λ∗

vcKI
(q,G = 0)

∑
κIi

∈
Dom(KI)

|vcκIi⟩, (3.2)

where FG denotes the fine grid. It is apparent that |P ⟩FG has many more components

than |P ⟩, due to each coarse grid transition (at KI) being replicated into many transitions

at all the κ-points in the domain of KI. The recursive relations in Eqs. 2.54-2.56 would

formally require the multiplication of the fine grid (full) BSE kernel times Haydock vectors

of the size of |P ⟩FG. In our implementation, we calculate this matrix-vector multiplication

without allocating the (DKE-approximated) fine-grid BSE kernel into memory. Instead, we

perform this operation having only allocated the coarse-grid kernel. This choice has a large

impact in the memory footprint of our double-grid method, since the fine-grid BSE matrix

can reach tens of TB in size, e.g., for a 60×60×60 k-grid. This matrix-vector multiplication

can be expressed in the fine-grid e-h space as,

rnmκIi
=

∑
n′m′κI′i′

Ξ nmκIi
n′m′κI′i′

cn′m′κI′i′
, (3.3)

where cvcκIi
= ⟨vcκIi |V ⟩ are the components of the vector to be multiplied and r are,

analogously, the coefficients of the resulting vector. The summation in Eq. 3.3 runs over

the fine-grid e-h space. However, applying the DKE (Eq. 3.1) to the BSE matrix in Eq.
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3.3, we obtain,

rnmκIi
=

∑
n′m′KI′

∑
i′ ∈

Dom(KI′ )

Ξ nmKI
n′m′KI′

δi,i′ cn′m′κI′i′
=

∑
n′m′KI′

Ξ nmKI
n′m′KI′

cn′m′κI′i
, (3.4)

where the BSE matrix elements in the R.H.S are those of the coarse-grid kernel and the

resulting summation runs over the K-points in the coarse grid only (see Eqs. A.5 and A.6

in Appendix A for a visual representation of Eq. 3.4). Computationally, this means adding

a loop over the κ-points in the domain of each K, which can alternatively be recast as a

matrix-matrix multiplication (see Eq. A.7). In practice, we divide a given Haydock vector

|V ⟩ in fragments by grouping its components, cnmκIi
, according to their κ-point index,

i. Hence, instead of evaluating Eq. 3.4 for each i index, we build a matrix with those

fragments as columns and multiply the coarse-grid BSE kernel by it (see Eq. A.7).

We highlight that the implementation conducted as part of this thesis involves the ex-

tension of Haydock’s algorithm to the double grid, while the Haydock solver itself, alongside

the BSE scheme, were already coded.

3.2 Results and discussion

The double grid method proposed here to calculate optical spectra via the BSE has been

implemented in the Haydock solver of the Yambo code [128, 129] and tested on a variety

of semiconductors. In this section, we present the resulting optical spectra of bulk Si,

bulk GaAs and monolayer MoS2. An assessment of the computational cost of this scheme

in comparison with the full BSE is also provided. We conclude this section discussing the

approximations made in our double k-grid approach and its limitations. Although Gamma-

centred k-grids were used throughout this study, our method can also be used with shifted

grids (see an example in Appendix A). The starting KS wavefunctions and energies were

computed with Quantum Espresso [130] using norm-conserving pseudopotentials and the

Perdew-Zunger LDA exchange-correlation functional [51]. The calculation of optical spectra
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was performed in the length gauge and within the dipole approximation.

3.2.1 Absorption spectra

Fig. 3.2 shows the absorption spectrum of bulk Si, which is notoriously difficult to converge

with respect to k-points since a very dense k-sampling is required to properly describe its

excitons. The starting point for our Si calculations is a severely under-converged 8× 8× 8

k-point grid. Indeed, the spectrum produced by this coarse grid alone shows numerous spu-

rious peaks (see left panel of Fig. 3.2), which reveals a high degree of artificial localisation

of the excitons imposed by the 8× 8× 8 k-grid. We then took the latter as the coarse grid

for the double grid method and added a fine grid of κ-points to it. Fig. 3.2 shows that a

fine (double) grid of 24×24×24 κ-points on top of this coarse grid immediately suppresses

this artificial localisation. Denser double grids improve upon this result. Ultimately, the

spectrum obtained with a 60× 60× 60 fine κ-grid on top of an 8× 8× 8 coarse K-grid is

in relatively good agreement with experimental data available in the literature for Si bulk

at 10 K [131] (see Fig. 3.2). The right panel of Fig. 3.2 shows a comparison with other

theoretical results obtained from the literature. Among the latter, Ref. [79] uses the BZ-

interpolation of Rohlfing et al. [66] (described in Section 2.2.2) while Refs. [64] and [132]

solve the BSE in shifted k-grids without any such interpolation. Importantly, Ref. [133]

includes the coupling to the lattice (zero-point) vibrations and the resulting renormalisation

of optical strengths. All five theoretical spectra presented in the right panel of Fig. 3.2

show relatively good agreement with the experimental data.

As in the case of Si, GaAs also requires very dense k-sampling for its optical response

to be converged. The coarse grid in this case is an under-converged 10× 10× 10 Gamma-

centred k-point grid. Various spurious peaks are present in the spectrum calculated with

this coarse grid alone, which points to a high degree of artificial localisation of the excitonic

wavefunctions (see left panel of Fig. 3.3). It is apparent that adding a fine (double) κ-grid

of 20× 20× 20 does not solve the problem fully. However, the spectra with 40× 40× 40 or
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Figure 3.2: Optical absorption spectra of bulk Si calculated at the BSE level and compared
with experimental data at 10 K [131] (labelled Exp.). Left: Results obtained with the
double-grid method proposed here. The label NK = 83 corresponds to a regular BSE
calculation on a single 8×8×8 coarse k-grid. The label Nκ = 603 corresponds to a double-
grid BSE calculation with an 8 × 8 × 8 coarse k-grid and a 60 × 60 × 60 fine k-grid. We
consider all e-h pairs from the top 4 valence bands to the 4 bottom conduction bands. All
k-grids are Gamma-centred. Right: A comparison with other theoretical spectra available
in the literature.

60×60×60 κ-grids match the experimental data relatively well (see Fig. 3.3, respectively).

The right panel in Fig. 3.3 shows a comparison with available experimental data for GaAs at

22 K [134]. In addition, other theoretical results obtained from the literature are displayed,

both with BZ-interpolation [66] and without it [65]. All three theoretical spectra agree

relatively well with the experimental data.

The k-point convergence of the absorption spectrum of monolayer MoS2 within the

BSE scheme has been previously discussed [135,136], where the splitting of the first exciton

was attributed to spin-orbit coupling. Moreover, it was argued that several studies obtain a

similar splitting due to an underconverged k-sampling of the BZ and mistakenly report it as

matching experimental results. In fact, the appendix of Ref. [135] shows that a calculation

in which spin-orbit coupling is not accounted for should not show any splitting in the first

exciton.

Here, we intend to investigate whether our double-grid method can eliminate this un-
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Figure 3.3: Optical absorption spectra of bulk GaAs calculated at the BSE level and
compared with experimental data at 22 K [134] (labelled Exp.). Left: Results obtained
with the double-grid method proposed here. The label NK = 103 corresponds to a regular
BSE calculation on a single 10 × 10 × 10 coarse k-grid. The label Nκ = 603 corresponds
to a double-grid BSE calculation with a 10× 10× 10 coarse k-grid and a 60× 60× 60 fine
k-grid. We consider all e-h pairs from the top 4 valence bands to the 4 bottom conduction
bands. All k-grids are Gamma-centred. Right: A comparison with other theoretical spectra
available in the literature.

physical splitting in a calculation without spin-orbit coupling. We start with the spectra

computed on a (single) grid of 12 × 12 × 1 k-points, which splits the first exciton into

two peaks at around 2.2 and 2.5 eV (see left panel of Fig. 3.4). Indeed, adding succes-

sive double grids results in suppressing the splitting in favour of just one peak at around

2.3 eV. Moreover, this is achieved with a negligible computational overhead respect to the

underconverged 12× 12× 1 k-points calculation (See Section 3.2.2).

In any case, dense k-grids in monolayer MoS2 still amount to a manageable total number

of k-points owing to its two-dimensional nature, which requires only one k-point in the

vertical direction. Therefore, full BSE calculations on dense grids could be conducted

for this material using high-memory computing nodes, e.g., requiring around 500 GB of

memory per processor for a single-grid 60 × 60 × 1 BSE calculation. This is much less

severe than a 60 × 60 × 60 calculation for bulk Si, in which case the BSE kernel required

tens of TB of memory, thus resulting prohibitively costly. The spectra of monolayer MoS2
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calculated in dense (single) grids is presented in the right panel of Fig. 3.4, showing a

noticeable reduction in the above-mentioned splitting of the exciton. These results also

feature a gradual shift in the position of the first and second excitons with increasing k-

sampling. A comparison with the double-grid spectrum indicates that our method fails to

reproduce this shift as a result of the stark approximations made in the BSE kernel.

0

10

20

30

40

2.0 3.0 4.0

Im
[ 
ε(

q
→

0,
ω

)]

Energy (eV)

NK = 122

Nκ = 242

Nκ = 482

Nκ = 602

0

10

20

30

40

2.0 3.0 4.0

Im
[ 
ε(

q
→

0,
ω

)]

Energy (eV)

NK = 122

NK = 242

NK = 482

NK = 602

Nκ = 602

Figure 3.4: Optical absorption spectra of monolayer MoS2 at the BSE level. The label
NK = N2 corresponds to a regular BSE calculation on a single N × N × 1 coarse k-grid.
The label Nκ = 602 corresponds to a double-grid BSE calculation with a 12× 12× 1 coarse
k-grid and a 60 × 60 × 1 fine k-grid. Left: Results obtained with the double-grid method
proposed here. Right: Comparison with full BSE calculations on dense (single) grids. We
consider all e-h pairs from the top 3 valence bands to the 5 bottom conduction bands. All
k-grids are Gamma-centred.

Finally, we discuss the impact of the coarse-grid starting point for a double-grid calcu-

lation. The first observation derived from our experience with this method indicates that,

if the coarse grid is very far from convergence (e.g., 3×3×1 for MoS2), the double grid spec-

trum would not be correct or meaningful (see, e.g., Fig. A.3). Therefore, around these low

densities of k-points, we conclude that a denser coarse-grid will usually represent a better

starting point. However, upon increasing the k-point density of the coarse grid, we reach

a point where the advantage of doing so is not always clear. For example, the left panel of

Fig. 3.5 shows absorption spectra of Si bulk obtained with a 60×60×60 fine grid and two
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different coarse grids, 12×12×12 and 8×8×8 (the latter is the result from Fig. 3.2). While

the 12×12×12 coarse grid shows better agreement with the experimental data in the region

between the two peaks and beyond, the quality of the spectrum around the first peak has

deteriorated respect to the 8×8×8 coarse-grid result. In the case of GaAs, the comparison

with experimental spectra worsens slightly upon increasing the k-point density of the coarse

grid from 10×10×10 to 14×14×14 (see right panel of Fig. 3.5). The exception to this is

the feature around 2.1 eV, which improves with a denser coarse grid (see Sec. 3.2.4). For

MoS2, Fig. 3.6 shows a comparison between double-grid spectra obtained with different

coarse grids and the full BSE calculation on a 60×60×1 k-grid. The description of the first

exciton with a 24×24×1 coarse grid worsens respect to the one obtained using a 12×12×1

coarse grid (see left panel of Fig. 3.6). This is due to a sizeable shift in the position of the

first exciton when going from a full 12×12×1 BSE calculation to a full 24×24×1 one, which

then gets reversed upon using even denser grids (see right panel of Fig. 3.4). As a result, a

48×48×1 coarse grid represents a better starting point regarding this first exciton (see right

panel of Fig. 3.6). The rest of the spectrum appears to improve with denser coarse-grids.

Overall, this analysis highlights the dependence of the double-grid result on the quality of

the coarse-grid spectrum as an important shortcoming of this approach. This hinders the

predictive power of the double-grid method presented in this Chapter (we revisit this issue

in Section 3.2.4).

3.2.2 Computational cost

As described in Section 2.2.2, Lanczos approaches to the BSE eliminate the need to in-

vert the BSE kernel or fully diagonalise the two-particle Hamiltonian, which would become

the bottleneck of the calculation whenever required. Instead, Lanczos solvers replace these

highly demanding tasks by very efficient and computationally inexpensive iterative schemes.

This numerical advantage means that the solution step itself does not drive the computa-

tional cost any longer, but rather, computing and storing the BSE matrix now becomes
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Figure 3.5: Optical absorption spectra of bulk Si (left) and GaAs (right) at the BSE level
via the double-grid approach using different coarse grids. We consider all e-h pairs from the
top 4 valence bands to the 4 bottom conduction bands. All k-grids are Gamma-centred.

the bottleneck of the calculation. The method proposed in this work addresses this issue

directly. First, the KS wavefunctions in the fine grid need not be available, i.e., not stored

nor loaded into memory. Moreover, the kernel matrix elements in the fine grid, and conse-

quently, the corresponding oscillator strengths, need not be calculated. As a result, the size

of the BSE kernel matrix will effectively be that of the coarse grid kernel. For instance, if

we consider a coarse grid of 10×10×10 and a fine grid of 60×60×60, then there would be

1000 K-points and 216000 κ-points. The full BSE kernel would have ∼ (200 ×Nv ×Nc)
2

more matrix elements than the approximated one, where Nv and Nc denote the number of

valence and conduction bands, respectively. Depending on the number of bands required

for convergence, the steps of computing and storing that many matrix elements may draw

the line between what is feasible and what is not, not only in terms of processing power,

but also due to memory and disk-storage limitations.

Let us consider monolayer MoS2 to address how the computational cost compares be-

tween our double grid approach with a given fine κ-grid and the regular (full) BSE calcula-

tion using that same fine grid as the only (single) k-grid. While this Section focuses on the

computational cost comparison, the spectra produced by all calculations involving, e.g., a
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Figure 3.6: Optical absorption spectra of monolayer MoS2 at the BSE level via the double-
grid approach using different coarse grids. Left: Using a 24× 24× 1 coarse k-grid. Right:
Using a 48× 48× 1 coarse k-grid. We consider all e-h pairs from the top 3 valence bands
to the 5 bottom conduction bands. All k-grids are Gamma-centred.

24×24×1 k-grid, is presented in Fig. A.3. Fig. 3.7 shows the combined time required to

calculate the BSE kernel and compute the absorption spectra via Haydock’s scheme as a

function of k-points used in each calculation. For comparability purposes, all the calcula-

tions shown in Fig. 3.7 have been carried out with just one processor. For the full solution

of the problem (brown circles) the number of k-points has quadratic scaling from one k-grid

to another (as it does for any 2D material) and the CPU time scales quadratically with the

total number of k-points. This latter dependence stems from the size of the e-h basis set and

the number of matrix elements of the BSE kernel, i.e., (NK×Nv×Nc)
2. The computational

cost of the double grid approach proposed in this work (green-blue diamonds connected by

lines) increases only slightly with the size of the fine-grid, when the same coarse grid is

used. Since the BSE kernel is calculated only in the coarse-grid, this increase is due to

the Haydock solver, which now has to process larger Haydock vectors. Nonetheless, it is

apparent that the Haydock-related increase in CPU time is minor and far more manageable

than the scaling of the full BSE problem. Overall, the fine grid has little impact on the

CPU time required by the method we propose. In fact, Fig. 3.7 clearly shows that the
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computational cost of the double grid method is roughly driven by the coarse grid.

3.2.3 Kernel extension to the fine grid

The extension of the BSE kernel from the coarse to the fine k-grid is the key approximation

of the double-grid approach proposed in this thesis. There are a number of strategies

one could use, many of which require knowledge of the KS wavefunctions in the fine k-

grid [66, 82]. At variance, we only considered strategies where said wavefunctions were

not needed and the fine-grid BSE kernel matrix was not allocated in order to limit the

memory footprint of our method, such as the DKE approximation we defined in Eq. 3.1.

As explained in Sec. 3.1, the latter was chosen for this implementation given its simplicity
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and low computational cost. Nevertheless, there are other possible strategies for kernel

extension one can consider, which have similar characteristics to the DKE. In particular,

we also examined the so-called full kernel extension (FKE). We define the FKE approach

so that each matrix element of the coarse k-grid BSE kernel is expanded into an all-ones

block in the fine grid times the original matrix element,

Ξ nmκIi
n′m′κI′i′

≡ Ξ nmKI
n′m′KI′

∀i, i′, (3.5)

(see Eq. A.8 in Appendix A for a visual representation of Eq. 3.5). As a result, the way in

which the fine-grid matrix vector multiplication is carried out also differs from the DKE.

In the FKE, this operation is performed as

rnmκIi
=

∑
n′m′KI′

Ξ nmKI
n′m′KI′

∑
i′ ∈

Dom(KI′ )

cn′m′κI′i′
, (3.6)

(see Eqs. A.9 and A.10 in Appendix A for a visual representation of Eq. 3.6). We note that

Eqs. 3.5 and 3.6 of the FKE are analogous to Eqs. 3.1 and 3.4 of the DKE, respectively.

In terms of the spectra produced by either kernel extension strategy, the comparison

consistently favoured the DKE over the FKE in all the materials tested in Sec. 3.2.1, as

shown in Fig. 3.8. The difference may be less noticeable in systems with weaker excitonic

effects. In the case of bulk Si, it is apparent that the DKE is better than the FKE at

suppressing the artificial localisation found around 3.6 eV. For GaAs, the DKE also shows an

improvement with respect to the FKE when dealing with the artificial localisation at around

3.1 eV. Finally, monolayer MoS2 shows a greater difference between both approaches. In

fact, the FKE approach shows little to none improvement with respect to the 12× 12× 1

single k-grid as far as the first exciton is concerned (cf. Fig. 3.4). Overall, the trend found

in this work indicates that the DKE is consistently better than the FKE, which is why we

chose the former for this implementation.

In order to explain the better performance of DKE over FKE, we will discuss the
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Figure 3.8: Optical absorption spectra of bulk Si (left panel), bulk GaAs (middle panel)
and monolayer MoS2 (right panel). Comparison of spectra obtained by using the diagonal
kernel extension (DKE) and full kernel extension (FKE) approximations. Computational
details as in Figs. 3.2-3.4.

properties of the BSE kernel and the two-particle Hamiltonian matrices, which are related

by Eq. 2.47. In general, the kernel matrix elements Ξ nmk
n′m′k′

are sharply peaked at q = 0

[66, 79], i.e., for k = k′. This does not mean that every matrix element with q = 0 will

have a higher value than the remaining matrix elements. In fact, that is only true for the

diagonal elements Ξnmk
nmk

, while the q = 0 elements coupling different sets of bands (Ξ nmk
n′m′k

)

are closer in value to all other q ̸= 0 matrix elements. We exemplify this with monolayer

MoS2 in Fig. 3.9. The latter shows the modulus of every matrix element between a given

transition (v = 13, c = 14 and k1 = (−0.166,−0.166, 0)) and every other transition in the

e-h space, i.e., one row of the BSE kernel matrix. This data is plotted as a function of the

magnitude ||q||/||q||max sgn(qx), where q = k − k1. Fig. 3.9A shows the BSE kernel as

obtained with a single grid of 6×6×1 k-points, where we can see that the diagonal matrix

element (the selected transition with itself) is an order of magnitude higher than all other

matrix elements (many of which also have q = 0). The fine grid of 12 × 12 × 1 k-points

better captures the build-up to the peak of the graph as it has many more k-points around

k1 (see Fig. 3.9B). Unfortunately, the double grid approach proposed here cannot capture

this feature because it is meant not to imply any extra computation or storage of matrix

elements at fine grid κ-points. However, the reader should bear in mind that while this

feature is missing in our approximated BSE kernel, the benefits of this double grid approach
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reside in exactly knowing the transition energies at the fine grid κ-points (see Appendix A

for a detailed discussion). Therefore, what we require from the approximated kernel is to

avoid introducing unphysical matrix elements, and in this regard the DKE performs much

better than the FKE. Fig. 3.9C shows how the BSE kernel matrix elements approximated

by DKE still represent a function of q that is sharply peaked at the origin. Conversely, the

FKE approach means that many matrix elements in Dom(k1), and consequently at q ̸= 0,

will take the value of the peak. We know that such behaviour as a function of q would

not arise should more k-points be included (see 3.9B). Hence, we believe DKE constitutes

a better approximation of the BSE kernel than FKE. Further arguments in favour of the

DKE over the FKE are presented in Appendix A.

Figure 3.9: Modulus of the BSE Kernel matrix element between one transition (vck1) and
every other transition in the e-h space (nmk). The data plotted here corresponds to MoS2

with all the bands required for convergence. Panel A shows the matrix elements considering
only a single grid of 6 × 6 × 1 k-points. The DKE (panel C) and FKE (panel D) matrix
elements are obtained from a 6× 6× 1 coarse K-grid and a 12× 12× 1 double κ-grid. The
fine grid data (panel B) is simply what DKE and FKE try to approximate, i.e., the kernel
matrix elements obtained with one single grid of 12× 12× 1 k-points.
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3.2.4 Limitations of the approach

The double-grid approach presented in Sec. 3.1 is based on two approximations: the DKE

(Eq. 3.1) and the approximation of the starting Haydock vector (Eq. 3.2). The DKE has

been extensively analysed in Sec. 3.2.3. From the analysis, it emerges that the predominance

of the matrix elements with q ≈ 0 is crucial to the success of the approximation. This is

consistent with the spatial de-localisation of the exciton over many unit cells. Conversely,

when the exciton is localised on few unit cells, as it is the case for instance in wide-gap

insulators, the approximation may break down because of the significant contribution to

the BSE kernel of matrix elements with q ̸= 0. We verified this is the case, for example,

for bulk h-BN. The breakdown of the approach for these cases is, however, not critical. In

fact, excitons that are localised on few unit cells can be described accurately with a modest

k-point sampling and the double-grid is not needed.

The approximation for the starting Haydock vector (Eq. 3.2) implies the assumption

that (within the length gauge and the dipole approximation) the dipole matrix elements in

the fine grid can be approximated by those in the coarse grid, namely,

⟨nκIi | r̂ |mκIi⟩ ≈ ⟨nKI| r̂ |mKI⟩, (3.7)

for κIi ∈ Dom(KI), where r̂ is the position operator. This assumption can be verified at

the level of the independent particle approximation (IPA) by comparing the IPA spectrum

obtained with the double-grid approach (which we call Haydock-IP) with the IPA spectrum

calculated on the fine grid. In fact, in the independent particle case, Eq. 3.7 is the only

approximation introduced by the double grid. For the systems considered in Sec. 3.2, we

verified that indeed the IPA spectra obtained within the double-grid approach agree well

with the IPA calculated on the corresponding fine grid (see Fig. 3.10). It is also interesting

to note that this particular approximation is valid for h-BN, which singles out the BSE

kernel (q ≈ 0) approximation as the only factor hindering the application of the double-

grid method to this material. In particular, GaAs shows a minor discrepancy in the IPA
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spectra around 2.1 eV (see Fig. 3.10), a region of the spectrum where k-point convergence

is markedly difficult. This is due to the steep dispersion of the conduction band of GaAs

around the Gamma point, where the optical gap occurs (see, for example, [134]). As a

result, the approximation of the oscillator strengths around Gamma by the corresponding

matrix element at Gamma (Eq. 3.7) is a rather poor one, which translates into an unphysical

feature around 2.1 eV in the BSE spectrum as well (see Fig. 3.3).
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Figure 3.10: Optical absorption spectra calculated at the IP level using the double grid
method (labelled Hay-IP) and via a regular (full) calculation on a dense grid (labelled
IP). In all cases, the fine grid in the double-grid Haydock-IP calculation is of the same
dimensions as the dense grid used in the regular IP calculation. The coarse grids and
fine/dense grids used for each material are as follows. Si: 8× 8× 8 and 60× 60× 60, GaAs:
10× 10× 10 and 40× 40× 40, MoS2: 12× 12× 1 and 60× 60× 1, h-BN: 12× 12× 4 and
24× 24× 8, BP(c): 14× 10× 4 and 42× 30× 12, BP(p): 5× 5× 6 and 30× 30× 36. All
k-grids are Gamma-centred. The PW91 exchange-correlation functional [52] was used for
BP.

