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Abstract— Patient stratification is a crucial task aimed at 
categorizing individuals with a specific disease into more 
homogeneous subgroups based on critical disease-related 
characteristics. This process enables personalized interventions, 
optimized care management, and tailored treatments. Patient 
stratification plays a significant role in drug development and 
clinical practice for many diseases. However, with the increasing 
availability of biomedical data, such as gene expression data, 
clinical records, and lifestyle/environmental factors, the analysis 
of this vast and multimodal data becomes highly challenging. 
Machine learning offers methods that can help address the 
challenges of transforming this extensive and diverse data into 
usable decision-support tools. Deep learning methods, in 
particular, have shown impressive results in tasks such as risk 
stratification and treatment response prediction. However, their 
impact on data-driven medicine remains limited due to their 
’black-box’ nature and their inability to provide human-
interpretable outputs. In this study, we propose applying 
topological data analysis to enhance the interpretability of deep 
learning patient stratification models. Specifically, we suggest 
using the Mapper algorithm to visualize the latent space learned 
by the models through the lens of its predictions. We apply the 
Mapper algorithm to various architectures of recently developed 
deep patient stratification models and demonstrate how it helps 
reveal relationships among different patient subgroups. 
Furthermore, we adapt the Normalized Mutual Information 
measure to identify the Mapper’s parameters that yield the most 
optimal graph-based representation of the latent space. This 
approach aims to enrich the power of deep learning with 
interpretable results in the field of patient stratification. 

Keywords — patient stratification, deep learning, 
interpretability, topological data analysis, explainable AI 

 I. INTRODUCTION 
Precision medicine (PM) is an innovative healthcare 

approach that takes into consideration an individual’s unique 
genetic makeup, environmental factors, and lifestyle when 
making medical decisions. By aggregating and analyzing 
various types of biomedical data, such as omics data, clinical 
images, electronic health records, and lifestyle factors, PM aims 
to provide more personalized preventive measures, accurate 
diagnoses, and effective treatments for severe diseases like 
cancer and Alzheimer’s. The recent advancements in deep 

learning (DL) and its breakthroughs in diagnostic, prognostic, 
and predictive tasks have highlighted the potential of machine 
learning (ML) in PM [1]. The key strength of DL lies in its 
ability to learn task-specific data representations by performing 
multiple non-linear transformations on input variables, 
facilitated by thousands of adjustable network parameters. Some 
studies suggest that DL models can perform healthcare tasks as 
well as, or better than, human experts, such as disease detection 
from medical imaging [2]. Nevertheless, the constrained 
adaptation of DL-based solutions in clinical settings primarily 
stems from their inability to provide interpretable outputs that 
healthcare practitioners can understand. 

DL methods have shown immense promise in patient 
stratification tasks [3], where patients are grouped based on 
predefined characteristics. Such models project high-
dimensional, heterogeneous data into a relatively low-
dimensional latent space optimized for clustering based on a 
defined objective function. The objective function is formulated 
to address specific research questions. These models produce 
patient groupings that can be further analyzed in terms of their 
biological differences. However, assigning patients to a single 
subgroup may not fully capture the complex patterns in the data. 
Moreover, distinct categorical groups defined by the model’s 
output may be too coarse to capture nuances within the data. In 
this study, we introduce an innovative approach to augment the 
output of DL patient stratification models, facilitating more 
profound analysis and interpretation of observed patterns. Our 
method leverages topological data analysis (TDA) to construct 
and visualize a graph-based representation of the latent space 
acquired by the model. To tackle a central challenge of the TDA 
method, which pertains to the selection of its parameters, we 
propose an adaptation of the Normalized Mutual Information 
(NMI) measure to identify the parameters that yield the most 
optimal graph-based representation of the latent space. This 
approach enables practitioners to gain a global understanding of 
the structures within the identified clusters and explore 
relationships between different patient subgroups, potentially 
leading to further stratification. 

The remainder of the paper is structured as follows: we first 
provide background information on TDA and DL-based patient 
stratification models. Following this, we discuss relevant work 
related to the application of TDA in healthcare. Finally, we 



present our proposed approach and apply it using different 
architectures of an existing DL patient stratification model. 