There are also instances in which the approximation in Eq. 3.7 breaks down substan-

tially. As an example, Fig. 3.10 shows this breakdown for the optical absorption of bulk

black-phosphorus (BP) along the armchair direction (this material has been studied in

Ref. [137]). The IPA spectrum obtained within the double-grid approach has strong peaks
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around 0.3 eV which are not present in the reference calculation. The appearance of this

artefact can be understood considering how the dipole matrix elements (Eq. 3.7) are cal-

culated given that the position operator is ill-defined in a system with periodic boundary

conditions. Within the linear regime, we use the commutation relation,

[Ĥ, r] = p̂+ [Vnl, r̂], (3.8)

where Vnl is the non-local part of the Hamiltonian Ĥ and p̂ is the momentum operator.

This results in the dipole matrix elements being expressed as,

⟨nKI| r̂ |mKI⟩ =
⟨nKI | p̂+ [Vnl, r] |mKI⟩

EnKI
− EmKI

. (3.9)

BP has a minimum KS band-gap of about 0.2 eV (0.1 eV at the DFT level) and thus the

corresponding dipole matrix element is large. Within the double-grid approach, all fine-grid

κ-points in the domain of the K-point corresponding to the minimum KS band-gap use

the same value, which largely overestimates the actual dipole matrix element. Notably,

carrying out the calculations in the primitive rather than in the conventional unit cell (see

Fig. 3.10), improves the agreement with the reference IPA fine-grid spectrum, suggesting

that in this case the coarse grid does a better job at sampling the Brillouin zone around

the K-point corresponding to the minimum KS band-gap. Nevertheless, this Haydock-IP

spectrum still presents artificial features between 0.5–1.0 eV, preventing the application of

the double-grid method presented in this work to BP.

Overall, the intention of our double-grid approach was to reduce the computational and

memory requirements of the BSE scheme by virtue of not using the fine-grid wavefuctions

and avoiding the allocation of a matrix with the dimensions of the fine-grid e-h space.

However, this resulted in very crude approximations and imposed severe limitations on the

validity of the our method. In addition, the double-grid results are strongly dependent on

the quality of the coarse-grid spectrum, which hinders the reliability and predictive power of
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this approach. For these reasons, other BZ-interpolation schemes available in the literature

are still preferable. In particular, the methods of Rohlfing et al. [66,79] and Gillet et al. [82]

are able to deal with strongly bound excitons. Moreover, while they require the fine-grid

wavefunctions, only the method by Rohlfing et al. allocates memory for a fine-grid BSE

kernel. Instead, Gillet et al. avoid storing said matrix in memory by proposing an on-the-fly

interpolation.

3.2.5 Usage recommendations

We now provide some recommendations for using the double-grid method presented here.

Based on the discussion in Section 3.2.4, a minimal coarse grid must be identified, i.e., the

coarser grid that nonetheless satisfies the approximation in Eq. 3.7. This is done in two

steps. First, a full fine grid IPA calculation must be converged with respect to k-points,

arriving, e.g., at a 60× 60× 60 k-grid. The next stage would entail running several double-

grid calculations at the IPA level with varying coarse grids and a fine grid of 60× 60× 60

until the spectrum agrees with the full fine-grid IPA calculation (e.g., see top row of Fig.

3.10). We highlight this is a fairly inexpensive procedure as it only involves calculations at

the IPA level.

We can then perform double-grid BSE calculations using the recently found minimal

coarse grid. Alternatively, one may choose to go beyond that minimal coarse grid in an

attempt to provide a better starting point for the double-grid BSE calculation (which

is not always guaranteed, as explained in Section 3.2.1). With the chosen coarse grid,

successive double-grid BSE calculations of increasing fine grid should be carried out in

order to converge the dimensions of the latter. However, we highlight that convergence

of the fine-grid in the double-grid method does not guarantee the validity of the DKE

approximation. At this point, one should turn to available data, either experimental or

theoretical, in order to assess the validity of the results on physical grounds. As mentioned

above, this limits the reliability and predictive power of our method.
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Chapter 4

Floquet approach to nonlinear optics

at IPA level

We use Floquet theory (see Section 2.4) to reformulate the real-time approach to nonlinear
optics (see Section 2.3.2) as a self-consistent time-independent eigenvalue problem. The
proposed method applies to periodically-driven Hamiltonians and makes use of the dynam-
ical Berry-phase polarisation, thus remaining valid for extended systems. We implemented
this Floquet scheme at the independent particle level and compared it with the real-time
approach. Our reformulation reproduces real-time-calculated 2nd and 3rd order suscepti-
bilities for a number of bulk and two-dimensional materials, while reducing the associated
computational cost by one or two orders of magnitude. 1

As discussed in Section 2.3.2, the main drawback of the real-time approach to nonlinear op-

tics [42] lies in the elevated computational cost associated with it. The latter stems from the

expensive numerical integration of the EOMs (Eq. 2.59) combined with the long simulated

times required to properly dephase the response. For periodically-driven systems, Floquet

theory offers a time-independent framework which would naturally circumvent these short-

comings (See Section 2.4). In this work, we invoke Floquet theory to re-cast the EOM of the

real-time approach as a time-independent self-consistent eigenproblem. This reformulation

and its computational implementation are described in Section 4.1. Considerable atten-

1The work presented in Chapter 4 was carried out as part of this PhD and first appeared published in
Alliati & Grüning, Electronic Structure, 5, 017001 (2023). Content from the published article is used here,
with some emendations and changes of phrase to better elaborate the work.
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tion is devoted to dealing with the Berry-phase expression for the electron-field coupling

operator [42, 97], which makes our approach valid for extended systems and distinguishes

it from previous Floquet works (e.g., [118]). In Section 4.2, the proposed Floquet approach

is validated by computing nonlinear optical susceptibilities for a number of materials and

comparing the spectra with the real-time results. An assessment of the computational cost

required by our Floquet method is also provided, followed by a discussion on its limitations.

The present Chapter is concerned exclusively with the IPA, while more advanced levels of

theory are deferred to Chapter 5. Supplemental material regarding this development is

presented in Appendix B.

4.1 Implementation

Throughout Chapters 4-6, we choose the IPA to be defined at the DFT level plus a static

quasi-particle correction. With this assumption, the effective Hamiltonian in Eq. 2.61 takes

the form of Eq. 2.63, which we repeat here for clarity,

Ĥ IPA = ĤKS[ρ0] + ∆̂QP[ϱ0]︸ ︷︷ ︸
ĤIPA,0

+ Ŵ (E), (4.1)

where Ĥ IPA,0 represents the unperturbed Hamiltonian at the IPA level. It is composed of

the KS Hamiltonian, ĤKS[ρ0], and the quasi-particle corrections, ∆QP[ϱ0], for which we

will use a rigid (scissor) shift. As explained in Section 2.3.2, the unperturbed Hamiltonian

at the IPA level is time-independent while the time dependence of Ĥ IPA is confined to the

electron-field coupling operator, Ŵ (E). Finally, since the unperturbed Hamiltonian, Ĥ0, is

formulated at the DFT level, we can also refer to the zero-field states, |µkn⟩, simply as KS

states.
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4.1.1 Time independent Floquet-Kohn-Sham basis

We start by defining the so-called Floquet-Kohn-Sham (FKS) basis. Let us assume that

the effective Hamiltonian in Eq. 2.59 is time-periodic with a period, T = 2π
ω0
, given by the

frequency of the perturbing electric field, ω0. Invoking Floquet’s theorem, one can assert

this EOM will admit solutions in the form of Eq. 2.80, i.e., e−iξαt ϕα(t), where ξα is the

Floquet quasi-energy and the time-dependent Floquet states, ϕα(t), retain the periodicity

of the Hamiltonian, ϕα(t) = ϕα(t + T ). The general solution to Eq. 2.59 would then be a

linear combination of said functions,

|vkn⟩ =
∑
α

cαkn e
−iξαt |ϕα⟩. (4.2)

Making use of the adiabatic approximation for weak fields [121], we can assume each time-

zero KS state will evolve adiabatically into a single Floquet state and retain only one term

in the summation of Eq. 4.2, i.e.,

|vkn⟩ ≈ e−iξαt |ϕα⟩ = e−iξknt |ϕkn⟩, (4.3)

where we replaced the label α with the index of the state at k-point k and band n. Pro-

jecting over the zero-field KS states, |µkn⟩, we get,

|vkn⟩ = e−iξknt

+∞∑
i

|µki⟩⟨µki|ϕkn⟩ = e−iξknt

+∞∑
i

dkni(t) |µki⟩, (4.4)

where the index i runs over both occupied and empty bands. As the coefficients dkni(t) ≡

⟨µki|ϕkn⟩ retain the time periodicity of the Floquet states, dkni(t) = dkni(t + T ), they can

be expanded in a Fourier series,

dkni(t) =
+∞∑

η=−∞

e−iηω0t d̃kni(η), (4.5)
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where η will be referred to as the Floquet mode. Finally, with Eqs. 4.4 and 4.5, we arrive

at the representation of the time-dependent Bloch states we will use in this work,

|vkn⟩ = e−iξknt

+∞∑
η=−∞

e−iηω0t

+∞∑
i

d̃kni(η) |µki⟩, (4.6)

where the coefficients d̃kni(η) depend on the band index i and the Floquet mode η. The

states given by |kni; η⟩ ≡ e−iξknt e−iηω0t |µki⟩ form a basis for FKS space. This composite

Hilbert space includes L2[0, T ] plus the space spanned by KS eigenvectors, i.e., R. The

inner product in L2[0, T ] ⊗ R is defined as ⟨⟨·|·⟩⟩ ≡
∫ T

0
dt ⟨·|·⟩, with ⟨·|·⟩ the usual inner

product in R. The dimension of FKS space must be truncated to Nb × (2ηmax + 1) for any

practical calculation. Nb is the number of bands in the summation of Eq. 4.4 while ηmax

is the maximum Floquet mode used for the expansion in Eq. 4.5. In this work, we define

ηmax in relation to the FKS states, i.e., ηmax implies the definition,

d̃kni(η) ≡ 0 if |η| > ηmax. (4.7)

4.1.2 Quasi-energy eigenproblem

The use of FKS basis in the EOM of the real-time approach (Eq. 2.59) allows us to turn

it into a self-consistent time-independent eigenproblem. Choosing the Hamiltonian in Eq.

2.59 at the IPA level (Eq. 4.1) and expanding the time-dependent Bloch states in FKS

basis (Eq. 4.6), we arrive at the EOM,

+∞∑
j

+∞∑
γ=−∞

(
Ĥ IPA

k − i∂t

)
e−iξknte−iγω0t d̃knj(γ)|µkj⟩ = 0. (4.8)

Acting the operators Ĥ0 and −i∂t we obtain,

+∞∑
j

+∞∑
γ=−∞

(
EIPA

kj + Ŵk(t)− ξkn − γω0

)
e−iξknte−iγω0t d̃knj(γ)|µkj⟩ = 0, (4.9)
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where EIPA are the KS energies shifted by the quasi-particle corrections and the time-

dependence of Ŵk(E) is shown explicitly. We multiply to the left by
∫
dt e+iξknt e+iηω0t ⟨µki|

and arrive at,

+∞∑
j

+∞∑
γ=−∞

[(
EIPA

kj − ξkn − γω0

)
δi,jδη,γ +Wkij(η, γ)

]
d̃knj(γ) = 0, (4.10)

where Wkij(η, γ) are the matrix elements of Ŵk(t) in FKS space. It is also worth noting

that the operator
(
Ĥ0

k − i∂t

)
is diagonal in FKS space, with matrix elements given by(

EIPA
kj − ξkn − γω0

)
. Now, Eq. 4.10 can be rearranged as an eigenvalue problem for the

Floquet quasi-energies,

+∞∑
j

+∞∑
γ=−∞

[(
EIPA

kj − γω0

)
δi,jδη,γ +Wkij(η, γ)

]
d̃knj(γ) = ξkn d̃kni(η). (4.11)

We define the operator on the LHS of Eq. 4.11 as the quasi-energy operator K̂IPA
k . Its

matrix elements in FKS space are (cf. Eq. 2.87),

KIPA
kij (η, γ) =

(
EIPA

kj − γω0

)
δi,jδη,γ +Wkij(η, γ), (4.12)

and the eigenvalue problem in Eq. 4.11 reduces to the shorthand notation (cf. Eq. 2.83),

+∞∑
j

+∞∑
γ=−∞

KIPA
kij (η, γ) d̃knj(γ) = ξkn d̃kni(η), (4.13)

Formally, the matrix elementsWkij(η, γ) can be obtained by expressing the time-periodic

electron-field coupling operator in Floquet space, i.e., Ŵk(t) =
∑+∞

ζ=−∞ e−iω0ζt W̃k(ζ), and

taking the inner product,

Wkij(η, γ) =

∫
dt e+iω0ηt

+∞∑
ζ=−∞

e−iω0ζt e−iω0γt ⟨µki|W̃k(ζ)|µkj⟩. (4.14)
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Replacing the time integral with a delta function, we arrive at,

Wkij(η, γ) =
∑+∞

ζ=−∞ δζ,η−γ ⟨µki|W̃k(ζ)|µkj⟩

= ⟨µki|W̃k(η − γ)|µkj⟩. (4.15)

An expression for Wkij(η, γ) will be obtained in Section 4.1.3. We can anticipate from Eq.

4.15 that Wkij(η, γ) will couple different Floquet modes in the eigenproblem of Eq. 4.11.

4.1.3 Electron-field coupling operator Ŵ (E)

In order to obtain the matrix elements Wkij(η, γ) (Eq. 4.15), we consider a sinusoidal

electric field of amplitude E0 and frequency ω0, and re-write Eq. 2.71 as,

ŵk = i e
4π

∑3
i=1N

∥
α (E0 · ai)

∑
σ σ

(
eiω0t−e−iω0t

2i

)
P̂kkσ

α

= e
8π

∑3
i=1N

∥
α (E0 · ai)

∑
σ σ

∑
σ2
σ2 e

σ2 iω0tP̂kkσ
α
, (4.16)

where σ2 = ±1. The summations in Eq. 4.16 add up to twelve equivalent terms. In what

follows, we will work with just one of them for simplicity. Choosing the positive exponential

(σ2 = +1) and replacing kσ
α by k+, we define,

P̂+
kk+ = e+iω0tP̂kk+ . (4.17)

We start by acting P̂+
kk+ on a time-dependent Bloch state,

P̂+
kk+ |vkn⟩ = P̂+

kk+ e
−iξknt

+∞∑
γ=−∞

e−iγω0t

+∞∑
j

d̃knj(γ)|µkj⟩, (4.18)
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where we have expanded the state |vkn⟩ in FKS basis as shown in Eq. 4.6. Multiplying the

RHS of Eq. 4.18 to the left by
∫
dt e+iξknt e+iηω0t ⟨µki|, we arrive at

+∞∑
γ=−∞

+∞∑
j

∫
dt e+iηω0t ⟨µki| P̂+

kk+ |µkj⟩ e−iγω0t d̃knj(γ)

=
∑+∞

γ=−∞
∑+∞

j P+
kk+ij(η, γ) d̃knj(γ). (4.19)

In Eq. 4.19, we have extracted an expression for the matrix elements of the projector,

P+
kk+ij(η, γ) =

∫
dt e+iηω0t ⟨µki| P̂kk+ |µkj⟩ e−iγω0t. (4.20)

Using Eqs. 2.72 and 4.17, we find,

P+
kk+ij(η, γ) =

∫
dt e+i(η+1)ω0t ⟨µki|

M∑
m

|ṽk+m⟩⟨vkm|µkj⟩ e−iγω0t. (4.21)

The dual |ṽk+m⟩ can be expressed via the overlaps matrix as in Eq. 2.73,

P+
kk+ij(η, γ) =

∫
dt e+i(η+1)ω0t ⟨µki|

M∑
m

M∑
m1

[S−1
kk+ ]m1,m |vk+m1

⟩⟨vkm|µkj⟩ e−iγω0t. (4.22)

Eq. 4.22 contains the inverse of the matrix Skk+ , i.e., the time-dependent overlap already

defined in Eq. 2.74. Transforming Eq. 2.74 to FKS basis (Eq. 4.6), we arrive at,

[Skk+ ]m,m1 = e+iξkmt e−iξk+m1
t∑+∞

ζ2=−∞
∑+∞

η2=−∞ e+iζ2ω0te−iη2ω0t ×∑+∞
j2

∑+∞
i2

d̃∗kmj2
(ζ2)⟨µkj2|µk+i2⟩dk+m1i2(η2). (4.23)

Defining the time-zero zero-field overlaps as [S0
kk+ ]j2,i2 = ⟨µkj2|µk+i2⟩ and making the re-

placement η′2 = η2 − ζ2, we get to,

[Skk+ ]m,m1 = e+iξkmt e−iξk+m1
t ∑+∞

η′2=−∞ e−iη′2ω0t ×(∑+∞
ζ2=−∞

∑+∞
j2

∑+∞
i2

d̃∗kmj2
(ζ2)[S

0
kk+ ]j2,i2dk+m1i2(η

′
2 + ζ2)

)
. (4.24)
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We now define the terms in the parentheses of Eq. 4.24 as [S̃kk+ ]m,m1(η
′
2) and obtain,

[Skk+ ]m,m1 = e+iξkmt e−iξk+m1
t

+∞∑
η′2=−∞

e−iη′2ω0t[S̃kk+ ]m,m1(η
′
2), (4.25)

which implies the need for a self-consistent solution to the eigenproblem in Eq. 4.11, given

that the matrix elements Wkij(η, γ) will depend on the solutions {d̃kni(η)}k,n,i,η through

the overlap matrices [Skk+ ]m,m1 .

According to Eq. 4.22, we need the inverse of the matrix Skk+ . How this inversion

is performed will be discussed in Section 4.1.4. For now, we will assume we can find an

expression for [S−1
kk+ ]m1,m expanded in Floquet modes as,

[S−1
kk+ ]m1,m = e−iξkmt e+iξk+m1

t
+∞∑

η′2=−∞

e−iη′2ω0t[D̃kk+ ]m1,m(η
′
2), (4.26)

where the signs of the quasi-energy exponentials have been inverted with respect to Eq.

4.25. Inserting Eq. 4.26 into Eq. 4.22, we arrive at,

P+
kk+ij(η, γ) =

∫
dt e−i(γ−η−1)ω0t

∑M
m

∑M
m1
e−iξkmt e+iξk+m1

t ×

⟨µki|
( ∑+∞

η′2=−∞ e−iη′2ω0t[D̃kk+ ]m1,m(η
′
2)|vk+m1

⟩⟨vkm|
)
|µkj⟩. (4.27)

Furthermore, we now use Eq. 4.6 to replace the time-dependent Bloch states in Eq. 4.27

as,

⟨vkm| = e+iξkmt

+∞∑
ζ1=−∞

e+iζ1ω0t

+∞∑
i3

d̃∗kmi3
(ζ1)⟨µki3| (4.28)

and

|vk+m1
⟩ = e−iξk+m1

t
+∞∑

η1=−∞

e−iη1ω0t

+∞∑
i1

d̃k+m1i1(η1)|µk+i1⟩. (4.29)

Inserting Eqs. 4.28 and 4.29 into Eq. 4.27, the quasi-energy exponentials cancel each other
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out and we arrive at,

P+
kk+ij(η, γ) =

∫
dt e−i(γ−η−1)ω0t

M∑
m

M∑
m1

+∞∑
η′2=−∞

e−iη′2ω0t[D̃kk+ ]m1,m(η
′
2) ×

+∞∑
η1=−∞

e−iη1ω0t

+∞∑
i1

d̃k+m1i1(η1)⟨µki|µk+i1⟩
+∞∑

ζ1=−∞

e+iζ1ω0t

+∞∑
i3

d̃∗kmi3
(ζ1)⟨µki3|µkj⟩, (4.30)

where ⟨µki3|µkj⟩ = δi3,j eliminates the summation over i3 and a new zero-field overlap is

formed, namely [S0
kk+ ]i,i1 = ⟨µki|µk+i1⟩. Grouping all the Floquet mode summations and

exponentials together, we obtain,

P+
kk+ij(η, γ) =

∑+∞
η′2=−∞

∑+∞
η1=−∞

∑+∞
ζ1=−∞

(∫
dt e−i(γ−η−1+η′2+η1−ζ1)ω0t

)
×∑M

m

∑M
m1

[D̃kk+ ]m1,m(η
′
2)

∑+∞
i1

d̃k+m1i1(η1)[S
0
kk+ ]i,i1 d̃

∗
kmj(ζ1), (4.31)

where the first parenthesis encapsulates the time dependence. This term results in the

condition (γ − η − 1 + η′2 + η1 − ζ1) = 0. Choosing to replace ζ1 and thus eliminating this

summation via δζ1,γ−η−1+η′2+η1 , we finally arrive at,

P+
kk+ij(η, γ) =

M∑
m

∑+∞
η′2=−∞

∑+∞
η1=−∞ d̃∗kmj(γ − η − 1 + η′2 + η1) ×∑M

m1
[D̃kk+ ]m1,m(η

′
2)

∑+∞
i1

[S0
kk+ ]i,i1 d̃k+m1i1(η1). (4.32)

The expressions for the eleven remaining instances of P̂σ2
kkσ

i
can be derived by analogy to

Eq. 4.32. Once all these projectors are computed, we can go back to Eqs. 4.16, 4.17 and

2.70 to finally obtain the matrix elements of the electron-field coupling operator Wkij(η, γ)

in FKS space.

To summarise, we have laid out all the steps needed to reformulate the time-dependent

real-time EOM (Eq. 2.59) into a time-independent eigenproblem (Eq. 4.11) in FKS basis

(Eq. 4.6). Crucially, our scheme is valid for extended systems since we use the Berry-phase

derived electron-field coupling operator. The latter depends on the solutions {d̃kni(η)}k,n,i,η
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and thus the eigenproblem in Eq. 4.11 must be solved self-consistently. As our Floquet re-

formulation is time-independent, it does not require expensive numerical time-integrations,

which will alleviate the computational burden. Nonetheless, we retain the main advantage

of the real-time approach, i.e., the scheme remains non-perturbative in the electric field,

allowing for the simultaneous calculation of susceptibilities to different orders in the electric

field.

4.1.4 Computational implementation

The Floquet scheme presented here involves, for each frequency ω0, a self-consistency cycle

where the eigenvectors calculated in one iteration (solving Eq. 4.11) are fed to the next

one (Eqs. 4.24 and 4.32) until convergence is reached. The condition for convergence

is based on the absolute error in the real and imaginary parts of the susceptibility to

every order requested by the user. Algorithm 4.1.4 shows the main steps in a Floquet

calculation as implemented in our code. As the real-time approach [42], our Floquet code

offers parallelisation in frequencies and k-points. Moreover, it works both in the non-

magnetic (spin unpolarised) and magnetic non-collinear (spinorial) formulations.

In general, the size of the various matrices in Algorithm 4.1.4 is determined by number

of bands in KS space, Nb, and the total number of Floquet modes, (2ηmax+1). For instance,

the matrices P̂±
kkσ

i
, Wk and Kk are of dimension Nb × (2ηmax + 1), which would amount to

40 in a SHG calculation (ηmax = 2) of a system with 8 bands. We note that the number

of k-points in the system does not enter in the size of the matrices. Instead, it determines

the number of matrices, e.g., there is one Kk eigenproblem per IBZ k-point. In the case

of the projector, P̂±
kkσ

i
, the number of matrices scales with the pairs of adjacent k-points.

Finally, the dimension of the overlap matrices, Skkσ
i
, is given by the number of occupied

bands, M . The number of said matrices is determined by the pairs of adjacent k-points

times the magnitude (2× 2ηmax + 1), which arises from subtraction of Floquet modes (see

step between Eqs. 4.23-4.24).
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Algorithm 1 Workflow of a Floquet calculation as implemented in this work. A simplified
convergence condition is shown for clarity, while the code checks both real and imaginary
parts of the susceptibilities to every order requested by the user. The subscript it refers to
the iteration number while thr denotes an accuracy threshold specified by the user.

for ω in frequency range do

while self-consistency not reached do

for k-point in IBZ do

invert overlap matrices Skkσ
i
(Eqs. 4.24-4.26)

compute projectors P̂±
kkσ

i
(Eq. 4.32)

build Wkij(η, γ) matrix elements (Eqs. 2.71,4.16,4.17)

build Kkij (η, γ) matrix elements (Eq. 4.12)

diagonalise Kkij (η, γ)

end for

calculate Polarisation Pα (Eq. 2.75)

extract susceptibilities χ(n) (Eq. 2.76,2.77)

if ( Im(χ
(n)
it − χ

(n)
it−1 ) < thr) then

break while loop at ω

end if

end while

end for

One of the challenges met during this implementation concerns the inversion of the

overlap matrix Skk+ , which is required to obtain the coefficients [D̃kk+ ]m1,m(η
′
2) as defined

in Eq. 4.26. To this end, two strategies were implemented and compared. The first one

would entail avoiding the time domain entirely and remaining in Floquet space, i.e., one

could obtain the coefficients [D̃kk+ ]m1,m(η
′
2) (see Eq. 4.26) directly from the coefficients

[S̃kk+ ]m1,m(η
′
2) (see Eq. 4.25). This is indeed possible for scalar functions [138] and was

extended to matrices as part of this work. The alternative option is to trivially go to the time

domain evaluating Eq. 4.25 for several sample times ti, invert the matrices [Skk+ ]m1,m(ti)

numerically at each ti, and Fourier transform the resulting [S−1
kk+ ]m1,m(ti) back to Floquet

space, i.e., solve Eq. 4.26 for [D̃kk+ ]m1,m(η
′
2). This numerical inversion in time domain
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resulted both more robust and less time-consuming than the approach based on Duffin’s

theorems [138].

The calculation of the polarisation via Eq. 2.75 proved to be another obstacle in our

implementation. As before, the problem originates from the fact that what is available to us

are the Floquet coefficients of each overlap matrix, [S̃kk+ ]m1,m(η
′
2), rather than the matrix

itself, [Skk+ ]m1,m. Inserting Eq. 4.25 into Eq. 2.75, we see that we would need to calculate

the logarithm of a sum, which should be linearised by expanding it into a logarithmic series

if the η′2 = 0 term dominates. While this does indeed lead to a manageable set of equations

to solve, it would turn our scheme into a perturbative one, thus losing one of the great

advantages of the real-time approach. In fact, the issue of what order in this perturbative

expansion corresponds to which order of the response in the electric field does not seem to

be a trivial one. As before, the alternative is to switch to the time domain, i.e., evaluate

Eq. 4.25 for a handful of sample times ti, calculate the polarisation at each ti with Eq. 2.75

and proceed with the usual steps in Eq. 2.77 to extract the required susceptibilities.

This resembles the usual choice one has in systems with translational invariance of going

back and forth from real to reciprocal space to calculate whatever operator is simpler in

either basis. By analogy, we can switch to time domain to perform a series of operations and

then Fourier transform back to Floquet space. It is key to understand that transforming to

the time domain does not necessarily imply the long simulated times and short time steps

(i.e., tens of thousands of sample times) characteristic of the real-time approach to nonlinear

optics. Rather, the assumed time periodicity means that one just needs to calculate the

observables across one time period only. Moreover, the number of time steps required

within that period is very limited as it corresponds to the total number of Floquet modes

one needs for [D̃kk+ ]m1,m(η
′
2), which happens to be (2× 2ηmax + 1), i.e., ηSmax = 2ηmax.
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4.1.5 Dissipation effects

The inclusion of dissipation effects in the context of periodically-driven systems has been

previously accomplished by adding an imaginary diagonal matrix to the quasi-energy op-

erator [106]. In this work, we propose introducing these effects via a phenomenological

dissipation term we define as,

i Γ
(1)
kij(η, γ) ≡ i ν1 (1− δγ,0) δi,jδη,γ , (4.33)

where ν1 is a positive real number that provides the broadening to the spectra. The factor

(1− δγ,0), denoted by the subscript 1 or superscript (1), ensures that processes to all orders

are damped to the same extent and will be further discussed in Section 5.1.3. Including

the dissipation term into the quasi-energy operator of Eq. 4.12,

KIPA
kij (η, γ) =

(
EIPA

kj − γω0 − iν1 (1− δγ,0)
)
δi,jδη,γ +Wkij (η, γ) , (4.34)

modifies the eigenproblem in Eq. 4.11 as,

+∞∑
j

+∞∑
γ=−∞

[(
EIPA

kj − γω0 − iν1 (1− δγ,0)
)
δi,jδη,γ +Wkij(η, γ)

]
d̃knj(γ) = ξkn d̃kni(η). (4.35)

This addition can be understood in terms of an adiabatic switch-on of the electric field that

happens at t→ −∞. Let us multiply the RHS of Eq. 4.6 by a real exponential of the form,

|vkn⟩ = e−iξknt

+∞∑
η=−∞

e−iηω0t

+∞∑
i

d̃kni(η) |µki⟩ eν1(1−δη,0) t, (4.36)

where the limit ν1 → 0 is implied. We then act the time derivative operator of Eq. 2.59,

−i∂t, on these newly defined time-dependent states, |vkn⟩, as done to obtain Eq. 4.9 from

Eq. 4.8. This results in adding the term −iν1 (1− δγ,0) to Eq. 4.9, thus arriving at Eq.

4.34. We now consider what this term means for the time-dependent states themselves.
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Evaluating Eq. 4.36 at t→ −∞ results in suppressing all terms with η ̸= 0,

|vkn⟩(t→ −∞) = e−iξknt

+∞∑
i

d̃kni(η = 0) |µki⟩ . (4.37)

Formally, this requires that the time-dependent states, |vkn⟩, be a superposition of KS

states, |µki⟩, when the field is introduced at t→ −∞. In practice, as we shall see in Chapter

6, the so-called central component (i = n, η = 0) of the eigenvector representing a state at k-

point k and band n departs from unity only to a negligible extent, i.e., d̃kn i=n(η = 0) ≈ 1.

Other η = 0 amplitudes, i.e., d̃kn i ̸=n(η = 0), are usually in the order of 10−5 − 10−9.

Therefore, the introduction of this dissipation term requires that, at t → −∞, a time-

dependent state, |vkn⟩, be equal to the corresponding KS state, |µkn⟩.

This damping term deals with the rich structure of avoided crossings characteristic

of Floquet quasi-energy operators, effectively removing the singularities that appear at

resonant frequencies. At the IPA level, these Floquet crossings occur whenever a multiple

of the frequency of the perturbation, ω0, matches the energy difference between two states

of the system, i.e., the unperturbed (diagonal) part of the quasi-energy operator becomes

degenerate as a function of ω0 (see Eq. 4.12).

As an example, we consider a two-state model with ηmax = 1. Let us focus on the

crossing shown on the left side of Fig 4.1 between the zeroth mode of the valence state and

the first positive mode of the conduction state, i.e., (v, 0) and (c,+1), respectively. This

crossing occurs when the frequency of the perturbation, ω0, matches the energy difference

between the states, Ec − Ev ≡ ωres. In the absence of any coupling between these modes,

i.e., Wij(η, γ) = 0, the quasi-energy operator is diagonal and the eigenvectors are just the

canonical vectors in the basis of choice (see top vector in Fig. 4.1). This means that the

time-dependent state is simply the static (zeroth mode) valence state of the basis set, i.e.,

d̃kvi=v(η = 0) = 1. The introduction of the electron-field coupling operator would imply

non-zero off-diagonal matrix elements coupling the two modes in question. Even couplings

in the order of (Ec − Ev) × 10−10 would result in an unreasonably high mixing of these
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Figure 4.1: Left: representation of a Floquet crossing between the zeroth mode of the
valence band and the first positive mode of the conduction band, which happens when
the frequency of the perturbation, ω0, matches the energy difference between the states,
Ec − Ev. Right: colour-coded representation of a Floquet eigenvector d̃kvi(η) in a system
with two-bands and ηmax = 1. The left (right) side of each vector represents projections
over the valence (conduction) state, while the numbers on top of the first vector indicate the
Floquet mode η. Each square represents a component (or amplitude) within the eigenvec-

tor, e.g., d̃kvv(0) is the so-called central component while d̃kvc(+1) represents the coupling
component. The three eigenvectors shown correspond to different situations regarding the
inclusion or not of the electron-field coupling operator and the dissipation effects.

states, i.e., d̃kvi=v(η = 0) ≈ d̃kvi=c(η = +1) ≈ 1√
2
(see middle vector in Fig. 4.1). Not

only this implies a far greater population inversion than expected for such a weak field,

but also, it prevents the self-consistent loop from achieving convergence since the response

function diverges. Upon including damping in the system, the imaginary contribution −iν

lifts the degeneracy between these eigenstates. This results in an eigenvector where the

projection over the zeroth mode valence state remains close to one, d̃kvi=v(η = 0) ≈ 1, and

the amplitude of the (c,+1) mode is orders of magnitude smaller, e.g., 10−3 (see bottom

vector in Fig. 4.1). As we will see in Chapter 6, this degree of coupling between the

(v, 0) and (c,+1) modes gives the correct response function for the nonlinear regime under

consideration.

In the real-time approach [42], this demotion of electrons from the conduction band back

to the valence band is achieved by the dephasing term (see Eq. 2.78). The latter prevents
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high population inversions and provides broadening to the spectra. For this reason, we

tried formulating this operator in FKS basis and including it into the eigenproblem. While

it did provide the correct broadening to the spectra, it also introduced instabilities into the

self-consistent loop and was hence discarded. We note that other possible expressions for

the dephasing operator result in imaginary contributions to the diagonal of the quasi-energy

operator when transformed to FKS basis, which is similar to the dissipation included in

Eq. 4.34.

We note that the quasi-energy matrix in Eq. 4.34 is no longer Hermitian due to the

addition of these imaginary contributions to its diagonal. Therefore, we used a diagonalisa-

tion routine suitable for non-Hermitian matrices and verified that the imaginary part of the

Floquet quasi-energies remained negligible. Finally, we also introduced a small imaginary

contribution to some KS eigenenergies (typically ν1 × 10−4) in order to avoid singularities

arising from degeneracies or crossings in the KS band structure. This applies to those eigen-

values that differ in less than, e.g., 1 × 10−7 Ha, and is only added at the zeroth Floquet

mode.

4.2 Results and discussion

The Floquet approach to nonlinear optics presented in this Chapter has been implemented

into the Yambo code [128,129] and tested with a number of well-known materials. The latter

have been studied before from an ab-initio perspective [85,139–141] and within the real-time

formalism in particular [42, 43], which makes them ideal for validating and benchmarking

our method. To this end, a systematic comparison between the real-time [42] and Floquet

approaches has been conducted, where the real-time calculations were also performed using

the Yambo code [128,129]. The starting KS wavefunctions and energies were computed with

Quantum Espresso [130] using norm-conserving pseudopotentials and the Perdew-Zunger

LDA exchange-correlation functional [51]. The calculation of optical spectra was performed

in the length gauge and within the dipole approximation.

93



AlAs h-BN MoS2

k-grids (nscf) 30× 30× 30 48× 48× 1 24× 24× 1
Bands (full,empty) 3 , 6 4 , 4 5 , 5
Band-gap correction [eV] 0.9 3.3 0.72
Broadening [eV] 0.04 0.15 0.15
Total time [fs] 118 83 85
Time step [as] 10 (2.5) 2.5 10
Floquet modes [ηmax] 2 2 2

Table 4.1: Computational details of the SHG calculations presented in Figs. 4.2-4.4. The
total time and time step have been selected through convergence tests available in Appendix
B. The time step in parentheses applies to the inset in Fig. 4.2

4.2.1 Second Harmonic Generation

In this section, we report selected SHG spectra for bulk AlAs, monolayer h-BN and mono-

layer MoS2 calculated both via the real-time and Floquet approaches (see computational

details in Table 4.1). Fig. 4.2 presents SHG spectra for bulk AlAs calculated by both

methods. The agreement between the two spectra is almost complete, despite the small

broadening deliberately used to highlight differences. The small discrepancies towards the

4 eV to 6 eV region are due to the choice of time-step in the real-time approach (see discus-

sion below) and vanish with a shorter time step (see inset in Fig. 4.2 and details in Table

4.1). Nevertheless, we consider the larger time step in Fig. 4.2 (10 as) to be well converged

for this calculation. Fig. 4.3 shows the spectra for h-BN while Fig. 4.4 presents data

for MoS2. It is apparent that the results produced by either method are indistinguishable

from one another on this scale. This close matching between our Floquet method and the

real-time approach was found across a variety of k-point grids and broadening conditions

for all three materials, extending also to the linear response regime (the full set of SHG

and linear response results is provided in Appendix B).

Both real-time and Floquet calculations were carefully converged with respect to the

relevant parameters in each case (see convergence tests in Appendix B and the resulting

parameters in Table 4.1). The Floquet approach requires convergence with respect to the

number of Floquet modes included in each calculation, i.e., ηmax as defined in Eq. 4.7. Our

tests indicate that convergence with respect to ηmax is very fast for SHG spectra, e.g., ηmax =
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Figure 4.2: Bulk AlAs SHG spectra on a 30× 30× 30 k-grid with a broadening of 0.04 eV,
calculated by the real-time (RT) approach (black line with grey filling) and our Floquet
(FL) method (pink dashed line). The intensity of the electric field is 1×106 Wcm−2. The
real-time spectrum is calculated with a 10-as time step. The inset shows a portion of the
spectrum re-calculated with a 2.5-as time step (green line), which reduces the discrepancies
found in the 4 eV to 6 eV range between the Floquet and 10-as real-time spectra.
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Figure 4.3: Monolayer h-BN SHG spectra on a 48 × 48 × 1 k-grid with a broadening of
0.15 eV, calculated by the real-time (RT) approach (black line with grey filling) and our
Floquet (FL) method (pink dashed line). The intensity of the electric field is 1×106 Wcm−2.

2 is enough to compute a well-converged SHG spectrum, even at higher intensities where

higher-order contributions should play a greater role (see convergence tests in Appendix

B). In addition, our Floquet method requires an accuracy threshold to control the self-
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Figure 4.4: Monolayer MoS2 SHG spectra on a 24 × 24 × 1 k-grid with a broadening of
0.15 eV, calculated by the real-time (RT) approach (black line with grey filling) and our
Floquet (FL) method (pink dashed line). The intensity of the electric field is 1×106 Wcm−2.

consistency loop. This threshold should be selected according to the magnitude of the

response and will impact the computational cost of our approach through the number of

iterations required. For SHG, we chose an accuracy threshold of 2.44×10−5 pmV−1, which

must be satisfied individually by both the real and imaginary parts of the second order

susceptibility. This resulted in off-resonant frequencies converging within three iterations,

while energies close to resonance took four or five iterations.

Convergence in the case of real-time calculations must be studied with respect to two

crucial parameters, the total simulated time and the time step used in the numerical inte-

gration of the EOMs. Both are system-dependent and must be subjected to convergence

tests for every material. Regarding the former parameter, failure to allow for sufficient

simulated time would result the response not being properly dephased. In this case, some

eigenmodes of the system will still be excited since the introduction of the electric field

at time zero, manifesting as oscillations in the real-time spectrum. For instance, the well

converged spectrum in Fig. 4.4 was obtained with 85 fs of total time. Fig. 4.5(a) shows

the same spectra of Fig. 4.4 alongside an underconverged spectrum calculated with a total

simulated time of 65 fs, which is evidently not enough to suppress these oscillations (see

96



blue curve in Fig. 4.5(a)).

In terms of the time step, this needs to be sufficiently small since longer steps, albeit

more efficient, will introduce unphysical features in the spectra. For instance, the well-

converged h-BN spectrum in Fig. 4.3 was obtained with a time step of 2.5 as. A portion

of this spectrum was re-calculated with a low broadening (0.04 eV) to highlight these un-

physical features and is shown in Fig. 4.5(b). While the well-converged 2.5-as spectrum

matches Floquet closely, the real-time spectrum integrated with a 10 as step (thus, four

times faster) is severely underconverged, as is apparent from the blue curve in Fig. 4.5(b).

In our experience, a steeper dispesion in the band structure of a material correlated with

faster dynamics, and therefore, the need for shorter time steps. This is in line with inter-

preting large curvatures at the extrema of the band dispersion as a small effective mass of

the electrons. Overall, real-time spectra tend to the Floquet solution upon progressively

increasing the total simulated time and decreasing the time step, as inferred from Fig. 4.5.

Summarising, the convergence with numerical parameters impacts the execution time of the

real-time approach to a larger extent with respect to the present formalism, which is not

based on explicit time integration. The computational advantage of the Floquet approach

over the real-time one is presented in Section 4.2.3.

4.2.2 Third Harmonic Generation

In this section, we report selected third harmonic generation (THG) spectra of bulk Si

calculated both via the real-time and Floquet approaches. The full set of THG results

can be found in Appendix B. Fig. 4.6 shows very good agreement between the spectra

calculated by either method. Convergence of the Floquet approach was also fast in this

case, requiring only ηmax = 3 for THG spectra. However, additional Floquet modes may be

required at higher intensities in case one wants to capture higher-order contributions to the

third order response, which are present in the real-time result. These contributions depend

on the intensity of the electric field and thus gain relevance at high intensities. In order to
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Figure 4.5: Effects of underconvergence with respect to total simulated time (a) and time
step (b). Panel (a) shows the same spectra as Fig. 4.4 plus an underconverged real-time
(RT) spectrum obtained with 65 fs of total time (blue line). The latter compares poorly
with the 85 fs required to properly dephase the system (black line with grey filling) and
approach the Floquet solution (pink dashed line). Panel (b) displays the spectra for h-BN
obtained with a well-converged time step of 2.5 as (black line with grey filling), plus an
underconverged real-time spectrum with 10 as (blue line) that fails to approach the Floquet
solution (pink dashed line). At variance with Fig. 4.3, these spectra were calculated with
a broadening of 0.04 eV to highlight the differences.

demonstrate this, we re-calculated a portion of these spectra with a perturbation of higher

intensity and compared the results in Fig. 4.7. The latter shows that ηmax = 3 suffices to

reproduce the low-intensity real-time result while additional Floquet modes (ηmax = 5) are

required at higher intensities to capture these higher-order contributions.

4.2.3 Computational cost

We compared the computational cost of the real-time and Floquet approaches across the

entire data set of SHG calculations. Our results account for a so-called Floquet speed-up of

1-2 orders of magnitude (see Fig. 4.8). This speed-up is calculated as the ratio of the CPU

time required by either approach to perform the exact same calculation (see Appendix B

for CPU time of each approach individually). Controlling the accuracy and convergence

98



0.0

0.5

1.0

1.0 1.5 2.0

Si

|χ
1

1
1

1
(3

) | 
(c

g
s
 ×

 1
0

-1
0
 )

Energy (eV)

RT

FL

Figure 4.6: Bulk Si THG spectra on a 32 × 32 × 32 k-grid with a broadening of 0.15 eV,
calculated by the real-time (RT) approach (black line with grey filling) and our Floquet
(FL) approach (pink dashed line). The intensity of the electric field is 1×106 Wcm−2. We
used 4 occupied and 3 empty bands and a band gap correction of 0.6 eV. The real-time
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Figure 4.7: Higher-order contributions to THG spectra in bulk Si on a 32 × 32 × 32 k-
grid. Spectra are calculated by both the real-time (RT) and Floquet (FL) approaches with
electric fields of two different intensities, i.e., 1×106 (a) and 1×1010 Wcm−2 (b). The
number of Floquet modes is indicated in the legend as a subscript, e.g., FL5 corresponds
to ηmax = 5. Computational details in Fig. 4.6 apply, with two exceptions. A time step
of 1 as was used to rule out underconvergence in the real-time spectrum as a reason for
the discrepancies. The total simulated times were set in excess of those required by the
convergence tests for the same reason.
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of the spectra played an important role in this comparison. As regards Floquet, we used

ηmax = 2, which is well converged, and a uniform self-consistent accuracy threshold for all

calculations. We then verified the latter was smaller than 0.1% of the real-time result we

intended to reproduce. We believe this is in line with what a regular user would do, however

we note that there would have been potential for greater speed-ups had this threshold been

fine-tuned in every calculation. As shown in Section 4.2.1, the systematic way of converging

real-time calculations implies increasing the total simulated time and decreasing the time

step, i.e., two choices that increase the associated computational cost. While this was

carefully tested for each material, we avoided overconverging these parameters as it would

have unduly penalised the real-time approach (see Appendix B for computational details,

convergence tests and all spectra in the data set).

The results in Fig. 4.8 show the influence of the real-time convergence parameters, e.g.,

the speed-up is higher in h-BN as it required the longest simulated times and shortest time

steps (2.5 as) to closely match the Floquet spectra. MoS2 shows an intermediate speed-up

since it was well converged with a 10-as time step but also needed long simulated times.

Finally, AlAs was calculated with a time step of 10 as, which is well-converged in the region

of interest despite the small discrepancies at 4 eV to 6 eV (see Fig. 4.2). While reducing the

latter with a 2.5 as time step (see Fig. 4.2) would have quadrupled the Floquet speed-up,

it would have unduly penalised the real-time approach in our view.

One parameter that is present in both methods and plays an important role in the speed-

up achieved is the broadening of the spectra. In the real-time approach, the broadening is

introduced through the dephasing term (see Eq. 2.78) and impacts its ability to filter out

excited eigenfrequencies. In general, a small broadening will require a long time to properly

dephase the system and converge the spectrum. Hence, the broadening has an inverse

impact in the computational cost of the real-time method through the total simulated time

needed. At variance, the computational cost of our Floquet approach is almost insensitive

to the broadening, which is introduced via the damping term in Eq. 4.34. It would

be expected that a smaller broadening could make convergence more difficult at some
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Figure 4.8: Computational cost comparison for SHG in the form of a CPU-time ratio
between equivalent real-time and a Floquet calculations. Hollow markers represent calcu-
lations with 0.15 eV broadening (“lb” stands for large broadening), while filled ones are for
0.04 eV runs (“sb” or small-broadening). Floquet speed-ups are larger for the latter since
the simulated times required are longer that in the former case, at the same time that
Floquet CPU times are not significantly affected by the choice of broadening.

particular (resonant) frequencies. However, while it is true that the CPU time required by

Floquet scales linearly with the average number of self-consistent iterations per frequency,

adding one or two cycles at a handful of frequencies did not impact the total CPU time

significantly. As a result, the speed-up achieved with Floquet is much larger in small-

broadening calculations. In fact, Fig. 4.8 shows two groups of points per material. Within

the data of a given material, the uppermost points correspond to small-broadening results

(0.04 eV) while the lowermost ones reflect the large-broadening calculations (0.15 eV).