II. PRELIMINARIES 

A. Topological Data Analysis 
TDA has recently emerged as a powerful and interpretable 

framework for extracting valuable information from high- 
dimensional data [4]. It provides tools that are based on 
computational geometry and topology to summarize the inherent 
shape and structure present in multidimensional data. While 
many datasets have certain shapes that carry essential 
information, the application of this fundamental concept in 
contemporary data science and ML is often limited to tasks like 
regression (assuming data follows a linear or hyperplane shape) 
and cluster analysis (assuming data is divided into distinct 
clusters). However, topology can reveal more intricate and 
meaningful structures within data, such as loops, flares, or voids, 
which can be highly relevant for data analysis. 

One of the pivotal advancements in TDA is the Mapper 
algorithm first introduced by Singh and Carlsson in 2007 [5]. 
Mapper is used to construct graph-based representations of high-
dimensional data, capturing both topological and geometric 
information at a specified level of detail or resolution. The 
workflow of the Mapper algorithm is illustrated in Fig. 1 [6]. 

 

Fig. 1. Ilustration of the Mapper algorithm workflow. 

The input data 𝑋	 ∈ 	𝑅! from a high-dimensional space is first 
projected onto a one-dimensional space using a lens function 
(Fig. 1 (b)). This lens function can be chosen based on the 
specific properties of the data that you want to study or highlight 
(e.g. patient survival). The projected data, now in one-
dimensional space, is divided into overlapping intervals or bins 
of equal length (Fig. 1 (c)). The overlap and the number of bins 
are crucial parameters that influence the level of detail and 
granularity in the analysis. Apart from visual inspection, there is 
no established way to assess the quality of a Mapper graph. 
Construction of a relevant graph usually requires an exhaustive 
search through a parameter space followed by manual 
validation. Within each of these bins, the data points are 
clustered together based on their original representations in the 
high-dimensional space (i.e. on their inverse image) as 
illustrated in Fig. 1 (d). Clustering is performed separately 

within each bin producing a collection of clusters per bin. 
Finally, a network graph is constructed, where each node in the 
graph represents a single cluster (Fig. 1 (e)). If two clusters 
contain overlapping data points, an edge is created to connect 
the corresponding nodes in the graph. The result of this process 
is a Mapper graph that provides a structured representation of 
the high-dimensional data, capturing both local and global 
relationships among data points. This graph can be analyzed to 
gain insights into the underlying structure of the data, identify 
subgroups, and reveal important topological features. 

B. DL Based Stratification Models 
The key strength of DL models is their capacity to learn 

task-specific data representations. This ability to automatically 
extract relevant features and representations from raw data is a 
fundamental reason behind the success of DL in various 
domains, including patient stratification in healthcare [7]. In the 
context of patient stratification, DL models are utilized to find 
a data representation, which helps to identify clusters or 
subgroups of patients that share certain characteristics or 
exhibit particular behaviors. The DL model learns to transform 
the high-dimensional, and often complex, input data into a 
lower-dimensional representation where these clusters or 
patterns become more apparent. 

To demonstrate our proposed approach, we will use our DL-
based patient stratification model recently developed for the 
identification of prognostic liver cancer subgroups [8]. The 
model has an Autoencoder architecture (Fig. 2), which is 
commonly used for data dimensional reduction. Training an 
Artificial Neural Network (ANN), such as an Autoencoder, is 
typically an iterative process that uses an objective function; 
commonly known as a loss function. The loss function is 
designed for the specific task of interest (e.g. clustering) and is 
used to assess how well the network is performing at each 
iteration of the learning process. The loss guides the network 
updates for the next iteration to help arrive at the optimum 
solution for the task at hand. For an Autoencoder, where the 
goal is reconstruction of the data, the loss function is used to 
evaluate how well the original (input) data can be retrieved from 
the learnt (latent) data representation (referred to as bottleneck). 
The latent space learnt by the model is represented by the 
middle layer of the Autoencoder model presented in Fig. 2. In 
order to adapt an Autoencoder to a patient stratification task and 
hence incentivize the latent space with patient survival and 
clustering relevance, a new loss function was introduced in [8]. 
As presented in Fig. 2, the loss function incorporates three 
different function which are: (1) reconstruction loss (LR), (2) 
clustering loss (LC), and (3) survival loss (LS). The 
reconstruction loss ensures that the data can be effectively 
projected into a lower-dimensional space while preserving the 
essential information. The clustering loss is used to ensure 
homogeneity of each cluster and it was driven from the 
Silhouette score [9], a well-known cluster evaluation metric. 
Finally, the survival loss was implemented based on the Cox 
proportional hazards model to make the identified clusters 
distinct in terms of prognosis or patient survival outcome. 
Overall, this approach combines dimensionality reduction, 



clustering, and survival analysis in a DL framework to perform 
patient stratification and identify subgroups that exhibit specific 
characteristics with clinical relevance. 