We also performed comparisons on bulk Si THG spectra, which were calculated for just

one broadening (0.15 eV) but two intensities, i.e., 1×106 and 1×1010 Wcm−2 (referred to

as low and high intensity, respectively). In line with Section 4.2.2, we report high-intensity

calculations with ηmax = 5 and low-intensity runs with ηmax = 3. This results in larger

Floquet speed-ups at low intensities, as shown in Fig. 4.9. Since high-intensity spectra

require ηmax = 5, there is an increased computational cost related to the additional Floquet

modes in comparison with low-intensity calculations, for which ηmax = 3 is well converged
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number of Floquet modes used is denoted by a subscript in the legend, e.g., FL5 means
ηmax = 5.

(see Appendix B for convergence tests). Nonetheless, the computational advantage offered

by Floquet becomes clear close to convergence with respect to k-point sampling (see Fig.

4.9), regardless of the intensity. We point out that, with a broadening of 0.04 eV, the

low-intensity speed-up for an 8×8×8 k-grid was 15.1 (not shown in Fig. 4.9). This allows

us to reliably estimate a speed-up of around 146 for a 32×32×32 k-grid. Hence, at low

intensities where ηmax = 3 is well converged, the speed-ups obtained for bulk Si THG

spectra are comparable to those achieved for bulk AlAs SHG spectra.

The drop in Floquet speed-ups at high intensities, i.e., when including higher harmonics

to capture higher-order processes, points to a poor scaling of our method with respect to the

number of Floquet modes. This is because each additional mode enlarges the dimension

of the quasi-energy matrices by 2Nb, which in turns impacts the time required for their

diagonalisation (see near-quadratic scaling in Appendix B). At the other end of the scale,

linear response calculations are much more efficient with the present Floquet formalism

than with the real-time approach. This is because the Floquet matrices are very small

(of dimension 3Nb) and convergence very fast (typically 2 self-consistent iterations are
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sufficient for linear response). However, first-order Floquet is still more expensive than the

usual frequency-domain response-based approach and the latter remains the best option in

the linear response regime, at least at the independent particle level.

One of the main contributions to the computational cost in our scheme is the diagonali-

sation of the quasi-energy matrices. For this particular task, we use the QR algorithm (i.e.,

‘full’ diagonalisation). There is room for improvement in this diagonalisation since the ma-

trices are of dimension Nb×(2ηmax+1) but onlyM eigenvectors are needed (i.e., the number

of occupied bands, which is a fraction of Nb). In the cases considered here, M represents

between 5 and 10% of the dimension of the corresponding matrices. This opens the possi-

bility of exploring more efficient eigensolvers (e.g., those in the SLEPc library [142]) such

as Krylov subspace methods [143] or even variational approaches [125–127], which would

further improve the performance of our Floquet method. Moreover, this would reduce the

scaling of the computational cost with the number of Floquet modes.

Finally, we note that the scaling with the number of atoms is near cubic both for the real-

time and the Floquet approaches (the exponents are 3.1 and 2.8, respectively). However,

the pre-factor of this scaling resulted 17 times higher in the former. We therefore conclude

that the speed-up attained by the Floquet approach respect to the real-time will also be

present (in fact, greater) in systems with large number of atoms. These scaling tests are

presented in Appendix B.

4.2.4 Limitations

The limitations of the Floquet approach proposed in this Chapter are mainly related to the

requirement of time-periodicity in the Hamiltonian. First and foremost, this framework can

only apply to continuous and monochromatic perturbations. Otherwise, the basic condi-

tions for the application of Floquet’s theorem would not be present. For instance, modelling

pump-and-probe experiments is beyond what one can do with the present formalism, and

falls within the broader capabilities of the real-time approach. Second, we use the adia-
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batic approximation in order to ensure the periodicity of the effective Hamiltonian of our

method, since the Berry-phase electron-field coupling operator depends self-consistently on

the solution of the quasi-energy eigenproblem. This limits the validity of the approach to

weak field intensities. We quantified this limit for the case of h-BN, in which signatures

of non-adiabaticity started to appear at intensities of 1 × 1012 Wcm−2 (see Section 6.5).

However, the intensity at which this transition occurs is likely system-dependent and care

should be taken when using our approach in this regime and beyond. In particular, we be-

lieve our method is not well-suited for the extreme nonlinear regime, where non-adiabaticity

is expected to play an important role.
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Chapter 5

Floquet approach to nonlinear optics

beyond IPA level

We extend the Floquet formalism of Chapter 4 beyond the IPA level by implementing the
Hartree potential and the screened-exchange self-energy into the quasi-energy eigenproblem.
Only a handful of results could be achieved at this level of theory, since the Floquet self-
consistent cycle presented instabilities and proved much harder to converge than in the IPA
case. Strategies for mitigating these divergencies such as the use of Kerker mixing schemes
and Padé approximants are discussed.

As explained in Section 2.3.2, one of the advantages of the real-time approach is its flexibility

for the inclusion of many-body effects, i.e., they can be easily taken into account by adding

the corresponding terms to the Hamiltonian in Eq. 2.61. Formally, our Floquet scheme

retains this advantage. One has to take the relevant operators, i.e., the Hartree potential

and the screened-exchange self-energy, find their matrix elements in FKS space and add

them to the quasi-energy operator to be diagonalised. However, in practice, these extra

terms bring instabilities into the self-consistent loop, affecting its convergence and leading

to divergencies in the response functions. We will describe the implementation of these

operators into the quasi-energy eigenproblem in Section 5.1, alongside two strategies to

mitigate the instabilities found beyond the IPA level, i.e., Kerker preconditioning [144]

and Padé approximants [145]. In Section 5.2, we present some preliminary results that
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exemplify these convergence issues and assess the usefulness of said strategies.

5.1 Implementation

The effective Hamiltonian for the real-time approach to nonlinear optics with many-body

effects has the form in Eq. 2.66, which we repeat here for clarity,

Ĥeff =

ĤIPA,0︷ ︸︸ ︷
ĤKS[ρ0] + ∆̂QP[ϱ0] +V̂

H [ρ] + Σ̂SEX[ϱ]︸ ︷︷ ︸
ĤMB,0

+Ŵ (E), (5.1)

where the added terms respect to Eq. 2.61 are the Hartree potential, V̂ H [ρ], and the

screened-exchange self-energy Σ̂SEX[ϱ]. The time dependence of these magnitudes is given

by their functional dependence on the density, ρ, and density matrix, ϱ, respectively. This

marks a difference respect to the IPA case, where Ŵ (E) was the only time-dependent

operator (as explained in Section 2.3.2, Ĥ IPA,0 is time-independent as it only depends on

ground-state quantities).

5.1.1 Hartree potential

The first step beyond the IPA level consists on including the Hartree potential in the Hamil-

tonian (see Eq. 5.1). We refer to this level of theory as TDH in accordance with Section

2.3.2 and note it reduces to the RPA in the linear response limit [43]. This contribution rep-

resents a local and time-dependent potential, which is simply the Coulomb potential arising

from the electron density at a given point in space and time. As such, it can be obtained

in G-space as a linear functional of the electron density derived from the Poisson equation

(see Eq. 2.65). This functional is local in space and time and will thus be time-periodic

provided the density also presents time-periodicity. The latter is ensured by the adiabatic

approximation introduced in Eq. 4.3 (see below for details). It is worth mentioning that

the Hartree potential depends on the solution of the quasi-energy eigenproblem through
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the electron density and will thus require self-consistency (which was already the case at

the IPA level due to the electron-field coupling operator).

Ultimately, we need to find the matrix elements of the Hartree potential in FKS space,

V H
kij(η, γ). Since some of the operations required for this will be performed in the time

domain, we will start by calculating the time-dependent KS states in phase space, vkn(x, t).

Projecting Eq. 4.6 over ⟨x|, one obtains,

vkn(x, t) = e−iξknt

+∞∑
η=−∞

e−iηω0t

+∞∑
i

d̃kni(η) µki(x). (5.2)

In practice, the KS time-zero, zero-field states are available in a real-space grid from the

DFT calculation, i.e., µki(xR), where xR represents a point in such grid. Using the eigen-

vectors from a previous iteration, {d̃kni(η)}, we compute the sum over Floquet modes in

Eq. 5.2 and arrive at a phase-space equivalent of Eq. 4.4,

vkn(xR, t) = e−iξknt

+∞∑
i

dkni(t) µki(xR). (5.3)

We evaluate this expression for a handful of sample times ts within one period and obtain

the time-dependent KS bands in a real-space grid at each time step, vkn(xR, ts). With this,

we can evaluate the electron density at each time ts in the same real-space grid,

ρ(xR, ts) =
∑
k

M∑
n

|vkn(xR, ts)|2, (5.4)

where the index n runs over the occupied bands only. The quasi-energy exponentials in Eq.

5.3 cancel out in Eq. 5.4, leading to a time-periodic density, which in turns imply a time-

periodic Hartree potential and ultimately ensures that the Hamiltonian remains periodic

at the TDH level. This is the intended effect of the adiabatic approximation introduced in

Eq. 4.3. If Eq. 5.4 contained a sum over time-dependent Floquet states as in Eq. 4.2, it

would give rise to exponentials of the form e−i(ξα1−ξα2 )t, which would not be commensurate

with the frequency of the perturbation, ω0, and therefore render the density non-periodic.
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Such a term in the Hamiltonian would make it impossible to eliminate the time variable

from the EOMs and prevent us from arriving at a time-independent eigenproblem as in Eq.

4.11.

As mentioned in Section 2.3.2, the time-zero Hartree potential is already included in

the exchange-correlation potential from the DFT ground state. This means the term V H [ρ]

we add to Eq. 5.1 in TDH should be the difference with respect to that DFT Hartree

potential. In order to do so, we subtract the reference density from the result of Eq.

5.4. The reference (ground-state) density is simply obtained with the time-zero, zero-field

KS wavefunctions, i.e., ρ0(xR) =
∑

k

∑M
n |µkn(xR)|2. We can define the subtraction as

ρ∆(xR, ts) ≡ ρ(xR, ts)−ρ0(xR) and use it thereafter. This exploits the fact that the Hartree

potential is linear in the density.

Having the density ρ∆(xR, ts) in real space, we can use a Fast Fourier Transform (FFT)

routine to transform it to G-space for each time ts, i.e., ρ∆(G, ts). With this, we can

calculate the Hartree potential in G-space as (cf. 2.65),

V H(G, ts) = ρ∆(G, ts)
4π

|G|2
, (5.5)

where the G = 0 term is omitted for the reasons presented in Section 2.2.1. Then, using

FFT routines we can obtain the Hartree potential in a real-space grid V H(xR, ts) at each

time ts and proceed to calculate the matrix elements in KS space,

V H
kij(ts) ≡ ⟨µki|V̂ H(ts)|µkj⟩ =

grid∑
xR

µ∗
ki(xR) V

H(xR, ts) µkj(xR). (5.6)

Given that each matrix element V H
kij(ts) is individually a periodic function of time, we can

find the corresponding Floquet coefficients from,

V H
kij(ts) =

+∞∑
ζ=−∞

e−iω0ζts Ṽ H
kij(ζ). (5.7)
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With this, we have available all the quantities required to calculate the matrix elements of

the Hartree potential in FKS space, V H
kij(η, γ). Analogously to Eqs. 4.14 and 4.15, we do

V H
kij(η, γ) =

∫
dt e+iω0ηt

+∞∑
ζ=−∞

e−iω0ζt e−iω0γt Ṽ H
kij(ζ), (5.8)

V H
kij(η, γ) =

+∞∑
ζ=−∞

δζ,η−γ Ṽ
H
kij(ζ), (5.9)

V H
kij(η, γ) = Ṽ H

kij(η − γ). (5.10)

As a result of the Hartree potential being time dependent, its matrix elements in FKS basis

couple different Floquet modes with one another. Finally, the quasi-energy eigenproblem

for the TDH case would be obtained by simply adding this term to the IPA eigenproblem

(see Eq. 4.11), resulting in,

+∞∑
j

+∞∑
γ=−∞

KTDH
kij (η, γ) d̃knj(γ) = ξkn d̃kni(η), (5.11)

with

KTDH
kij (η, γ) =

(
EIPA

kj − γω0 − iν1 (1− δγ,0)
)
δi,jδη,γ +Wkij(η, γ) + V H

kij(η, γ). (5.12)

As anticipated, part of this procedure was performed in the time domain, which required to

transform the Floquet eigenvectors to time (Eq. 5.2) and transform the Hartree potential

back to Floquet space (Eq. 5.7). We could have chosen to remain in Floquet space and

dispense with the time domain completely. Both alternatives were implemented in our

code and tested, showing a consistent computational advantage in favour of using the

time domain. Therefore, we used the time-domain route for the calculation of the Hartree

potential in FKS space.
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5.1.2 Mixing schemes and Kerker preconditioning

As will be shown in Section 5.2.1, the introduction of the Hartree potential alone is usually

enough to result in the above mentioned convergence issues. This is expected as small

changes in the density from one iteration to the next one are amplified into big variations

in the potential by long-wavelength (small G) terms in Eq. 5.5, which may be a source of

these instabilities. This problem shares some features with DFT schemes, i.e., both entail a

self-consistent eigenproblem where a term in the Hamiltonian has a functional dependence

on the density (our Floquet formulation is not variational, otherwise the similarity would

be greater). For this reason, a mixing scheme was proposed to improve the performance of

our code. We started with a linear mixing scheme for the density at each time step, ts,

ρ
(it+1)
In (x, ts) = β ρ

(it)
Out(x, ts) + (1− β) ρ

(it)
In (x, ts), (5.13)

where ρIn is the density used to construct the Hartree potential of the Hamiltonian at a

given iteration and ρOut is the density calculated with the wavefunctions obtained after

diagonalisation of the quasi-energy operator. However, our tests indicate that this mixing

scheme has limited impact in the stability of our code. We also tried mixing other quantities

like the Floquet eigenvectors or the Hartree potential, but without success. We note that

a linear mixing of the Hartree potential is equivalent to Eq. 5.13, since V H is obtained

through a series of operations that are linear on the density (the same applies to mixing

ρ or ρ∆). A double self-consistency loop was also considered, where the outer loop would

update the density every time the inner loop converged for a given Hartree potential. We

highlight that the first iteration of the outer loop represented an IPA-level calculation.

Nevertheless, this showed no improvement in the stability of the code.

We also implemented a Kerker preconditioning method [144]. This represents a G-

dependent mixing where the long-wavelength components of the Hartree potential are

heavily mixed (i.e., remain almost at their ground-state value) while highly localised con-

tributions are mixed to a lesser extent (i.e., they are free to change considerably from one
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iteration to the next one). This Kerker preconditioning implies solving [144],

V H (it+1)
(G, ts) =

(
ρ∆

(it)
(G, ts) +

λ2

4π
V H (it)

(G, ts)

)
4π

|G|2 + λ2
, (5.14)

which effectively introduces a screening length of 2π
λ
. In essence, this formulation defines

a sphere beyond which the effects of the Hartree potential are considered to be long-range

and therefore screened. Hence, only contributions within that sphere are taken into account

(i.e., local field effects). This is achieved by Eq. 5.14, which approximates Eq. 5.5 in the

λ≪ |G| case,

V H (it+1)
(G, ts) ≈ ρ∆

(it)
(G, ts)

4π

|G|2
. (5.15)

In other words, for wavelengths shorter than the screening length (inside the sphere), the

corresponding high-|G| components of the Hartree potential are simply generated from

the output density of the previous iteration. This means that the information of these

components at a given iteration is not carried over to the next one, i.e., mixing is minimal

and the high-|G| contributions to the potential vary greatly throughout the iterations. At

variance, for wavelengths larger than the screening length (|G| ≪ λ), Eq. 5.14 reduces to

V H (it+1)
(G, ts) ≈ V H (it)

(G, ts) + ρ∆
(it)

(G, ts)
4π

λ2
. (5.16)

As shown in Eq. 5.16, the long-range (small-|G|) contributions to the Hartree potential

are heavily mixed with their values from previous iterations, thus remaining close to their

ground-state value calculated at the DFT level. While this strategy improves the stability

of the self-consistency cycle, one must carefully verify that all relevant local field effects are

captured and that what is left outside the sphere does not affect the response significantly.

5.1.3 Padé approximant

Our experience with the proposed Floquet approach indicates that, as a general trend,

increasing the broadening of a calculation brings stability into the Floquet self-consistent
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loop. However, beyond IPA, the broadening required to achieve convergence at resonant

frequencies is usually much too large. As explained in Section 4.1.5, the broadening in the

spectra we calculate is a result of introducing dissipation effects into the electronic problem

in a phenomenological way. Therefore, this parameter should be chosen on physical grounds

and cannot take any value. For instance, 1-4 eV would probably overestimate the effect of

the environment on the electrons, thus failing to reproduce the dynamics of open systems.

Usually, we choose broadening values below 0.2 eV in order to match experimental spectra

obtained at low temperatures. While a broadening in the region 0.25-0.5 eV would not be

unreasonable from a physical point of view, it normally results in very broad spectra where

features are difficult to pick apart.

The overall impact of the dissipation term (Eq. 4.33) in the response function can

be understood as an imaginary contribution to the frequency, i.e., ω̃ ≡ ω + iν1. This is

common practice when dealing with the pole structure of perturbative expressions obtained

for response functions (e.g., 2.38). Mathematically, any response function χ(ω) is complex-

valued function R → C with poles at resonant frequencies ω ≡ ωres. Let us then consider the

introduction of broadening as an analytical continuation of this function into the complex

plane, χ(ω̃) : C → C. The imaginary part of the frequency would then shift the poles away

from the real axis and circumvent the associated singularities. In this context, one can

think of solving the Floquet eigenproblem with a large broadening and using an analytical

continuation procedure to shift the poles back to a desired value of broadening. This would

benefit from the stability gained by using a large broadening at the same time as turning

the resulting broad spectrum into a useful one.

We implemented this strategy making use of Padé approximants [145]. The latter

have been employed in several areas of electronic structure, e.g., they can be applied to

Green‘s functions [146], the screened Coulomb potential [147] or absorption spectra of

molecules [148]. In particular, we will use an N -point Padé approximant to obtain a

response function χPadé(ω̃TB), where the complex frequency, ω̃TB ≡ ω + iνTB, contains the

desired or target broadening (TB), e.g., νTB = 0.15 eV. We start with a collection of N
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points belonging to a spectrum calculated via the Floquet approach using a large broadening

(LB), χLB(ω̃LB). The argument of this broadened response function is a complex number,

ω̃LB ≡ ω + iνLB, in which ω represents the frequencies for which the Floquet approach

was solved and νLB is the deliberately large broadening used to facilitate convergence, e.g.,

νLB = 0.4 eV. With this data, we can construct the auxiliary functions [145],

g0(z) = χLB(z), (5.17)

gp(z) =
gp−1(ω̃

LB
p−1) − gp−1(z)

(z − ω̃LB
p−1) − gp−1(z)

, (5.18)

where z is any number in the complex plane and the index p runs over the N data points

of χLB. Evaluating these functions at the frequencies of the broad spectrum we obtain the

a coefficients,

ap ≡ gp(z = ω̃LB
p ). (5.19)

With these coefficients, we construct a set of recursive formulas [145],

Ap+1

Bp+1

=
Ap + (z − ω̃LB

p ) ap+1 Ap−1

Bp + (z − ω̃LB
p ) ap+1 Bp−1

, (5.20)

A−1 = 0, A0 = a0, B−1 = 1, B0 = 1. (5.21)

We can then compute these recursive relations for any complex number, z, in order to

obtain the N th-order Padé approximant, AN

BN
, evaluated at that point, z, in the complex

plane. In particular, we are interested in calculating the approximants at or close to the

real axis, e.g., at the complex frequencies with the target broadening we defined above,

χPadé(ω̃TB) ≡ AN

BN

(z = ω̃TB), (5.22)

thus obtaining an approximation to the response function with the desired broadening, e.g.,

νTB = 0.15 eV. In practice, we enforce some relations within our initial data set, χLB(ω̃LB),
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in order to enhance the numerical accuracy of the method,

χ(ω̃∗) = χ∗(ω̃), (5.23)

χ(−ω̃) = χ∗(ω̃), (5.24)

where the LB superscript was omitted for simplicity. Eqs. 5.23 and 5.24 come from the pole

structure of the susceptibility and the Kramers-Kronig relations, respectively [10, 148]. As

we have quadrupled the number of initial data points, we will obtain a Padé approximant

of order 4N .

While this approach works well for first order response functions (see Section 5.2.2 or

Ref. [148]), second order susceptibilities present some issues. In particular, second order

processes appear underdamped if the Padé approximant is calculated as described above,

even showing divergencies in some cases (see Section 5.2.2). In terms of Floquet crossings

(see Fig. 4.1), second order processes arise from couplings between zeroth and second

Floquet modes, therefore involving Floquet modes higher than η = 1. All these arguments

point to the dissipation term in Eq. 4.33, which does not show a proportionality with η.

At variance, one could propose an η-dependent dissipation term in analogy with Eq. 4.33,

i Γ
(η)
kij(η, γ) ≡ i νη |γ| δi,jδη,γ , (5.25)

which will dampen second order processes twice as much as first order processes. We

believe the dissipation term as defined in Chapter 4 (Eq. 4.33) is correct for the Floquet

implementation proposed in this thesis. However, an η-dependent dissipation term may be

more appropriate for the purpose of an analytic continuation. In perturbative expressions

of second order response functions, one usually encounters the factor 1
∆E−2ω

associated to

second order processes. It is clear that an analytic continuation of this factor would result

in a damping term that goes as i2ν, which is what we try to reproduce when introducing the

η-dependent dissipation term. If we want the second order susceptibility χ(LB) produced
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by our Floquet code to be an analytic continuation of a second order response function,

then surely processes associated with 2ω should be damped twice as much as first order

processes.

After testing a few possibilities (see results in Section 5.2.2), we arrived at the conclusion

that both dissipation terms were required when solving the Floquet approach to calculate

χ(LB), i.e., with the intention of analytically continuating the resulting response function.

This entails diagonalising the quasi-energy operator with two dissipation terms,

KTDH
kij (η, γ) =

(
EIPA

kj − γω0 − iν1 (1− δγ,0)− iνη|γ|
)
δi,jδη,γ+Wkij (η, γ)+V

H
kij(η, γ). (5.26)

In particular, we obtained the best Padé approximants when we associated ν1 with the

target broadening of the Padé approximant. This leaves the η-dependent broadening linked

to the part of the broadening that should vanish after the analytic continuation procedure.

This implies solving the Floquet approach with the conditions,

ν1 = νTB

νη = νLB − νTB

(5.27)

which can be understood as the poles being permanently shifted above the real axis to the

desired broadening. Then, the additional broadening introduced to help convergence of the

Floquet self-consistent loop will be effectively removed when analytically continuating from

νLB to νTB.

5.1.4 Screened-exchange self-energy

As discussed in Section 2.3.2, adding the screened-exchange self-energy (Eq. 2.68) to the

Hamiltonian in the EOM of the real-time approach (Eq. 2.59) allows for a description of

many-body effects at the H+SEX level of theory. In the Floquet formalism, this implies

including the self-energy operator in the quasi-energy eigenproblem, for which we need

to obtain its matrix elements in FKS space, ΣSEX
kij (η, γ). Using a similar strategy as for
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the Hartree potential, part of this operation can be performed in the time domain. This

implies computing the density matrix at a handful of time steps within one period, ϱ(ts),

and evaluating Eqs. 2.68-2.69 to obtain the corresponding self-energy in KS space, ΣSEX
kij (ts).

Once this quantity is known in the time domain, it can be then transformed back to Floquet

space by finding its Fourier coefficients,

ΣSEX
kij (ts) =

+∞∑
ζ=−∞

e−iω0ζt Σ̃SEX
kij (ζ). (5.28)

Next, we proceed in analogy with Eqs. 5.8-5.10 and obtain the matrix elements of the

self-energy in FKS space,

ΣSEX
kij (η, γ) =

∫
dt e+iω0ηt

+∞∑
ζ=−∞

e−iω0ζt e−iω0γt Σ̃SEX
kij (ζ), (5.29)

ΣSEX
kij (η, γ) =

+∞∑
ζ=−∞

δζ,η−γ Σ̃SEX
kij (ζ), (5.30)

ΣSEX
kij (η, γ) = Σ̃SEX

kij (η − γ). (5.31)

With this, we can finally formulate the Floquet quasi-energy eigenproblem at the H+SEX

level,
+∞∑
j

+∞∑
γ=−∞

KH+SEX
kij (η, γ) d̃knj(γ) = ξkn d̃kni(η), (5.32)

with

KH+SEX
kij (η, γ) =

(
EIPA

kj − γω0 − iν1 (1− δγ,0)
)
δi,jδη,γ +Wkij(η, γ) + V H

kij(η, γ) +ΣSEX
kij (η, γ).

(5.33)
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5.2 Results from current implementation

As anticipated, our Floquet implementation faces convergence issues in the self-consistency

cycle beyond the IPA level. Tests were carried out at the TDH and H+SEX levels of

theory on the same materials as in Chapter 4, i.e., bulk AlAs, 2D h-BN and 2D MoS2.

Every calculation performed at the H+SEX level showed instabilities and divergencies in

the response function. These issues are less severe at the TDH level, as suggested by cases

where divergencies occurred only at particular features in the spectra, leaving some energy

ranges free from instabilities. While no general solution to these problems could be found

yet, there are nonetheless a handful of results where convergence has been achieved across

an entire spectrum at the TDH level, both for h-BN and MoS2. These results are all

particular cases where the specifics of each calculation helped or allowed for convergence.

5.2.1 Time-dependent Hartree with Kerker preconditioning

As mentioned above, there is a general trend whereby a larger broadening increases the

stability of the calculations. However, the minimum broadening required to converge h-BN

at the TDH level was 0.4 eV, which is hardly a useful result on its own (see Section 5.2.2).

Moreover, for MoS2, some frequencies would still present instabilities at 1.0 eV. This means

that none of the cases studied at the IPA level (0.04 and 0.15 eV, labelled small and large

broadening in Chapter 4) achieved convergence upon inclusion of the Hartree potential.

A possible strategy to help mitigate these divergencies consists on using the Kerker

preconditioning scheme, which was introduced in Section 5.1. The latter added stability

to the system and allowed us to obtain a handful of fully converged calculations. These

results were achieved with 0.15 eV in the case of h-BN while MoS2 required an even greater

0.2 eV. None of them would converge in the small broadening case (0.04 eV) despite

using the preconditioning. All calculations presented in this Chapter were performed on a

coarse 6×6×1 k-grid for simplicity, given that tests carried out on denser k-grids showed

no improvement in terms of their stability.

117



Fig. 5.1 presents absorption and SHG spectra for h-BN with varying strengths of the

Kerker preconditioning. This shows how decreasing the screening length of the precondi-

tioning improved the stability of the Floquet self-consistency loop until all frequencies were

converged (see right panel in Fig. 5.1). Moreover, the converged result obtained with the

smallest screening length is indistinguishable from the real-time TDH solution at this scale.

Calculations on MoS2 could also be converged with a sufficiently small screening length

for the preconditioning, as shown in Fig. 5.2. However, in this case, the Floquet solution

deviated from the spectrum obtained with the real-time approach.
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Figure 5.1: Absorption (top row) and SHG (bottom row) spectra of 2D h-BN (0.15 eV of
broadening) at the TDH level with decreasing screening lengths for the Kerker precondi-
tioning. Left: 2π

λ
= 3.5 Å, 3.4 % divergent frequencies. Centre: 2π

λ
= 2.6 Å, 1.8 % divergent

frequencies. Right: 2π
λ

= 1.9 Å, 0 % divergent frequencies. In the legend, RT and FL
indicate results were obtained via the real-time and Floquet approaches, respectively, while
IPA and TDH represent the levels of theory.

The reason why h-BN converged to the correct TDH spectrum while MoS2 deviated from

it simply relates to the screening length used in each case, i.e., h-BN achieved convergence

with 1.9 Å while MoS2 required a much lower 0.8 Å. In fact, we can recognise there is an

important trade-off between stability and accuracy when using the Kerker preconditioning.
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Figure 5.2: Absorption (top row) and SHG (bottom row) spectra of 2D MoS2 (0.2 eV of
broadening) at the TDH level with decreasing screening lengths for the Kerker precondi-
tioning. Left: 2π

λ
= 3.0 Å, 8% divergent frequencies. Centre: 2π

λ
= 1.7 Å, 5 % divergent

frequencies. Right: 2π
λ
= 0.8 Å, 0 % divergent frequencies.

As the screening length of the preconditioning is decreased, the system gains stability but,

at the same time, a growing number of contributions to the Hartree potential are neglected

(contributions of decreasing wavelength). There are two milestones in this progression,

one consists on gaining enough stability so as to converge the self-consistent loop for every

frequency in the spectrum. The second milestone implies reaching the wavelength where

relevant local-field effects start being neglected, thus altering the resulting spectra. In other

words, since the Hartree potential is meant to represent the physics of local fields, screening

its long-range contributions should not affect the result. However, if the screening length

required to ensure stability is too small, then part of those local field effects are lost and the

result will naturally deviate from the correct real-time solution. If the stability milestone

happens before the second one is reached, one can successfully calculate spectra with the

Kerker preconditioning as in the case of h-BN (Fig. 5.1). At variance, MoS2 (Fig. 5.2)

represents a case where the opposite happens and the Kerker preconditioning does not
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provide a satisfactory result when computing SHG with our Floquet method.

Figure 5.3: Floquet-calculated SHG spectra of MoS2 (0.2 eV of broadening) at TDH level
with various screening lengths showing the TDH-to-IPA transition. Both panels present
data from the same set of calculations, showing different energy regions and scales. The
dashed pink line is the Floquet result obtained with 2π

λ
= 0.8 Å (same as in bottom-

right panel of Fig. 5.2). Curves in different tones of green were obtained with smaller
screening lengths, thus tending to the IPA solution. Data in different tones of brown/beige
correspond to larger screening lengths. These spectra tend to the RT-TDH solution but
become unstable before reaching it (e.g., brown dots). The screening length of every curve
is shown in the key of the right panel.

In order to better illustrate this trade-off, we re-calculated the response of MoS2 with a

greater range of screening lengths and focused on specific portions of the SHG spectrum,

i.e., those where the difference between IPA and TDH is large (see Fig. 5.3). As shown

with brown dots in Fig 5.3, the largest screening length is the closest result to the real-

time TDH spectrum, however it presents some divergent frequencies. As the screening

length is reduced, the spectrum starts to deviate from the TDH solution, which we show in

different tones of brown/beige. Further into this progression, convergence is achieved for

all frequencies in the spectrum. At this point, we obtain the dashed pink line (same result

as in Fig. 5.2), which already deviates from the TDH solution. If we keep on decreasing

the screening length, the solution continues to deviate from the correct result and tends to

the IPA solution (see different tones of green in Fig. 5.3). Finally, the Floquet solution

becomes almost indistinguishable from the IPA spectrum for the smallest screening length

used. It is important to mention that Fig. 5.3 focuses an energy range where the system
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presents fewer divergencies, i.e., while the second largest screening may seem to be the best

solution, it does present divergent frequencies elsewhere in the spectrum.
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Figure 5.4: Data extracted from SHG spectra of h-BN (left) and MoS2 (right) computed
with a range of screening lengths. The green lines show the percentage of divergent fre-
quencies of each calculation (0% corresponds to a converged spectrum) and the blue lines
represent the deviation respect to the RT-TDH solution. The data is normalised by the so-
called maximum deviation, i.e., that of the IPA spectrum respect to the RT-TDH solution.
The magnitude of this maximum deviation is 558 (317) pmV−1 for h-BN (MoS2). In the
scale of the left-vertical axis, the label IPA indicates maximum deviation, while 0 represents
the RT-TDH spectrum. Upon reaching convergence, the deviation of the Floquet spectrum
(labelled FL) is of 34 (92) pmV−1 for h-BN (MoS2).

We can quantify this trade-off by contrasting the proportion of divergent frequencies of a

given Floquet run with the deviation of its solution with respect to the RT-TDH spectrum.

This deviation was computed as the l2-norm of a multi-dimensional vector containing dif-

ference between two spectra at each frequency. We performed this analysis for SHG spectra

of h-BN and MoS2 calculated at various screening lengths (see Fig. 5.4). The latter shows

that as the screening length is reduced, the percentage of divergent frequencies decreases

(green curve) and the deviation respect to the RT-TDH spectrum increases (blue curve).

When the former reaches 0%, the calculation becomes stable and converges at every fre-

quency. At this point, h-BN remains close to the RT-TDH solution while MoS2 shows a

more significant deviation. This is in part a result of MoS2 requiring a smaller screening

length to achieve stability, as mentioned above. Since one would not normally have access

to the RT-TDH solution when calculating a spectrum via Floquet, there is no reliable way
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of assessing whether a Floquet solution misses important local field effects or not. For this

reason, we can conclude that the Kerker preconditioning does not offer a robust and general

solution to the convergence issues faced by our Floquet formalism with local field effects.

In terms of performance, the instabilities originated by the inclusion of the Hartree

potential had an impact on the efficiency of our Floquet implementation. Despite having

mitigated the divergencies described above, converging the self-consistent loop at resonant

frequencies took several tens of iterations, which can compromise the computational ad-

vantage offered by our scheme. In the case of h-BN, around 40 iterations were required

at resonant frequencies, while non-resonant ones needed fewer than 10. In MoS2, some

resonant frequencies required almost 100 iterations to converge. The efficiency of these

calculations was still satisfactory, resulting over 50 and 10 times faster than their real-time

counterpart, respectively. However, we believe the number of iterations could be reduced

with a more robust approach to deal with divergencies and much greater speed-ups should

be reached with additional stability.

5.2.2 Time-dependent Hartree via Padé approximant

We calculated the same spectra as in Section 5.2.1 by means of Padé approximants. As

explained in Section 5.1.3, this implies solving the Floquet approach with a large broaden-

ing, νLB, and performing an analytic continuation of the resulting response functions, χLB,

to the desired or target broadening, νTB. In this case, it is primarily this large broaden-

ing that brings stability into the Floquet self-consistent cycle and facilitates convergence

(rather than the Kerker preconditioning as in Section 5.2.1). The main trend found in these

results indicates that keeping the difference νLB − νTB as low as possible is crucial for the

quality of the approximation and the resulting Padé response function, χPadé. Hence, the

procedure involved running several Floquet calculations with increasing broadening up to

the minimum value that ensured convergence at all frequencies. In order to limit νLB as

much as possible, the Kerker preconditioning was still used in these calculations but only to
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a minimal degree (one that would not guarantee convergence on its own). This means that

very large screening lengths were used (greater than 10 Å) in order to ensure no important

contributions to the Hartree potential were missed (as explained in Section 5.2.1).

As anticipated in Section 5.1.3, first order response functions were straightforward to

obtain with Padé approximants. First, no η-dependent dissipation terms were required,

i.e., the dissipation term as introduced in Eq. 4.33 with ν1 = νLB allowed for a satisfactory

Padé spectrum at νTB. Moreover, relatively high values of νLB − νTB were well handled by

the method, e.g., 0.85 and 0.5 eV for h-BN and MoS2, respectively. As we will show in the

rest of this Section, the situation with changed considerably when trying to approximate

second order susceptibilities, i.e., much smaller values of νLB−νTB were required and the η-

dependent dissipation term (Eq. 5.25) was needed alongside the relations in Eq. 5.27. This

is related to the nature of the processes involved in the second order response. Moreover,

numerical issues may also be at play since the first order response is orders of magnitude

larger than the second order susceptibility, which implies a better numerical stability for

the former.
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Figure 5.5: Absorption (left) and SHG (right) spectra of 2D h-BN at the TDH level with
Padé approximants (labelled PD in the legend). Dissipation parameters: ν1 = νTB = 0.15
eV, ν1+νη = νLB = 0.25 eV. The best SHG spectrum achieved with Kerker preconditioning
(bottom right panel in Fig. 5.1) and the real-time solution are also shown.
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Fig. 5.5 presents the results for h-BN at ν1 = νTB = 0.15 eV, both in terms of optical

absorption and SHG. The green curve represents the broad spectrum obtained via the

Floquet approach with ν1 + νη = νLB = 0.25 eV, i.e., an additional broadening of only

νη = 0.1 eV was enough to achieve convergence in this case. The orange dashed line shows

the Padé approximant at νTB = 0.15 eV, which represents a very good approximation to

the absorption spectrum as it is indistinguishable from the real-time result at this scale (see

left panel in Fig. 5.5). While the approximation to the SHG spectrum is also satisfactory

(see right panel in Fig. 5.5), some issues appear around 5 and 6.5 eV, i.e., when describing

second order processes. The best result achieved with the Kerker preconditioning (i.e.,

bottom right panel in Fig. 5.1) is also shown in the right panel of Fig. 5.5 with a pink

dashed line for comparison. The minor shortcomings found in the Padé approximant to the

SHG spectrum make the use of Kerker preconditioning preferable in this particular case.
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Figure 5.6: Absorption (left) and SHG (right) spectra of 2D MoS2 at the TDH level with
Padé approximants (labelled PD in the legend). Dissipation parameters: ν1 = νTB = 0.2
eV, ν1+νη = νLB = 0.4 eV. The best SHG spectrum achieved with Kerker preconditioning
(bottom right panel in Fig. 5.2) and the real-time solution are also shown.

The results for MoS2 at ν1 = νTB = 0.2 are shown in Fig. 5.6, in which case an

additional broadening of νη = 0.2 eV was required to avoid divergencies in the Floquet

approach at all frequencies in the spectrum. The latter then produced broad spectra at

124



νLB = 0.4 eV (green curves). Again, the Padé approximation to the absorption spectrum

is very good in comparison with the correct real-time result (see left panel in Fig. 5.6).

Moreover, the Padé approximant to the SHG spectrum does not present issues reproducing

second order processes (see right panel in Fig. 5.6). However, it does show some limitations

when reproducing fine features such as the sharp valley around 4 eV.

Overall, the main shortcoming of this Padé approximant scheme is the reliance on a

small additional broadening, νLB − νTB, particularly when calculating SHG spectra. Fig.

5.7 shows how the quality of the Padé SHG spectra deteriorates in the case of MoS2 when

increasing νLB (or νη) while keeping ν1 fixed. Even an increase of 0.05 eV in νη respect

to the solution presented in Fig. 5.6 results in noticeable discrepancies between the Padé

spectrum and the real-time solution, particularly around second order processes (see left

panel of Fig. 5.7). As shown in the centre and right panels of Fig. 5.7, subsequent increases

in νη cause further deviations. The effect of increasing νLB in the case of h-BN (not shown

here) is less severe.
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Figure 5.7: SHG spectra of 2D MoS2 at the TDH level via Padé approximants at 0.2 eV
calculated with increasing νη. The real-time solution at 0.2 eV is also shown. All plots have,
ν1 = νTB = 0.2 eV (orange dashed lines show Padé spectra at 0.2 eV). Left: νη = 0.25
eV and νLB = 0.45 eV (green line shows broad spectra at 0.45 eV). Centre: νη = 0.55 eV
and νLB = 0.75 eV (green line shows broad spectra at 0.75 eV). Right: νη = 0.8 eV and
νLB = 1 eV (green line shows broad spectra at 1 eV).

In addition, we present how the Padé spectra depend on the type of dissipation intro-

duced in the Floquet calculation. The results in Figs. 5.5-5.7 were obtained with a mixture
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Figure 5.8: SHG spectra of 2D h-BN at the TDH level via Padé approximants at 0.15 eV
calculated with different types of dissipation terms, i.e., only Γ(1) (left) or only Γ(η) (right).
Both graphs were calculated with νTB = 0.15 eV and νLB = 0.25 eV. The plot on the left
considers ν1 = 0.25 eV (and νη = 0 eV). The plot on the left considers νη = 0.25 eV (and
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Figure 5.9: SHG spectra of 2D MoS2 at the TDH level via Padé approximants at 0.2 eV
calculated with different types of dissipation terms, i.e., only Γ(1) (left) or only Γ(η) (right).
Both graphs were calculated with νTB = 0.2 eV and νLB = 0.4 eV. The plot on the left
considers ν1 = 0.4 eV (and νη = 0 eV). The plot on the left considers νη = 0.4 eV (and
ν1 = 0 eV).
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of regular dissipation, Γ(1) (Eq. 4.33), and η-dependent dissipation, Γ(η) (Eq. 5.25), accord-

ing to the conditions in Eq. 5.27. Fig. 5.8 shows the Padé spectra obtained for h-BN in

the cases where only Γ(1) (left panel) or only Γ(η) (right panel) are considered. In essence,

second order processes appear underdamped with only Γ(1) and overdamped with only Γ(η).

The spectra are more complex for MoS2 but the general trends are the same (see Fig. 5.9).

These results validate the use of the conditions in Eq. 5.27.

In terms of performance, we mention that this Padé procedure is inexpensive and adds

negligible computational cost. Moreover, a Floquet calculation with large broadening is

easier to converge than one with smaller broadening, thus requiring fewer iterations. As

a result, the former will generally be faster than the latter. While this difference was not

noticeable in the case of h-BN, the MoS2 calculation with νLB1 = 0.4 eV was over two times

faster than the best result using Kerker preconditioning at 0.2 eV (see Section 5.2.1).

5.2.3 Hartree plus screened-exchange self-energy

Let us briefly discuss what we obtained at the Hartree + SEX level (or real-time BSE)

with our Floquet formalism. Convergence issues are much more severe in this case than at

the TDH level, as we found while calculating the linear response of 2D h-BN via Floquet

(6×6×1 k-grid, 0.15 eV and only two bands). All frequencies below the position of the first

exciton (5.43 eV according to an equivalent real-time calculation) were converged to roughly

the right result (see Fig. 5.10). It is important to note that the response at this frequency

would be zero at the IPA and TDH levels. Hence, the fact that our code is able to find

this bound exciton somewhat validates our implementation of the self-energy. Convergence

could not be achieved at any frequency beyond this first exciton, showing divergencies

throughout the spectrum. The behaviour at the exciton energy is rather curious, as can be

seen in the inset in Fig. 5.10. The response at that frequency seems to oscillate through

the iterations around the correct value, but never converge to it. On the contrary, the

amplitude of these oscillations increases with the number of iterations.
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Figure 5.10: Absorption spectra of 2D h-BN (0.15 eV of broadening) at the H+SEX level.
The Floquet-calculated spectrum (dashed pink line) present divergencies and does not
compare well with the real-time solution (black line with grey filling) beyond the frequency
of the first exciton, ωexc. The inset shows the response calculated via Floquet at ωexc

throughout the iterations. The correct result at ωexc, calculated with the real-time approach,
is shown as a blue dot in the main figure and a blue dashed line in the inset.

Finally, we mention that the use of Padé approximants was not possible at this level

of theory. The convergence issues introduced by the self-energy are so severe that around

4-5 eV of broadening were required to mitigate instabilities. With such a high additional

broadening, the Padé approximant was unable to reproduce the real-time spectrum even in

qualitative terms.
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Chapter 6

Floquet analysis of real-time solution

We present a Floquet analysis tool capable of calculating Floquet eigenvectors provided
that the time-dependent states, i.e., the solutions of the real-time approach, are known.
This allows us to further characterise the instabilities affecting the self-consistent loop of
our Floquet approach beyond the IPA level (see Chapter 5). We discuss the potential origin
of said instabilities and gain insights into possible remedies for this problem.

As shown in Chapter 5, the proposed Floquet approach presents instabilities in the self-

consistent cycle at any level of theory beyond IPA, which results in divergent response

functions. A key quantity in this loop are the eigenvectors of the quasi-energy eigenproblem

(e.g., Eq. 5.32). Once these Floquet eigenvectors are known, the time-dependent states can

be recovered via Eq. 4.6, as we do, e.g., to calculate the dynamical polarisation. In principle,

one could think of reversing this problem and obtaining the Floquet eigenvectors provided

the time-dependent states are known. Therefore, besides our implementation of the Floquet

approach (Chapters 4-5), we developed a python module with several tools to post-process

the time-dependent quantities calculated by the real-time scheme in Yambo [42, 43]. The

main objective is to take the correct solution of the EOMs in Eq. 2.59 as input and extract

the Floquet eigenvectors from it. The latter are precisely the solutions we should arrive at

by solving the Floquet eigenproblem (e.g., Eq. 5.32). This is useful in situations where our

method struggles converge, as it allows us to understand what is wrong with the eigenvectors
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it is producing. We describe this strategy and its implementation in Section 6.1, while the

comparison between the Floquet states produced by either method is presented in Section

6.2. Further analysis of the convergence problems in our Floquet approach and the origin of

these instabilities is provided in Section 6.3, together with an outlook on possible strategies

for solving these issues. Finally, the validity of the adiabatic approximation invoked in

Chapters 4 and 5 is assessed for a particular case based on the corresponding real-time

result (see Section 6.5).

6.1 Floquet analysis tool

As explained in Section 2.3.2, the real-time approach integrates Eq. 2.59 in KS space

and calculates the time-dependent Bloch states in this basis, i.e., ⟨µki|vkn⟩. For periodi-

cally driven systems and under the adiabatic approximation introduced in Eq. 4.3, this

magnitude is equal to the projection of Eq. 4.4 over the KS basis,

⟨µki|vkn⟩ =
∑
j

e−iξknt dknj(t) δi,j = e−iξknt dkni(t), (6.1)

where the coefficients dkni(t) retain the periodicity of the perturbation,

dkni(t) = dkni(t+ T ). (6.2)

The idea is to take the output of a real-time calculation, ⟨µki|vkn⟩, solve Eq. 6.1 for dkni(t)

and Fourier transform the latter via Eq. 4.5 to obtain the Floquet eigenvectors, d̃kni(η).

This procedure would be trivial if the quasi-energy, ξkn, was known. However, the latter is

not computed by the real-time approach. In principle, one could take a pair of real-time

results separated in time by one period, divide Eq. 6.1 by itself and apply Eq. 6.2 to obtain,

⟨µki|vkn⟩(ts + T )

⟨µki|vkn⟩(ts)
= e−iξknT , (6.3)
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where one could easily solve for ξkn. However, this would require the time step to be com-

mensurate with the period, which imposes some practical limitations. A response function

obtained in this way would have been computed with a different time step at each frequency

in the spectrum. This would only be correct if the time step was very well converged, so as

to ensure that slight variations would not affect the numerical integration. Moreover, if one

decided to just run a single frequency and adjust the time step accordingly, this would re-

quire to have computed the spectra beforehand in order to choose this frequency of interest

(e.g., at an excitonic peak). On the other hand, using an arbitrary time step that ignores

the requirement of being commensurate with the period would mean that the computed

quasi-energy would only be an approximation. However, a far simpler approximation to

ξkn is be given by the KS energies, which are already known from the DFT ground state.