 

 
Fig. 2. Deep patient stratification model. 

 

III. RELEVANT WORK 
The issue of explainable AI has garnered considerable 

attention over the past decade [10]. This matter is particularly 
crucial for DL models, owing to their reliance on a multitude of 
abstract parameters and complex calculations that render their 
decisions challenging to elucidate [11]. Contemporary literature 
discusses various prevalent techniques for interpreting DL 
models, primarily revolving around the identification of pivotal 
features contributing to model decisions. Examples encompass 
training surrogate models, which aim to approximate the ’black 
box’ model’s behavior using intrinsically explainable ML 
methods such as decision trees or linear regression [12], or 
employing layer wise relevance propagation to discern the most 
influential features from the input vector on the output vector of 
a DL model [13]. 

In this study, we propose a novel approach to address the 
interpretability challenge of DL models, with a specific focus on 
the unsupervised task of patient stratification within the 
exemplar context of liver cancer prognosis. Diverging from 
existing methods that elucidate model decisions, our technique 
strives to provide a more profound understanding of the 
underlying structure of the data within the patient stratification 
output. We achieve this by visualizing the latent representation 
of the input data, learned by the DL model, using the Mapper 
algorithm. This methodology allows us to offer deeper insights 
into the configuration and composition of the identified patient 
clusters, unveiling diverse relationships among patients. 

TDA has already been employed as a tool to explain 
predictions generated by ML models. For instance, Saul et al. 
[14] utilized the Mapper algorithm to visualize predicted 

probabilities from a trained ML model, enabling the 
identification of patterns learned by the model and the 
comprehension of interinstance relationships. In a similar way, 
Xenopoulos et al. [15] proposed a topology-based framework to 
model and compare various explainability methods, aiming to 
establish a stable representation of explanations. Elhamdadi et 
al. [16] harnessed TDA to visualize the topological shape of 
facial landmarks over time in affective computing, providing the 
capability to derive explanations for identified features. 
Additionally, in the work of Carlsson et al. [17], the authors 
suggested utilizing the output of ML models as a filter function 
for the Mapper algorithm to classify different types of prediction 
errors. In our study, we introduce a novel approach for 
interpreting the outputs of DL-based patient stratification 
models. This approach involves applying the Mapper algorithm 
to the latent data representation learned by the models. To 
overcome the challenge of selecting Mapper’s parameters, we 
propose to assess the quality of the Mapper graph using the NMI 
measure. 

IV. METHOD 
The central concept of the proposed approach revolves 

around constructing a Mapper graph within the latent space 
learned by the DL patient stratification model. This construction 
serves the purpose of visualizing the structural organization of 
the identified patient groups and the relationships that exist 
among various patient subgroups. Depending on the architecture 
of the stratification model, it is possible to finetune the Mapper 
graph to align with the specific stratification task at hand. 

The model depicted in Fig. 2 operates by constructing the 
latent space while optimizing three distinct loss functions. The 
survival loss plays a critical role by incentivizing the latent space 
representation of samples with survival relevance. Technically, 
this loss quantifies how accurately we can predict a patient’s 
survival based on the latent representation of their input data. In 
our approach, we propose to employ the survival prediction 
values as the lens values for the Mapper algorithm. This lens 
selection allows us to encode the survival aspect into the graph’s 
structure, thus visualizing relationships in terms of survival 
probabilities among patients, both within and across prognostic 
groups. 

In cases involving more conventional DL stratification 
models, where only clustering and reconstruction losses are 
considered, a lens that computes geometric properties of the 
data, such as the L2-norm, can be employed. The framework we 
propose, which integrates the Mapper algorithm with DL 
stratification models, is illustrated in Fig. 3. Here, a dataset 
denoted as X ∈ Rn serves as input to the DL stratification model. 
After forming patient groupings, the latent representation of the 
entire patient cohort, denoted as ρ(X) ∈ Rk, is derived from the 
model and subsequently used as input data for the Mapper 
algorithm. Based on predicted survival values, samples from X 
are categorized into overlapping bins and internally clustered 
based on their original representations in Rn. Using the resulting 
clusters and their compositions, a graph is constructed, which 
can be color coded according to the stratification subgroups. It 
should be noted that this coloring could be modified to align with 
any other clinically relevant features if further analysis were 
required. 