Instead, we preferred to formulate a procedure for computing quasi-energies that is

independent of how the dynamical data was obtained. Moreover, the method is fairly

inexpensive and uses information that is, in any case, required for the calculation of Floquet

states. What we know is that if the true quasi-energy was used to solve Eq. 6.1 for dkni(t),

then the result would be periodic, i.e., it would fulfil Eq. 6.2. Therefore, we propose an

iterative solution to this problem where we essentially verify this condition for an assumed

value of the quasi-energy that changes through the iterations.

In order to carry out this procedure we need the real-time results, ⟨µki|vkn⟩(t), at two

different sets of time steps. The first one is the sampling set and should contain a handful

of time steps, {ts}, within one period. The second set is used to verify the periodicity

condition at a later time steps, {tv}, outside the sampling period. The latter can be, e.g.,

three periods after a given time step in the first set, tv = ts+3T . We take all these real-time

results, at {ts} and {tv}, and use the assumed quasi-energy to solve Eq. 6.1 for dRTkni(t) at

each time step (we use the RT superscript to indicate how this quantity was obtained). We

then take the first set of these results, dRTkni(ts), which are contained within one period, and

perform a Fourier transform to compute the corresponding Floquet coefficients, d̃kni(η).

We will obtain an expansion with Floquet modes up to ηmax provided that the sampling
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set had 2ηmax + 1 time steps. With these coefficients, we can evaluate the Fourier series in

Eq. 4.5 at any time, in particular, for those time steps in the verifying set,

dCALC
kni (tv) =

+ηmax∑
η=−ηmax

e−iηω0tv d̃kni(η), (6.4)

where we used the superscript to distinguish between this calculated value and those ex-

tracted from the real-time result, dRTkni(tv). We now consider a series of equalities,

dCALC
kni (tv = ts + 3T ) = dCALC

kni (ts) = dRTkni(ts)
?
= dRTkni(tv = ts + 3T ), (6.5)

the first of which holds because dCALC
kni is a Fourier series, while the second equality is true

by construction of dCALC
kni . The third equality is only satisfied if the quasi-energy assumed

is indeed correct, as it would imply the fulfilment of the periodicity condition, Eq. 6.2.

Therefore, this procedure aims at finding a quasi-energy such that ,

dCALC
kni (tv) = dRTkni(tv), (6.6)

for all time steps in the verifying set, which allows us to define the error in our method as,

errkn =
∑
tv ,i

|dCALC
kni (tv)− dRTkni(tv)| . (6.7)

This deviation can be calculated for any time-dependent state obtained via the real-time

approach, identified by its band index n and k-point. For each state, kn, the summation

in Eq. 6.7 runs over the states i in the KS space and the time steps in the verifying set,

tv (this set could well have only one element). Ultimately, we can solve this problem by

minimising errkn as a function of the assumed quasi-energy, ξkn.

As an example, Fig. 6.1 shows the execution of this method for h-BN considering two-

bands and assuming three different values for the quasi-energy. In this case, we intend

to find the quasi-energy of the Floquet valence state at a given k-point, ξkv. While the i
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index in Eq. 6.7 would run over both bands, Fig. 6.1 focuses on the projection over the

conduction band only, dkvc(t), to exemplify the method. The first 9 points of each plot

represent the sampling set, where dCALC
kvc (ts) and d

RT
kvc(ts) are the same by construction. The

remaining 3 points constitute the verifying set, where the agreement between dCALC
kvc (tv) and

dRTkvc(tv) is guaranteed only for the correct quasi-energy. Any other value of the quasi-energy

(except those shifted by ω0) will not satisfy the periodicity condition in Eq. 6.2 and result

in discrepancies between dCALC
kvc (tv) and d

RT
kvc(tv), thus adding to errkv (see uppermost and

middle panels of Fig. 6.1). At variance, the quasi-energy in the lowermost panel of Fig.

6.1 is close to the correct value and no deviation between dCALC
kvc (tv) and dRTkvc(tv) can be

distinguished at this scale.

In general, the error function in Eq. 6.7 depends on the number of time steps used for

verification and how distant from the sampling set they are, providing a knob to tune the

precision of this method. In order to automate the iterative procedure, we implemented

a Newton-Raphson routine in our python module to perform this minimisation, where the

derivative of the errkn function is evaluated numerically via finite differences. According

to our tests, this method allows us to reduce the errkn function to values around 10−9 and

calculate quasi-energies with an accuracy in the order of 10−10 eV.

6.2 Floquet eigenvectors from real-time solution

We used the Floquet analysis tool introduced in Section 6.1 to post-process the time-

dependent solution produced by the real-time approach and extract the corresponding

Floquet states. The latter were then compared with the Floquet eigenvectors produced via

the Floquet approach in order to further characterise the convergence issues described in

Section 5.2. We chose a small system to simplify this analysis, i.e., 2D h-BN with a 6×6×1

k-grid and two bands. All 36 transitions in the BZ were studied before reporting on the

most relevant k-points. Regarding levels of theory, we considered TDH with a broadening

of 0.04 eV and H+SEX with 0.15 eV (see Sections 6.2.1 and 6.2.2, respectively). Both
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Figure 6.1: Agreement between dCALC
kvc (ts) and dRTkvc(ts) for three trial values of the quasi-

energy at a given k-point, ξkv. The pink dots represent Re[dRTkvc(ts)] at the time steps of the
sampling and verifying sets (first nine and last three values, respectively). The grey curve
corresponds to Re[dCALC

kvc (t)]. Its value at the time steps of both sets is distinguished with a
grey dot. The difference between the grey and pink dots are the contributions to the errkn
function. The lowermost quasi-energy is close to the correct value.

cases are far from convergence when calculated via the Floquet approach and show severe

discrepancies in the resulting eigenvectors respect to those obtained by post-processing the

real-time solution. We verified that these discrepancies are not present when convergence of

the Floquet self-consistent loop is achieved, e.g., 2D h-BN at TDH level with a broadening

of 0.15 eV and Kerker preconditioning, which is the case shown in Fig. 5.1.
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6.2.1 Time-dependent Hartree

The analysis at the TDH level focuses on the third peak of the absorption spectrum of

h-BN, where our Floquet code normally presents divergencies (see Fig. 5.1). Moreover, the

small broadening used here leads to more severe instabilities than those shown in Fig. 5.1,

which could not be mitigated by the Kerker preconditioning. The results of this analysis

are shown in Figs. 6.2 and 6.3, where all data corresponds to the frequency of the peak,

ωres = 9.8236 eV, and to a particular k-point, which showed the greatest response at that

frequency.

First, we look at the Floquet eigenvector extracted from the real-time solution (top half

of Fig. 6.2). This eigenvector, which corresponds to the Floquet state of the time-dependent

valence band (solution of the real-time problem), is indicative of a Floquet crossing between

the zeroth mode of the valence band and the first mode of the conduction band (cf. Fig.

4.1). For this reason, the central component (d̃kvv(0), or (v, 0) for short) decreases slightly

from unity while the second-to-highest amplitude corresponds to the first mode of the

conduction band, i.e., the so-called coupling component (d̃kvc(+1), or (c,+1)). We verified

the latter peaks at the same frequency as the response function, reaching an absolute value

of 2.9×10−3 at ωres (this will be revisited in Section 6.3).

We now turn to the eigenvectors calculated by the proposed Floquet formalism, shown

in the bottom half of Fig. 6.2. From the data at iterations 2 and 6, we observe the Floquet

solution progresses in the right direction and shows great similarity with the eigenvector

extracted from the real-time solution. However, the code did not converge at that point

and subsequent iterations started to diverge from the intended solution. This is better

appreciated in the left panel of Fig. 6.3, where the value of individual components of the

Floquet-calculated eigenvector are tracked throughout the iterations and the dashed lines

represent the real-time solution for each component. From iteration 7 onwards, several

components of the eigenvector start to grow out of control, overtaking their real-time coun-

terpart by orders of magnitude. This leads to a situation where the coupling component
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Figure 6.2: Colour-coded representation of Floquet eigenvectors at TDH level, as introduced
in Fig. 4.1 The data corresponds to a selected k-point of real-time and Floquet calculations
of two-band h-BN at ωres = 9.8236 eV. Top: Correct eigenvector as extracted from the
real-time solution. Bottom: Eigenvectors calculated by the Floquet approach at different
iterations. The Floquet code fails to converge in this case as a broadening of 0.04 eV was
used.
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Figure 6.3: Selected components of the eigenvectors presented in Fig. 6.2 (TDH level). The
left panel shows several components in logarithmic scale. The lines with points represent
data calculated via the Floquet approach while the horizontal dashed lines correspond to the
real-time solution. The right panel only shows two Floquet-calculated amplitudes in linear
scale, namely the central and coupling components (d̃kvv(0) and d̃kvc(+1), respectively).

(c,+1) reaches the same order of magnitude as the central component (v, 0), which decreases

accordingly (see right panel of Fig. 6.3, where both values tend to 1√
2
). This eigenvector
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implies a population inversion that greatly exceeds both what was found by post-processing

the real-time result and what is expected with the weak fields used throughout this work.

We are confident a population inversion of this magnitude is wrong and should not be

produced by our Floquet code.

6.2.2 Hartree plus screened-exchange self-energy

The analysis at the H+SEX level focuses on the first exciton of h-BN, where the linear

response calculated via Floquet did not achieve convergence (see Fig. 5.10). The results

of this analysis are shown in Figs. 6.4 and 6.5, where all data corresponds to the exciton

energy, ωexc = 5.4332 eV. We start by looking at the Floquet eigenvectors extracted from

the real-time solution at two particular k-points (top half of Fig. 6.4). The first one (of

index number 7, i.e., k7) shows the largest response among all the transitions studied in

terms of its coupling component (c,+1), which reaches a maximum of 1 × 10−3 at ωexc.

At variance, k35 represents one of the many transitions showing a much more moderate

coupling component of only 1× 10−5.

In terms of the eigenvectors calculated via Floquet (bottom half of Fig. 6.4), the one

corresponding to k7 at iteration 7 looks reasonably close to the real-time result. However,

some amplitudes of this eigenvector grow out of control in subsequent iterations, in partic-

ular, the ±2 components both of the valence and conduction band, and the zeroth mode

of the conduction band (see left panel of Fig. 6.5). They surpass the real-time solution

(indicated with dashed lines) by several orders of magnitude but do not reach values closer

to the central component (v, 0), which remains at 0.99996. At variance, the eigenvector

at k35 does show a (c,+2) component that reaches the order of magnitude of the central

component (see right panel of Fig. 6.5). Once again, this implies a population inversion

far greater than expected or found in the real-time solution (see Fig. 6.4). As in the TDH

case, we believe this population inversion is not correct and should not be predicted by this

Floquet formalism.
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Figure 6.4: Colour-coded representation of Floquet eigenvectors at H+SEX level, as in-
troduced in Fig. 4.1. The data corresponds to selected k-points of real-time and Floquet
calculations of two-band h-BN at ωexc = 5.4332 eV. Top: Correct eigenvectors as extracted
from the real-time solution. Bottom: Eigenvectors calculated by the Floquet approach at
different iterations. The Floquet code fails to converge in this case.

6.3 Discussion and outlook

In Section 5.2, the divergencies in the spectra calculated by the proposed Floquet method

were described, while Section 6.2 presented the big population inversions that our code

wrongly predicts for these cases. In this Section, we will argue there is a causal link

between the two and explore ways to limit the population inversion.

6.3.1 Population inversion

Let us first say that, in our experience of having programmed and debugged this code, every

time the response function presented divergencies, there was an eigenvector showing a big

population inversion such that the central amplitude (v, 0) and some coupling component,

e.g., (c,+1) were of the same order of magnitude. For example, 0.92 and 0.4, respectively.

Second, the real-time results in Section 6.2 indicate that, even at the peak of the response
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Figure 6.5: Selected components of the eigenvectors presented in Fig. 6.2 (H+SEX level).
The left panel shows several components in logarithmic scale. The lines with points repre-
sent data calculated via the Floquet approach while the horizontal dashed lines correspond
to the real-time solution. The right panel only shows two Floquet-calculated amplitudes
in linear scale, namely the central and coupling components (d̃kvv(0) and d̃kvc(+2), respec-
tively).

function, the coupling amplitude should be in the order of 10−3. While the latter does

show an inverse proportionality with the broadening, even the 0.04 eV calculations resulted

in moderate coupling components. Finally, Fig. 6.6 shows that the absorption follows

the magnitude of the coupling amplitude of the eigenvector corresponding to the k-point

that drives that response (the eigenvectors in these two cases have been obtained by post-

processing the real-time result). In light of this discussion, we can confidently say that if

the coupling amplitude happens to be much too high, so will the response function.

Based on the correct Floquet states as obtained by post-processing the real-time result,

it is apparent that we should now explore ways to limit the high population inversions

wrongly produced by our Floquet code at the TDH and H+SEX levels (see Figs. 6.2 and

6.4). As discussed in Section 2.3.2, the dephasing term of Eq. 2.78 that prevents high

population inversions in the real-time approach by demoting electrons back to the valence

band. Moreover, it was already mentioned in Section 4.1.5 that the addition of a FKS-space

formulation of this dephasing operator to the quasi-energy eigenproblem was not successful,
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i.e., it introduced convergence issues at the IPA level and it did not improve the stability

of the TDH case.

It is interesting to note that this problem can also be found the IPA level in the absence of

any dissipation mechanisms. This follows the logic of the two-state model presented in Fig.

4.1, where even the smallest of couplings would result in high populations inversions if not

damped with an imaginary contribution to the diagonal of the quasi-energy operator. By a

similar token, the population inversions at the IPA level were remedied by the introduction

of the phenomenological damping term of Eq. 4.34. However, the results of Chapters 5-6

indicate that this operator is not enough to avoid high population inversions when local

fields or many-body effects are included. It is possible that a more advance framework for

the introduction of dissipation effects could result in a damping operator robust enough to

stabilise these calculations, the form of which has not been found yet.

6.3.2 Floquet near-degeneracies

Another way of dealing with high population inversions consists on working in the (near) de-

generate sub-space implied by the presence of a Floquet crossing. As explained in Fig. 4.1,
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when a Floquet crossing occurs, two eigenstates of the quasi-energy operator will have (near)

degenerate eigenvalues. The corresponding eigenvectors will then be ‘complementary’, in

the sense that if one has amplitudes of 0.92 and 0.4 for (v, 0) and (c,+1), respectively, then

the other eigenvector will have those amplitudes inverted, i.e., 0.4 and 0.92 for (v, 0) and

(c,+1), respectively. Any linear combination in this degenerate sub-space will be a valid

eigenvector with the same eigenvalue. In fact, there will be a linear combination that has

precisely the correct population inversion and thus gives just the right response function.

The problem would then be finding a correct framework to define said linear combination.

In this regard, the average energy formalism presents itself as providing such framework

[125,126]. The authors argue that the current method of obtaining Floquet states (see Eq.

2.83) is incomplete and unstable, and that the quasi-energy should not be interpreted as the

energy of the system. Instead, they propose an average energy operator whose eigenvalues

are the analogous of a static energy. The average energy would then lift degeneracies in

the quasi-energy spectrum and define a Floquet ground state, thus acting as an additional

quantum number. This average energy operator is built in the degenerate sub-space as,

H̄IJ =
1

T

∫ T

0

⟨ϕI(t)|Ĥ|ϕJ(t)⟩, (6.8)

where the labels I and J correspond to degenerate Floquet eigenvectors having the same

quasi-energy. Diagonalising this operator and choosing the lowest eigenvalue would provide

the appropriate linear combination within the degenerate subspace to define a Floquet

ground state [125,126].

We implemented the average energy formalism into our Floquet code and tested it with

two-band h-BN at the IPA level (see Fig. 6.7). Away from any near-degeneracy, the code

proceeds as described in Chapter 4. However, if a near-degeneracy is found in the quasi-

energy spectrum, the average energy operator is built with the states of the degenerate

sub-space and then diagonalised. The lowest average energy eigenvalue is chosen and the

corresponding linear combination of degenerate eigenvectors is computed to continue with
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band calculation of h-BN at the IPA level with 0.04 eV of broadening. The inset shows a
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lines overlap into the main figure to show an example of a frequency range where a near-
degeneracy was found in the calculation.

the calculation. Whether the code finds a near-degeneracy or not depends on a user-defined

threshold, which defaults to twice the broadening parameter.

As expected, the algorithm finds near-degeneracies at the positions of the peaks in the

spectra, as represented by the dashed lines in the inset overlapping with the main plot in

Fig. 6.7. However, the use of this formalism results in suppressing the absorption to nearly

zero. After carefully considering the analytical example provided in Ref. [125], we concluded

that, indeed, the Floquet ground state as calculated via this formalism implies recovering

the valence state. This could indicate that the states we are looking for when calculating

optical spectra are not Floquet ground states. Moreover, as suggested by the examples in

Ref. [125], it is possible that the average energy formalism has been developed for electric

fields with higher intensities than the ones used in our work. Nevertheless, we consider the

use of some linear combination within the degenerate subspace to be a promising route for
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addressing the instabilities found in the proposed Floquet method. Work should be done

towards developing a formalism capable of uniquely defining such linear combination.

6.4 Application example

We briefly digress from the main narrative of the thesis to showcase how the Floquet analysis

tool presented here can be used on its own right, providing further insights into a real-time

calculation. In this example, we will analyse the SHG spectrum of 2D h-BN at the H+SEX

level, as obtained via the real-time approach [43]. In order to simplify the analysis, only

two bands will be included in the model, however we highlight that the procedure presented

here is not limited to any particular number of states.

A criticism that could be made of the real-time approach concerns its inability to identify

the individual contributions of each KS state or e-h transition to a given feature in the

spectrum. This is because all the electronic degrees of freedom are integrated out in the

calculation of the dynamical polarisation, before the latter is processed to extract the

susceptibilities. Therefore, it is difficult to assess which states drive the response function

at given frequency. At variance, this information is likely more accessible in formalisms

based on response theory. For instance, in the BSE framework for linear response, the

eigenvectors of the excitonic Hamiltonian provide the contributions (weights) of different

transitions in e-h space to a given excitonic wavefunction. It would be desirable to perform

an analysis of this kind over a real-time calculation, which can also describe nonlinear

optical processes. In this section, we will demonstrate how a Floquet processing of the

time-dependent states, solutions of the real-time approach, can facilitate said analysis.

As shown above, the Floquet analysis tool allows us to extract Floquet states from the

time-dependent wavefunctions corresponding to each occupied band at every k-point. As

show in Fig. 6.8, we do this at two different frequencies in the SHG spectrum of h-BN,

i.e. off resonance and at resonance, in order to compare the resulting Floquet eigenvectors.

Our findings highlight the role of the (c,+2) components of the eigenvectors, as they grow
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Figure 6.8: Left: Monolayer h-BN SHG spectra on a 24× 24× 1 k-grid with a broadening
of 0.15 eV, calculated by the real-time (RT) approach at the H+SEX level. The intensity
of the electric field is 1×106 Wcm−2. The two frequencies at which the Floquet analysis is
performed are highlighted with pink dots. Right: Colour-coded representation of Floquet
eigenvectors, as introduced in Fig. 4.1. The data corresponds to selected k-points of the
real-time calculation, both off-resonance (A) and at a resonant frequency (B), ω = 2.96

eV. The numbers on the right hand side indicate the magnitude of d̃kvc(η = 2) on each
eigenvector.

considerably more than any other amplitude when going from off-resonance to resonance.

For instance, Fig. 6.8 shows that, at the high-symmetry K point of the BZ, d̃kvc(η = 2)

increases over 33 times from frequencies ‘A’ to ‘B’ in the spectrum (while, e.g., d̃kvc(η = 1)

less than doubles). This is consistent with the idea of a Floquet crossing between the (v, 0)

and (c,+2) Floquet modes (cf. Fig 4.1), occurring at a frequency close to half the energy

of a related feature in the absorption spectrum (see below).

Moreover, these (c,+2) components show great disparities among different k-points in

the BZ, as exemplified with the Γ and K high-symmetry points in Fig. 6.8. Since we

can perform this Floquet analysis over the time-dependent states at any k-point, we can

then map the magnitude of d̃kvc(η = 2) into the BZ, as shown in the right hand side of

Fig. 6.9. This reveals that the first peak in the SHG spectrum of h-BN (peak ‘B’ in Fig.

6.8) originates from transitions at and around the optical gap (see K k-point in the band

structure of Fig. 6.9). In reciprocal space, these contributions reach their highest values at

the high-symmetry K k-points and extend along the K −M boundaries of the BZ.
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Figure 6.9: Left: band structure of monolayer h-BN. Right: absolute value of d̃kvc(η = 2)
at different k-points in the BZ. These values were calculated with the Floquet analysis tool
presented here, while the plot has been produced with tools available within Yambopy [129].
The scale in the colour map is linear.

In the absence of the information provided by the present Floquet analysis, the inter-

pretation of this SHG peak would have been limited to an argument around frequencies,

which remains valid nonetheless. The latter focuses on the fact that this feature occurs at

2.96 eV, which is half the frequency of the first exciton of h-BN (ωexc = 5.92 eV according

to our calculations). Therefore, two-photon resonances with said exciton are thought to be

involved. Having access to the contributions of the various e-h pairs to the SHG spectrum

puts this interpretation on firmer footing, since this SHG peak and the first exciton of h-BN

show a similar distribution of weights in the BZ (see Fig. 5 of Ref. [141] for a representation

of this exciton in reciprocal space).

A limitation of this approach relates to the excitonic wavefunctions, which are not

accessible via this Floquet analysis. As a result, this procedure overlooks the fact that the

first exciton of h-BN is doubly degenerate, which would arise immediately from the BSE

eigenvectors [141].
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6.5 Signatures of non-adiabaticity

The Floquet approach presented in Chapters 4 and 5 requires the validity of the adiabatic

approximation introduced in Eq. 4.3. Without this approximation, the time periodicity

of the Hamiltonian in Eq. 2.59 cannot be guaranteed, thus failing to meet one of the

conditions for the application of Floquet’s theorem. At the IPA level, this reflects the

fact that the Berry-phase electron-field coupling operator depends on the solution of the

quasi-energy eigenproblem, as explained in Section 4.1.3. The inclusion of local-field and

many-body effects requires this approximation to ensure the periodicity of the density and

the density matrix, which in turn determines the periodicity of the Hartree potential and

the self-energy (see Section 5.1).

In this section, we intend to numerically assess the validity of the adiabatic approxima-

tion for a particular case. We chose the system in Section 6.2.2, i.e., 2D h-BN driven by an

electric field at the frequency of its first excitonic resonance, ωexc = 5.4332 eV. In order to

do this, we performed a real-time calculation at the H+SEX level and extracted the matrix

elements of the Hamiltonian in Eq. 2.66 as a function of time. This Hamiltonian included

the electron-field coupling operator, the Hartree potential and the self-energy, according to

the chosen level of theory. We then selected the matrix element that showed the greatest

time dependence, i.e., oscillated with the largest amplitude. As expected, this was the

off-diagonal matrix element between the valence and conduction bands at the same k-point

considered for Fig. 6.4 (k7). Finally, we studied the time periodicity of this matrix element.

We conducted this same test for a range of electric-field intensities in order to quantify the

limits of validity of the adiabatic approximation with regards to this parameter.

In order to study the time periodicity of this matrix element, we performed a FFT.

Numerical issues related to spectral leakage were solved by using the Kaiser window func-

tion (with a large β = 42), which showed very good side-lobe behaviour. This required

hundreds of fs worth of dynamical data, i.e., hundreds of thousands of data points. Fig.

6.10 presents the results at two different field intensities. The uppermost plot shows that
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Figure 6.10: Fourier transform of a Hamiltonian matrix element extracted from a real-time
calculation at H+SEX level as a function of time. The data corresponds to a selected
k-points of two-band h-BN at ωexc = 5.4332 eV. Top (bottom): electric field intensity of
1×1010 (1×1012) W cm−2. The data obtained from the Fourier transform (FT) is normalised
to a maximum value of 1.

the Fourier transform of the matrix element in question at 1×1010 Wcm−2 only has non-

zero contributions at frequencies commensurate with the frequency of the excitation, ωexc.

Therefore, this quantity is a periodic function of time, which validates the adiabatic ap-

proximation at this field intensity. However, at 1×1012 Wcm−2, the Fourier transform of

the Hamiltonian matrix element presents side-bands to the main peaks (see lowermost plot

in Fig. 6.10). This result is in line with the findings of a similar study of the exchange-

correlation functional in the context of TD-DFT [121]. The presence of side-bands is a
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signature of non-adiabaticity since it indicates the presence of Rabi oscillations. While it

could be argued that this feature is small (six orders of magnitude smaller than the main

peak), it is clear that the adiabatic approximation should not be assumed valid at intensities

beyond 1×1012 Wcm−2. Nevertheless, the result reported in Fig. 6.10 at 1×1010 Wcm−2

puts the validity of the adiabatic approximation at the intensities explored in Chapters 4

and 5 on firmer footing.
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Chapter 7

Conclusions and future work

Computational materials science opens the possibility of accelerating the discovery of novel

and functional materials by offering a technology capable of testing tens of thousands of

compounds in a quick and relatively inexpensive way compared to experimental studies.

This relies on its ability to make ab-initio predictions of properties in quantitative agreement

with experiments. At the core of computational materials science we find the numerical

methods used to compute these properties, which determine what is (or is not) possible

within given computational resources. They represent the result of a decades-long cross-

community effort that ranges from the formulation of the relevant theoretical frameworks, to

the development of efficient algorithms and their computational implementation. Improving

these methods in order to boost the capabilities of computational materials science is the

overarching objective of this thesis.

While the calculation of ground-state properties finds an extremely efficient framework

in DFT, the numerical methods available for the description of excited states within MBPT

are more computationally demanding, often reaching the limits of today’s supercomputers.

This certainly applies to the calculation of optical properties, in which the description of

excitons and phenomena beyond the linear regime are often met with computational barri-

ers. Removing these limitations could enhance the contribution of computational materials

science to the fields of optoelectronics and photonics. Crucially, these research areas stand
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out for the hugely transformative technologies they have enabled and their remarkable

potential for future applications. This conjunction of challenges and opportunities gives

grounds for focusing our efforts in developing methods for optical properties in particular.

The first development we proposed concerns the calculation of optical absorption spectra

in extended systems based on linear response theory, to which Chapter 3 was devoted.

The state-of-the-art framework for the prediction of this property is given by the Bethe-

Salpeter equation, which allows for an appropriate description of excitons. The latter

requires very dense k-point grids, thus imposing a computational burden that often renders

these calculations prohibitively costly. This is certainly a main limiting factor in the BSE

scheme, both in terms of computational cost and memory footprint. We addressed this

challenge by proposing a double-grid approach to k-sampling in the BSE. Our method

is based on combining a coarse k-grid where both KS eigenvalues and eigenvectors are

known with a fine k-grid where only KS energies are required, which eases memory and

disk storage requirements. This results in having access to the oscillator strengths and BSE

kernel matrix elements only in the coarse grid, and implies necessary approximations for

both magnitudes in the fine grid.

As stated in Section 1.3, a key question relates to whether this approximated scheme

can correctly describe excitonic effects, which we addressed by critically analysing its as-

sumptions, as well as performing tests on a number of well-known materials. We concluded

that the diagonal extension of the BSE kernel proposed here remains a good approximation

for systems with excitons that are loosely bound and/or delocalised over many unit cells, as

confirmed by satisfactory results on bulk Si, bulk GaAs and, to a lesser extent, monolayer

MoS2. This approximation fails in materials with spatially localised and strongly bound

excitons, e.g., bulk h-BN, which are nonetheless usually well described by a relatively coarse

k-grids. Finally, systems with rapidly varying oscillator strengths within the BZ also fall

outside the limits of validity of our approach, e.g., BP. In any case, this can be verified with

a procedure based on inexpensive IPA-level calculations.

An evaluation of the computational gains attained by the proposed double-grid ap-
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proach constitutes another key question identified in Section 1.3. We verified that, within

this strategy, the coarse k-grid drives the computational cost while the fine k grid requires

minimal extra computation and memory. Therefore, based on its simplicity, the proposed

method provides an approximated fine-grid result at roughly the cost of a coarse-grid cal-

culation. Moreover, our approach is compatible with the most efficient BSE solver, i.e., the

Lanczos-based Haydock scheme, thus maximising the size and range of materials for which

this method could be useful.

In Chapters 4 and 5, we proposed a Floquet reformulation of the real-time approach

to nonlinear optics in extended systems [42, 43]. In response to Section 1.3, our successful

implementation of this framework indicates that, indeed, Floquet theory can be used to

reformulate this time-dependent problem into a time-independent self-consistent eigenvalue

problem. Due to the time-periodicity required of the Hamiltonian by Floquet’s theorem, this

reformulation applies to systems driven by a continuous monochromatic perturbation, which

is useful to compute nonlinear susceptibilities. Particular attention was devoted to the

electron-field coupling operator, which is based on the dynamical Berry-phase polarisation

[97] and makes our approach valid for extended systems. This operator introduced the need

for a self-consistent solution of the quasi-energy eigenproblem and required the use of the

adiabatic approximation [121] in order to remain time-periodic. As a result, our Floquet

approach is valid for weak electric fields, thus excluding the extreme nonlinear regime where

the adiabatic approximation is likely to break down.

Whether this Floquet formulation retains the main advantages of the real-time approach

is also a central issue, as stated in Section 1.3. We can confirm that our method main-

tains the non-perturbative nature of the real-time scheme, allowing for the simultaneous

extraction of susceptibilities to different orders in the electric field and for treating several

nonlinear phenomena within the same formalism. The flexibility for the inclusion of corre-

lation effects is also retained. Formally, many-body effects can be considered by adding the

relevant terms to the effective one-particle Hamiltonian, as it is done within the real-time

approach. However, the formulation beyond the IPA level introduced instabilities into the
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Floquet self-consistent loop, which could not yet be fully mitigated.

An extensive benchmark of the proposed Floquet approach was conducted at the IPA

level, which demonstrated the validity and effectiveness of our scheme. We calculated SHG

spectra of bulk AlAs, monolayer h-BN and monolayer MoS2, plus THG spectra of bulk

Si. In all cases, the Floquet method produced spectra in agreement with the real-time

approach. Moreover, the proposed scheme showed a consistent computational advantage

in comparison to the real-time formalism, resulting up to two orders of magnitude faster.

Therefore, we were able to tackle the often prohibitive computational cost associated with

real-time calculations, which originates from the expensive numerical integration of the

EOMs (entirely avoided in our time-independent formalism).

A final point relates to the convergence issues appearing in the Floquet approach be-

yond the IPA level. Only a handful of results could be converged at the TDH level, assisted

by the Kerker preconditioning scheme [144] or via Padé approximants. These calculations

showed spectra in agreement with the real-time approach and still presented a sizeable

computational advantage. However, considerable work has to be done in order to find a

robust and general solution to these instabilities. In order to further characterise these

shortcomings, a suite of post-processing tools capable of extracting Floquet states from

the time-dependent solution of the real-time approach was developed in Chapter 6. The

insights provided by these tools indicate that these divergencies are linked to high pop-

ulation inversions encountered throughout the Floquet self-consistent loop. Indeed, the

correct Floquet states derived from the real-time result show small population of excited

states regardless of the level of theory employed, in accordance to the weak electric fields

considered in this work.

In light of the promising results achieved by the double-grid and Floquet approaches

presented in this thesis, we believe our contribution can accelerate the ab-initio calcula-

tion of linear and nonlinear optical properties, reaching complex materials that are too

demanding for currently available methods and, overall, boosting the capabilities within

computational materials science.
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Future work

The findings in this thesis can serve as motivation for prospective studies and future devel-

opments, both in terms of addressing the shortcomings of the methods presented here and

building up on what has been achieved.

Let us start with the double-grid approach to k-sampling presented in Chapter 3. A

straightforward way to improve this method implies removing the approximation to the

dipole matrix elements in the fine k-grid (see Eq. 3.7). Instead of considering these matrix

elements as being equal to their closest coarse-grid counterpart, we could calculate them for

every κ-point in the fine grid, thus expanding the applicability of our method to systems

where this approximation breaks down. However, computing these quantities would require

access to the fine-grid wavefunctions, severely increasing the memory requirements of the

scheme. Since our intention was to propose a method based on simplicity and with minimal

computational overhead respect to a coarse-grid calculation, we opted against this idea in

Chapter 3. Alternatively, one could think of formulating this approximation in the velocity

gauge, rather than the length gauge (see Eq. 3.7), and evaluate its performance.

The other approximation used in our double-grid method concerns the treatment of the

fine-grid matrix elements of the BSE kernel as an extension of coarse-grid analogues. As

it was earlier pointed out, more complex schemes for double-grid k-sampling within the

BSE scheme already exist [66, 79–82]. In fact, the DKE approximation proposed here is

intended as a simplification of these other methods, in order to dispense with the fine-grid

wavefunctions. Moreover, we believe it would not be sensible to try and simplify it even

further. Therefore, any future development on improving the efficiency of BSE calculations

would likely focus on some other aspect of their implementation. Since the size of the

BSE kernel matrix determines the computational cost of a given BSE calculation, we could

consider re-thinking the e-h basis and proposing an alternative one. For example, we could

opt for the so-called optimal basis (OB) [149] and its extension to an optimal product

basis (OPB) [150]. This idea has been successfully implemented in the SIMPLE code [150].
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However, the latter only exploits the OPB for the calculation and storage of the excitonic

Hamiltonian, reverting to e-h space for the solution of the eigenproblem. At variance, one

could think of reformulating the Haydock solution of the BSE in the OPB, thus completely

dispensing with the e-h basis. This could be attempted based on a similar example found in

the theoretical chemistry literature for finite systems [151], where the Haydock algorithm

was re-written in terms of a product basis of localised functions (linear combinations of

atomic orbitals). At variance, any such proposal of our own would focus on extended

systems. Moreover, a further element of novelty would lie on including the RPA screening,

rather than model screening functions as previously done [150].

Regarding the Floquet approach to nonlinear optics presented in Chapters 4 and 5,

prospective studies would likely focus on addressing the shortcomings found beyond the

IPA level in terms of instabilities within the Floquet self-consistent loop. An interesting

avenue to explore is the idea of a linear combination of Floquet eigenvectors within the

degenerate subspace formed at Floquet crossings, as has been proposed in Section 6.3.2.

This procedure would limit the population of excited states, thus dealing with the high

population inversions encountered during self-consistency. However, this would require

the development of a theoretical framework capable of defining such linear combination in

order to avoid any ad-hoc formulations. The average energy formalism, or variations of

it, certainly constitute a promising alternative. Moreover, we believe that the broadening

parameter should play a role in the definition of this linear combination, as it is clear

from the correlation between the population inversion and the magnitude of the response

functions.

Besides approaches based on the degenerate sub-space, the phenomenological dissipation

operator should be another clear target of any future efforts, as suggested in Section 6.3.1.

The fact that the damping term as introduced in Chapter 4 works at the IPA level but

struggles to mitigate divergencies beyond it suggests that a better, more general or more

robust operator coupling the system to the environment could be the missing ingredient in

Chapter 5. In this regard, ideas could be drawn from the literature around non-Hermitian
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Floquet theory and multiphoton ionisation processes of atoms in intense laser fields [109,

114,117,119].

Further developments and improvements can also be considered, either for the current

implementation at the IPA level or after eventually tackling the shortcomings found upon

the inclusion of many-body effects. As mentioned in Section 4.2.3, one of such opportuni-

ties is the use of more efficient eigensolvers for the quasi-energy eigenproblem, like those

based on Krylov subspaces [143] or variational approaches [125–127]. This would improve

the efficiency of our Floquet method, resulting in higher computational gains respect to the

real-time approach. Another interesting idea concerns the calculation of Floquet bandstruc-

tures based on the Floquet states and quasi-energies computed when solving the Floquet

approach. While this implementation is currently in progress, some important questions

remain open, e.g., how to define the occupation of Floquet states. Nevertheless, this de-

velopment holds promise of paving the way towards an ab-initio framework for Floquet

engineering of materials, a topic that is typically addressed at the level of model Hamilto-

nians (e.g., [152]).

An interesting application of the Floquet method presented in this thesis would be given

by a high-throughput study oriented towards two-dimensional antiferromagnetism. As

mentioned in Section 1.1.2, MOKE microscopy allowed for the detection of ferromagnetism

in the monolayer limit, where regular magnetometric techniques fail due to the small sample

volumes [27]. However, there is no Kerr rotation in systems with zero net magnetisation,

which include interlayer antiferromagnets like bilayer CrI3 [27] and monolayer systems with

intralayer antiferromagnetic ordering , e.g., MnPS3 [153]. Therefore, MOKE microscopy

cannot detect magnetic ordering in these cases. Nevertheless, if the antiferromagnetic

ordering breaks the inversion symmetry of an otherwise centrosymmetric material, then

this phase transition could be detected using SHG as a symmetry-dependent probe.

One could then conceive a high-throughput computational study based on this princi-

ple, scanning a database of two-dimensional materials in search of compounds that have an

energetically-favoured antiferromagnetic phase in which time-reversal plus inversion remains
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a good symmetry. Then, one could select these materials and compute their SHG spectra, in

order to determine frequencies with high-intensity second order response. This information

could then assist the experimental validation of these potential two-dimensional antiferro-

magnets. Both bilayer CrI3 and monolayer MnPS3 fall within this category of materials, as

do many other members of the family of transition-metal phosphorus tri-chalcogenides [154].

In fact, SHG has already been used experimentally to detect antiferromagnetism in bilayer

CrI3 [22] and few-layer MnPS3 [24].

Finally, the suite of tools for Floquet analysis of time-dependent states presented in

Chapter 6 can be considered a development on its own, beyond its application to charac-

terise the shortcomings of our Floquet approach. It can be used to determine the degree

to which different transitions (bands and k-points) contribute to a given peak in a SHG

spectra. This can be thought of in analogy with the eigenvectors of a BSE Hamiltonian,

which can be used to measure the contribution (weight) of each transition in e-h space to a

given excitonic wavefunction. Moreover, this tool can be generalised to be agnostic of the

code that produced the time-dependent states, and just return Floquet states in the same

basis as the former were given.

156



Appendix A

Supplemental material for

double-grid approach

The present Appendix provides supplemental material relative to the double-grid approach

introduced in Chapter 3. This entails a visual representation of the main equations involved

in the method and further discussions regarding the comparison between different strategies

for the extension of the BSE kernel to the fine grid. We also present some supplementary

figures referenced within Chapter 3. Finally, we include a statement regarding code and

data availability.

A.1 Kernel matrix in the double-grid method

As discussed in Chapter 3, we explored two possible approaches for the extension of the BSE

kernel from the coarse grid to the fine grid, namely, DKE and FKE. The DKE approach

was chosen for the double grid Haydock implementation in the Yambo code as it has shown

to consistently produce better results than the FKE method. In this Section, we will give

a visual representation of the equations defining both approaches. Further arguments in

favour of DKE are also presented here, apart from the q-dependence of the kernel matrix

elements (already explored in Section 3.2.3).
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A.1.1 Coarse grid

As an example, let us assume we have a system with two bands (c and v) and two k-points

(k1 and k2). This system would then have two transitions (T1 and T2). In this example,

the e-h basis would have two components and the BSE kernel would be a 2-by-2 matrix,

Ξ11 Ξ12

Ξ21 Ξ22

 . (A.1)

The readily implemented Haydock algorithm requires matrix vector multiplications of

the kind

Ξ11 Ξ12

Ξ21 Ξ22

 ·

cvck1

cvck2

 =

rvck1

rvck2

 , (A.2)

where cvcki
= ⟨vcki|V ⟩ are the components of the Haydock vector |V ⟩ to be multiplied by

the BSE kernel and rvcki
are, analogously, the coefficients of the resulting vector.

A.1.2 Double grid

We now add a fine κ-grid to our calculation. For the sake of argument, let us say that

K1 has one fine grid κ-point associated to it (κ12), while K2 has two (κ22 and κ23) — we

remind the reader that K1 and κ11 are the same k-point. In this case, our e-h basis will

grow from having 2 transitions, to 5 in total. This will lead to the BSE matrix



Ξ11 Ξ112 Ξ12 Ξ122 Ξ123

Ξ121 Ξ1212 Ξ122 Ξ1222 Ξ1223

Ξ21 Ξ212 Ξ22 Ξ222 Ξ223

Ξ221 Ξ2212 Ξ222 Ξ2222 Ξ2223

Ξ231 Ξ2312 Ξ232 Ξ2322 Ξ2323


. (A.3)
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Only the matrix elements in the coarse grid are explicitly calculated (those highlighted in

bold), e.g., Ξ11. The matrix elements involving at least one transition in the fine grid,

will be approximated to either zero or the corresponding matrix element in the coarse grid.

This will depend on the element in question and the approach taken (DKE or FKE).

A.1.3 Diagonal Kernel Extension (DKE)

In this approximation, we set to zero some of the matrix elements according to Eq. 3.1.

This implies, for instance, Ξ112 = Ξ121 = 0 while Ξ1212 = Ξ11. This approximation leads to

a matrix of the form



Ξ11 Ξ112 Ξ12 Ξ122 Ξ123

Ξ121 Ξ1212 Ξ122 Ξ1222 Ξ1223

Ξ21 Ξ212 Ξ22 Ξ222 Ξ223

Ξ221 Ξ2212 Ξ222 Ξ2222 Ξ2223

Ξ231 Ξ2312 Ξ232 Ξ2322 Ξ2323


−→



Ξ11 0 Ξ12 0 0

0 Ξ11 0 Ξ12 0

Ξ21 0 Ξ22 0 0

0 Ξ21 0 Ξ22 0

0 0 0 0 Ξ22


. (A.4)

The matrix-vector multiplication then leads to



Ξ11 0 Ξ12 0 0

0 Ξ11 0 Ξ12 0

Ξ21 0 Ξ22 0 0

0 Ξ21 0 Ξ22 0

0 0 0 0 Ξ22


·



cvck1

cvck12

cvck2

cvck22

cvck23


≈



rvck1

rvck12

rvck2

rvck22

rvck23


. (A.5)
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The output vector would then be composed as



rvck1

rvck12

rvck2

rvck22

rvck23


≈



Ξ11 · cvck1 +Ξ12 · cvck2

Ξ11 · cvck12
+Ξ12 · cvck22

Ξ21 · cvck1 +Ξ22 · cvck2

Ξ21 · cvck12
+Ξ22 · cvck22

Ξ22 · cvck23


. (A.6)

Note that, in general (i.e., except in the very first Haydock iteration), cvck1 ̸= cvck12
due to

the energy shifts coming from the diagonal part of the excitonic Hamiltonian.

This approximation then results in a very simple implementation, as it can be reformu-

lated as

Ξ11 Ξ12

Ξ21 Ξ22

 ·

cvck1 cvck12
0

cvck2 cvck22
cvck23

 =

rvck1 rvck12
0

rvck2 rvck22
rvck23

 . (A.7)

This allows us to always work with the same BSE kernel matrix as in the coarse grid.

Moreover, the structure of the Haydock subroutine can be somewhat maintained, as these

double-grid extended Haydock vectors can be folded into “Haydock matrices”. Then, what

is a matrix-vector multiplication in single-grid Haydock, becomes a matrix-matrix multipli-

cation in double-grid Haydock. The number 0 marked in red in Eq. A.7 has to be imposed

in the code, i.e. preventing that matrix element from being calculated as the result would

not be zero.

A noteworthy aspect of the DKE approximation is that the fine-grid index, e.g., i = 2,

will not necessarily mean the same for I = 1 and I′ = 2. In other words, the fine-grid point

κ12 will not necessarily be at the same relative position from k1 as κ22 is from k2 (although

the opposite will be true if I = I′ because they are essentially the same k-points). Hence,

the decision to couple κ12 with κ22 (instead of κ23) is ultimately an arbitrary choice, but

one maintains the approximated BSE kernel also sharply peaked at q = 0. Let us analyse

the case I = I′, in which the corresponding matrix elements belong to the diagonal (e.g.,
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Ξ22). If we were to couple fine-grid indexes i = 2 with i = 3, we would have a q ̸= 0, off-

diagonal matrix element (Ξ2223) with the same value as the corresponding diagonal q = 0

matrix element (Ξ22), which would introduce artefacts in the optical response. This issue

is more subtle when it comes to the I ̸= I′ matrix elements, which are off-diagonal (e.g.,

Ξ12). In this case, there would be no obvious choice as to whether i = 2 should be coupled

with i = 2 or i = 3. Any attempt to decide this based on the relative positions of those

k-points would make the method heavily dependent on the shape of the k-grids used as

input, and probably less robust. Ultimately, our double-grid method relies on these off

diagonal elements being small compared to diagonal ones, as we are only interested in the

latter. This is another way to see the limitations this method faces when the BSE kernel

is not sharply peaked at q = 0. Moreover, this is in line with the fact that this method

cannot work for systems with strongly bound excitons, as these usually imply important

contributions from q ̸= 0 matrix elements.

A.1.4 Full Kernel Extension (FKE)

In this approximation, we consider that all matrix elements involving transitions in the fine

grid will be equal to the corresponding ones in the coarse grid, according to Eq. 3.5. This

approximation leads to a matrix of the form,



Ξ11 Ξ112 Ξ12 Ξ122 Ξ123

Ξ121 Ξ1212 Ξ122 Ξ1222 Ξ1223

Ξ21 Ξ212 Ξ22 Ξ222 Ξ223

Ξ221 Ξ2212 Ξ222 Ξ2222 Ξ2223

Ξ231 Ξ2312 Ξ232 Ξ2322 Ξ2323


−→



Ξ11 Ξ11 Ξ12 Ξ12 Ξ12

Ξ11 Ξ11 Ξ12 Ξ12 Ξ12

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22


. (A.8)
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Consequently, the matrix vector multiplication would be



Ξ11 Ξ11 Ξ12 Ξ12 Ξ12

Ξ11 Ξ11 Ξ12 Ξ12 Ξ12

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22

Ξ21 Ξ21 Ξ22 Ξ22 Ξ22


·



cvck1

cvck12

cvck2

cvck22

cvck23


≈



rvck1

rvck12

rvck2

rvck22

rvck23


. (A.9)

The output vector would then be composed as



rvck1

rvck12

rvck2

rvck22

rvck23


≈



Ξ11 · (cvck1 + cvck12
) +Ξ12 · (cvck2 + cvck22

+ cvck23
)

Ξ11 · (cvck1 + cvck12
) +Ξ12 · (cvck2 + cvck22

+ cvck23
)

Ξ21 · (cvck1 + cvck12
) +Ξ22 · (cvck2 + cvck22

+ cvck23
)

Ξ21 · (cvck1 + cvck12
) +Ξ22 · (cvck2 + cvck22

+ cvck23
)

Ξ21 · (cvck1 + cvck12
) +Ξ22 · (cvck2 + cvck22

+ cvck23
)


. (A.10)

It is important to note that rvck1 = rvck12
and rvck2 = rvck22

= rvck23
. Despite the computa-

tional advantage of not having to calculate all output vectors, this is essentially a drawback

of the FKE approach (see below). Also, note that, unlike the DKE approach, FKE requires

the kernel to be scaled down by a factor relative to the number of coarse-grid and fine-grid

k-points.

A.1.5 Further analysis of kernel extension to the fine grid

In order to further explain the better performance of DKE over FKE, let us now consider

a system with several k-points and only one pair of bands. In this case, the e-h space is

composed directly by one vertical transition at each K- or κ-point, and the sharply peaked

matrix elements correspond to those in the diagonal (q = 0), while the rest of the matrix

is considerably sparse. Nonetheless, this does not necessarily mean that the BSE kernel

matrix meets the criteria for being strictly diagonally dominant (i.e., a matrix where all
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elements Ai,j satisfy |Ai,i| >
∑

j ̸=i |Ai,j| for all i). In fact, this is not the case. Even in the

simple example of monolayer MoS2 with only one pair of bands, the off-diagonal elements of

the BSE kernel, albeit very small, add up to a value that is higher than the diagonal element

in many rows of the matrix. Admittedly, the situation changes if one considers the two-

particle Hamiltonian, where the energies are added to the diagonal. Indeed, the two-particle

Hamiltonian is strictly diagonal dominant in the case of this two-band monolayer MoS2

example. Alternatively, we can consider only a given block of the BSE kernel, determined

by two fragments of the e-h basis set. We will consider the blocks in the diagonal, which

are square by construction and contain the q = 0 matrix elements we are discussing.

Each of this blocks also satisfies the condition for being strictly diagonal dominant. The

determination of the fragments is somewhat arbitrary and only relevant to Yambo, but it

nonetheless helps us visualise the problem at hand. For instance, Fig. A.1 displays the real

part of one block of the BSE kernel for two-band monolayer MoS2. Fig. A.1A shows the

coarse grid BSE kernel block (i.e., our starting point in the double grid approach) while Fig.

A.1B and C display the fine grid BSE kernels approximated by DKE and FKE, respectively.

Finally, Fig. A.1D illustrates the full BSE kernel as calculated with a 12×12×1 k-grid. The

term full here refers to the BSE kernel that is obtained if the k-grid that normally acts as a

fine (double) grid, is actually used as the single k-grid in a BSE calculation with no double

grid approach. In other words, Fig. A.1D is the matrix we are trying to approximate (which

can be calculated in full in this case as only a 12×12×1 k-grid is being used). Importantly,

we see that both blocks in panels A and D are nearly diagonal. Now, it becomes apparent

from panel B that the DKE approach respects the diagonally-dominant nature of the block

in panel A, and thus represents a better approximation to the full block in panel D. At

variance, the FKE approach prevents, by construction, any matrix from being diagonally

dominant. Indeed, the FKE kernel approaches a block-diagonal matrix, which represents a

greater deviation from the full block in panel D, and hence, a worse approximation to it.

We now consider a more realistic scenario where we include various conduction and

valence bands in the BSE calculation in order to achieve convergence. In this case, the two-
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Figure A.1: Comparison of the BSE kernel matrices obtained via diagonal kernel extension
(DKE) and full kernel extension (FKE). The data plotted here is the real part of one block
of the BSE kernel in MoS2 with only one pair of bands.

particle Hamiltonian is not diagonally dominant any more. This is because the e-h space

grows considerably and so does the sum of non-diagonal elements in a given row, which

ends up overtaking the value of the diagonal element. In other words, adding the transition

energies to the diagonal of the BSE kernel is no longer enough to ensure the diagonally

dominant character of the two-particle Hamiltonian when many bands are considered, unlike

the two-band system described above. Nonetheless, we can still use arguments of this nature

to address the comparison between DKE and FKE. Let us define the diagonal dominance

per row i as ddi =
∑

j ̸=i |H
2p
i,j |

|H2p
i,i |

. Fig. A.2 shows ddi of all rows for the case of MoS2 with

all the bands required for convergence. As in Fig. A.1, DKE and FKE represent the

matrices calculated by extending a 6× 6× 1 coarse K-grid Hamiltonian into a 12× 12× 1

double κ-grid one, while the fine grid data points correspond to the matrix we are trying

to approximate, i.e, the Hamiltonian obtained with one single grid of 12× 12× 1 k-points.

We can immediately confirm that none of these two-particle Hamiltonians are diagonally

dominant any more, as they have rows with ddi > 1. In addition, an average ddi over
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all rows for each case is shown with flat lines in Fig. A.2. It becomes apparent that the

DKE and fine grid matrices have very similar average ddi, while that of the FKE matrix

is an order of magnitude higher. In other words, the DKE method is better than FKE

at extending the coarse grid two-particle Hamiltonian into a matrix that closely resembles

that of the fine grid Hamiltonian from the viewpoint of diagonal dominance.
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Figure A.2: Diagonal dominance of the two-particle Hamiltonian matrices obtained via
diagonal kernel extension (DKE) and full kernel extension (FKE), compared with the case
of . The data plotted here corresponds to MoS2 with all the bands required for convergence.
The DKE and FKE matrices are obtained from a 6× 6× 1 coarse K-grid and a 12× 12×
1 double κ-grid. The fine grid data is simply the matrix that DKE and FKE try to
approximate, i.e., the two-particle Hamiltonian obtained with one single grid of 12× 12× 1
k-points.

Finally, there is an algebraic argument against the FKE approach that can be derived

from Eqs. A.9-A.10 (or Eq. 3.6), in comparison with their DKE analogues, Eqs. A.5-A.6
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(or Eq. 3.4). First, it should be considered that these equations are embedded in a loop

of Haydock iterations. As part of this loop, the Haydock vectors are multiplied by the

two-particle Hamiltonian H2p, which entails the multiplications in Eqs. A.6 or A.10 plus

a shift due to the diagonal matrix of transition energies. Associated to this multiplication,

there is a subtle point about the way in which the DKE or FKE approaches handle the

benefits that the double grid brings. The impact of the double grid in the final spectrum

depends crucially on the diagonal matrix of transition energies Enmk δnn′δmm′δkk′ . In other

words, given that the kernel in the fine grid is approximated as equal to that of the coarse

grid, the shift Enmk δnn′δmm′δkk′ is what makes transitions inside a given domain Dom(KI)

different among themselves. Hence, this differential shift is why the double grid method

gives a different spectrum than the coarse grid alone. As mentioned before, in the very first

Haydock iteration, the components of the Haydock vector in the coarse and fine grid are

the same, as they are equally initialised (see Eq. 3.2). However, in the second iteration and

beyond, this vector will have picked up a shift coming from the diagonal matrix of transition

energies, which will differ among components in the coarse and fine grid. This is the impact

of the double grid in the Haydock method (since the fine grid kernel is approximated by

the coarse grid). However, this impact is somewhat lost or averaged out in the FKE vector-

matrix multiplication (Eq. 3.6 or A.9-A.10). This effect is exemplified in Eq. A.10, where

rvck1 = rvck12
and rvck2 = rvck22

= rvck23
. In essence, Eq. 3.6 (or A.10) tells us that rnmκIi

will be equal ∀i ∈ Dom(KI), no matter how different cn′m′κI′i′
may be across different

values of I ′ and i′. Importantly, this difference among values of cn′m′κI′i′
is a result of the

differential shift gained in the previous Haydock iteration, so Eq. 3.6 (or A.10) effectively

causes a reset of the Haydock vector that enters the loop at each iteration. Of course, these

output components rnmκIi
(equal among themselves) are different from (‘better’ than) the

ones that would have been obtained if the input components cn′m′κI′i′
had not been different

at all. But overall, the FKE hinders the ability of the double grid to have an impact in

the Haydock output vectors via the diagonal matrix of transition energies in the excitonic

Hamiltonian. This detrimental ‘homogenisation’ of the output vectors is not present in the
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DKE approach, which lets the benefits of the double grid (the differential shifts) accumulate

over successive iterations, leading to a greater impact of the fine grid overall, and a better

final spectrum.

A.2 Impact of the coarse grid as a starting point

Fig. A.3 shows absorption spectra of monolayer MoS2 with various coarse grids and a

24×24×1 fine grid. This also corresponds to some of the data points included in the

computational cost comparison (see Fig. 3.7).
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Figure A.3: Optical absorption spectra of monolayer MoS2 at the BSE level via the double-
grid approach using different coarse grids and a 24×24×1 fine grid.

A.3 Shifted grids

While Gamma-centred grids have been used throughout the study, our method can also be

used with shifted grids, both with regular and random shifts. Taking the case of GaAs as

an example, we present the results obtained with regular shifted grids in Fig. A.4. The

20×20×20 shifted fine grid entails 36000 k-points, while the 10×10×10 shifted grid, only

4000. Despite this difference, the two calculations in Fig. A.4 took essentially the same
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time (relative difference less than 1%). This proves that the numerical advantages of the

double-grid method are also present in the case of shifted grids.
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Figure A.4: Example of optical spectrum of bulk GaAs using shifted k-grids.

Regarding the result itself, Fig. A.4 shows that shifted grids converge faster, as reported

elsewhere in the literature (see, e.g., Ref. [64]). In particular, the 10× 10× 10 shifted grid

result in Fig. A.4 looks better converged than the Gamma-centred one in Fig. 3.3. The

same applies to the 20 × 20 × 20 results. However, this is partly due to the fact that

shifted grids represent many more non-equivalent k-points than Gamma-centred ones. For

instance, Gamma-centred grids of the same dimensions contain 1000 and 4000 k-points,

respectively. Moreover, there is a subtlety about what high symmetry k-points are included

when using Gamma-centred or shifted grids, which has implications as to how well a given

grid represents the physics of the material at hand. For example, the direct gap in GaAs

(and Si) occurs at the Gamma point, which makes Gamma-centred grids a wise choice in

this case.

Finally, the use of random shifted grids on their own right (rather than via a double grid

approach) is a well-known method of improving k-points convergence. This usually offers
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faster convergence than an equally dense Gamma-centred grid, while keeping the size of the

BSE kernel unchanged. Despite this advantage, the number of k-points in the Irreducible

Brillouin Zone increases, and so does the memory required to load the corresponding KS

orbitals. These increased memory and disk storage requirements could become prohibitively

large in materials for which very dense k-grids are needed. The random shift method

does not address these problems, which are precisely what we intend to target with our

method (as the fine-grid KS orbitals are not needed). Furthermore, k-grids with random

shifts usually do not have the symmetries of the system, with the potential for breaking

degeneracies and turning dark excitons into bright ones.

A.4 Code and data availability

A.4.1 Code availability

The double-grid method developed in this work for calculating optical absorption spectra

via the Haydock solution of the BSE will be available in a future release of the Yambo

code. A tutorial will be made available in due course through the tutorials section (http://

www.yambo-code.org/wiki/index.php?title=Tutorials) of the official Yambo website

(http://www.yambo-code.org/).

A.4.2 Data availability

Input and output files of the calculations presented in this study can be found in a GitHub

repository (https://github.com/aim137/double_grid_data_repository.git)
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Appendix B

Supplemental material for Floquet

approach

The present Appendix provides supplemental material relative to the Floquet approach in-

troduced in Chapter 4. This includes convergence tests and the full set of spectra computed

with various k-grids, broadening values and electric-field intensities. We also present some

supplementary figures relative to scaling tests and computational cost. Finally, we provide

a statement regarding code and data availability.

B.1 Computational cost

In this section, we present the actual computational cost of each run, rather than the RT-

to-FL ratio shown in Figs. 4.8 and 4.9. The format of these figures is the same as Fig. 7

and 8 for comparability.

B.2 Scaling with number of atoms

We present the scaling of the real-time and Floquet approaches with respect to the number

of atoms. Tests were done for h-BN SHG spectra on a 6×6×1 k-grid. Various super-

170



10

100

1000

10000

100 1000 10000

R
T

 ti
m

e 
× 

co
re

s 
(h

s)

Number of k points

AlAs(sb)
AlAs(lb)

h-BN(sb)
h-BN(lb)

MoS2(sb)
MoS2(lb) 10

100

1000

10000

100 1000 10000

F
L 

tim
e 

× 
co

re
s 

(m
in

)

Number of k points

AlAs(sb)
AlAs(lb)

h-BN(sb)
h-BN(lb)

MoS2(sb)
MoS2(lb)

Figure B.1: Computational cost of SHG calculations in CPU time multiplied by the number
of cores.
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Figure B.2: Computational cost of THG calculations in CPU time multiplied by the number
of cores.

cells (2×2×1 to 5×5×1) were used to obtain systems with large number of atoms and the

number of bands included in each calculation was adjusted accordingly.

B.3 Scaling with number of Floquet modes

We present the scaling of the calculation time of our approach with respect to the number of

Floquet modes. Bulk AlAs with a 20×20×20 k-grid was taken as an example. The data is

produced via a first-order Floquet calculation with ηmax = 1−6, i.e., with 0−5 extra Floquet

modes. The data is presented as CPU time per iteration per frequency, so it is representative
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Figure B.4: Scaling with the number of atoms in the real-time method - CPU time per
iteration per frequency. The abbreviations Ham., Int. and Pol. correspond to the tasks of
building the Hamiltonian matrix, performing the numerical time integration and calculating
the Berry-phase polarisation, respectively.

of calculating the Hamiltonian matrix, diagonalising it, calculating the polarisation and

extracting the Fourier coefficients. The near-quadratic scaling reflects the diagonalisation

time, since the size of the Hamiltonian at a given k-point is Nbands × (2 ηmax + 1). This

operation is performed using the QR-algorithm, i.e., what is usually referred to as full

diagonalisation.
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B.4 Computational details

The DFT calculations were performed with Quantum Espresso (QE) 6.7. The real-time

(RT) and Floquet calculations were done with a developer branch of Yambo 5.1 where we
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AlAs h-BN MoS2

Calculated spectra LR, SHG LR, SHG LR, SHG
k-grids (scf) 10×10×10 12×12×1 12×12×1
k-grids (nscf) 8×8×8, 6×6×1, 6×6×1,

10×10×10, 12×12×1 12×12×1,
20×20×20, 24×24×1 24×24×1,
30×30×30 36×36×1

48×48×1
Bands (full–empty) 3–6 4–4 5–5
Band-gap correction [eV] 0.9 3.3 0.72
Broadening [eV] (sb;lb) 0.04; 0.15 0.04; 0.15 0.04; 0.15
Total time [fs] (sb;lb) 118; 48 235; 83 230; 85
Time step [as] 10 (2.5) 2.5 10
Intensity [W cm−2] 1× 106 1× 106 1× 106

Floquet modes ηmax 2 2 2

Table B.1: Computational details of the SHG data set. The acronyms sb and lb stand for
small and large broadening, respectively.

incorporated our formalism. The details for these calculations are as show in Tables B.1

and B.2.

See next section for the determination of the real-time convergence parameters.

B.5 Convergence real-time

The real-time convergence parameters reported in the previous section were chosen on

the basis of the following convergence tests. They are all performed on the coarse grid

for each material. SHG convergence tests for the dephasing time are done with 0.04 eV

(small broadening) and 0.15 eV (large broadening). SHG convergence tests for the time

step are done only at small broadening. THG convergence tests are done only at large

broadening, and also at two different intensities, namely 1×106 (low intensity) and 1×1010

(high intensity) W cm−2. These convergence tests allow us to determine the time step and

dephasing time required for each calculation, as shown in Tables B.1 and B.2.

174



Si
Calculated spectra THG
k-grids (scf) 8×8×8
k-grids (nscf) 8×8×8

24×24×24
32×32×32

Bands (full–empty) 4–3
Band-gap correction [eV] 0.6
Broadening [eV] 0.15
Total time [fs] 74
Time step [as] 10
Intensity [W cm−2] (lI;hI) 1× 106; 1× 1010

Floquet modes ηmax (lI;hI) 3; 5

Table B.2: Computational details of the THG data set. The acronyms lI and hI stand for
low and high intensity, respectively.
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Figure B.7: Bulk AlAs - dephasing time - large broadening

B.6 Convergence Floquet

Convergence of our Floquet approach with respect to the number of Floquet modes is

reported in this section. We present tests for AlAs, h-BN and MoS2 with regards to their

SHG spectra, which were all performed on the coarse grid for each material (convergence

for THG spectra in bulk Si is covered in Section 4.2). We present data for ηmax = 2 (FL2),

ηmax = 3 (FL3) and ηmax = 4 (FL4). In addition to the electric-field intensity used to study

SHG in Section 4.2 (i.e. 1 × 106 Wcm−2, labelled low intensity), we report convergence

tests at a higher intensity, where higher-order contributions to the second order response
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Figure B.8: Bulk AlAs - dephasing time - small broadening
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Figure B.9: Bulk AlAs - time step - small broadening
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Figure B.10: h-BN 2D - dephasing time - large broadening
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Figure B.11: h-BN 2D - dephasing time - small broadening
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Figure B.12: h-BN 2D - time step - small broadening
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Figure B.13: MoS2 2D - dephasing time - large broadening
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Figure B.14: MoS2 2D - dephasing time - small broadening
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Figure B.15: MoS2 2D - time step - small broadening

are expected to be important. This higher intensity is 1×1010 Wcm−2 for AlAs and h-BN,

and 1× 108 Wcm−2 for MoS2 since convergence issues appeared above this value. We did

all our low intensity tests with a low broadening of 0.04 eV, however we had to raise it

for some of the high intensity cases to improve convergence (mentioned in caption where

applicable).

The results show that convergence with respect to the number of Floquet modes in the

calculation of SHG spectra is very fast. Even at high intensities, higher-order contributions

to SHG do not seem to have a big effect in the response and ηmax = 2 appears to be enough.
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Figure B.16: Si bulk THG - dephasing time - low intensity
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Figure B.17: Si bulk THG - time step - low intensity

B.7 Results

179



0.0

0.1

0.2

0.3

0.4

0.5

1.0 1.5 2.0

Si

|χ
11

11
(3

) | 
(c

gs
 ×

 1
0-1

0  )

Energy (eV)

RT - 64 fs

RT - 74 fs
0.35

0.40

0.45

1.3 1.4 1.5 1.6

Si

|χ
11

11
(3

) | 
(c

gs
 ×

 1
0-1

0  )

Energy (eV)

RT - 64 fs

RT - 74 fs

Figure B.18: Si bulk THG - dephasing time - high intensity
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Figure B.19: Si bulk THG - time step - high intensity

B.8 Code and data availability

B.8.1 Code availability

The Floquet approach developed in this work for calculating non-linear optical properties

will be available in a future release of the Yambo code. A tutorial will be made available in

due course through the tutorials section (http://www.yambo-code.org/wiki/index.php?

title=Tutorials) of the official Yambo website (http://www.yambo-code.org/).
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Figure B.20: AlAs bulk - Floquet modes - low intensity - 0.04 eV
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Figure B.21: AlAs bulk - Floquet modes - high intensity - 0.15 eV
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Figure B.22: h-BN 2D - Floquet modes - low intensity - 0.04 eV
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Figure B.23: h-BN 2D - Floquet modes - high intensity - 0.04 eV
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Figure B.24: MoS2 2D - Floquet modes - low intensity - 0.04 eV
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Figure B.25: MoS2 2D - Floquet modes - high intensity - 0.15 eV

182



-10

0

10

20

30

3.0 4.0 5.0 6.0

R
e[

 ε
(q
→

0,
ω

)]

Energy (eV)

RT

FL

0

10

20

30

3.0 4.0 5.0 6.0

Im
[ 
ε(

q
→

0,
ω

)]

Energy (eV)

RT

FL

0

300

600

900

2.0 4.0 6.0

|χ
xy

z(2
) | 

(p
m

/V
)

Energy (eV)

RT

FL

Figure B.26: Bulk AlAs - 8×8×8 - large broadening
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Figure B.27: Bulk AlAs - 8×8×8 - small broadening
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Figure B.28: Bulk AlAs - 10×10×10 - large broadening

B.8.2 Data availability

Input and output files of the calculations presented in this study can be found in a GitHub

repository (https://github.com/aim137/Floquet_IPA-data_repository.git).
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Figure B.29: Bulk AlAs - 10×10×10 - small broadening
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Figure B.30: Bulk AlAs - 20×20×20 - large broadening
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Figure B.31: Bulk AlAs - 20×20×20 - small broadening
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Figure B.32: Bulk AlAs - 30×30×30 - large broadening
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Figure B.33: Bulk AlAs - 30×30×30 - small broadening
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Figure B.34: h-BN 2D - 6×6×1 - large broadening
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Figure B.35: h-BN 2D - 6×6×1 - small broadening
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Figure B.36: h-BN 2D - 12×12×1 - large broadening
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Figure B.37: h-BN 2D - 12×12×1 - small broadening
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Figure B.38: h-BN 2D - 24×24×1 - large broadening
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Figure B.39: h-BN 2D - 24×24×1 - small broadening
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Figure B.40: h-BN 2D - 36×36×1 - large broadening
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Figure B.41: h-BN 2D - 36×36×1 - small broadening
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Figure B.42: h-BN 2D - 48×48×1 - large broadening
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Figure B.43: h-BN 2D - 48×48×1 - small broadening
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Figure B.44: MoS2 2D - 6×6×1 - large broadening
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Figure B.45: MoS2 2D - 6×6×1 - small broadening
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Figure B.46: MoS2 2D - 12×12×1 - large broadening

189



-5

0

5

10

15

3.0 4.0 5.0

R
e[

 ε
(q
→

0,
ω

)]

Energy (eV)

RT

FL

0

5

10

15

3.0 4.0 5.0

Im
[ 
ε(

q
→

0,
ω

)]
Energy (eV)

RT

FL

0
100
200
300
400
500
600

1.0 2.0 3.0 4.0 5.0

|χ
xy

x(2
) | 

(p
m

/V
)

Energy (eV)

RT

FL

Figure B.47: MoS2 2D - 12×12×1 - small broadening
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Figure B.48: MoS2 2D - 24×24×1 - large broadening
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Figure B.49: MoS2 2D - 24×24×1 - small broadening
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Figure B.50: Bulk Si THG - 8×8×8 - large broadening
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Figure B.51: Bulk Si THG - 24×24×24 - large broadening
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Figure B.52: Bulk Si THG - 32×32×32 - large broadening
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Appendix C

Research output

Four publications were produced during the course of this PhD, namely:

• Cantos-Prieto, F. et al. Layer-Dependent Mechanical Properties and Enhanced Plas-

ticity in the Van der Waals Chromium Trihalide Magnets. Nano Lett. 21, 3379–3385

(2021).

• Alliati, I. M., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. Relativistic domain-

wall dynamics in van der Waals antiferromagnet MnPS3. npj Comput. Mater. 8, 1–9

(2022).

• Alliati, I. M., Sangalli, D. & Grüning, M. Double k-Grid Method for Solving the

Bethe-Salpeter Equation via Lanczos Approaches. Front. Chem. 9, 1–11 (2022).

• Alliati, I. M. & Grüning, M. Floquet formulation of the dynamical Berry-phase ap-

proach to nonlinear optics in extended systems. Electron. Struct. 5, (2023).

The first two publications represent work done during this PhD under a different line of

research and are not part of the present thesis.
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