Fig.3. Deep patient stratification model. 

A. Selecting Mapper Parameters 
One of the primary challenges encountered when applying 

the Mapper algorithm pertains to the selection of its parameters. 
Existing literature highlights the sensitivity of the Mapper 
graph’s shape to factors, such as the number of bins and the 
degree of overlap utilized, and the lack of a universally accepted 
method for determining their optimal values [18]. Research in 
this domain has been relatively limited. Consequently, it has 
become common practice to run the Mapper algorithm with 
various parameter combinations, subsequently assessing the 
output graphs by human interpretation. 

In our current work, our objective is to identify the Mapper 
graph that best represents the latent space and the patient 
groupings discerned by the deep neural network. To achieve 
this, we propose an adaptation of the NMI measure [19]. The 
NMI is a metric commonly employed to assess the quality of 
clustering algorithms in supervised settings where ground truth 
labels are available. In our context, all patients are categorized 
as belonging to one of the discovered clusters, effectively 
serving as our ground truth labels. Once the Mapper graph is 
constructed, we consider each of its individual components (i.e. 
Mapper graph can consist of more than one disconnected 
components/parts) as a cluster. For a set of stratifying clusters 
denoted as C and the components of the Mapper graph 
represented as M, we calculate the NMI metric as defined in 
Equation 1. NMI results in values ranging from 0 to 1, with 1 
signifying a perfect correlation between 𝐶 and 𝑀. 

 (1) 

In this context, the symbol C denotes the ground truth 
labels, while M signifies different components of the Mapper 
graph. We calculate the entropy of the clusters, denoted as 
𝐻(𝐶), and the entropy of the Mapper’s components, 
represented as 𝐻(𝑀), according to the formulations provided in 
Equations 2 and 3 respectively. 

 (2) 

 

 (3) 

The symbols 𝑃(𝑐) and 𝑃(𝑚) denote the probabilities of a 
data point being classified as 𝑐 and 𝑚, respectively. The mutual 
information between the cluster labels and the Mapper’s 
components labels, denoted as 𝐼(𝐶;𝑀), is computed following 
the formula presented in Equation 4. 

 (4) 

Where	𝐻(𝐶 ∥ 𝑀)	is	the	conditional	entropy,	and	calculated	
as	per	equation	5.	 

 
(5) 

In our approach, we execute the Mapper algorithm using 
various combinations of its two parameters, specifically the 
number of bins (2 to 30) and overlap values (0.1 to 0.5). We 
then choose the combination that yields the highest NMI value. 
This selected graph is regarded as the most optimal 
representation of the identified subgroups and serves as the final 
output. 

B. Data 
To explore the proposed parameter selection method, we 

consider the problem of stratifying liver cancer patients. For 
this we use publicly available data involving complex, high-
dimensional multi-omics data, including miRNA, RNA- Seq, 
methylation, and survival information for primary liver tumor 
samples from Hepatocellular Carcinoma (HCC) patients 
obtained from The Cancer Genome Atlas (TCGA). The TCGA 
data was acquired and subjected to preprocessing using TCGA-
assembler 2 [20], following a methodology akin to that outlined 
in [21]. 

To ensure data quality and relevance, we selected only those 
samples that possessed all three types of omics data, a non- 
negative survival value, and a histologic diagnosis of HCC. 
Subsequently, for each omics type, we removed features that 



exhibited either missing values or zero values in more than 20% 
of the samples. Additionally, we eliminated samples that had 
more than 20% of their features missing or containing zero 
values. For imputing missing values, we employed the 
impute.knn function within the R package for imputation. 

Following this preprocessing phase, we retained a total of 
352 samples for subsequent analyses. The three distinct omic 
data types were concatenated into a unified vector for each 
patient, thereby constructing the multi-omics matrix that served 
as the input for the proposed model. The final dataset 
encompassed 35,024 features across 352 patients. 

V. RESULTE 
The application of the DL patient stratification model to the 

multi-omics dataset revealed the existence of two distinct 
patient subgroups. More comprehensive details regarding the 
characterization of these groups can be found in [8]. 

In Fig. 4, we present the Mapper graph with the highest NMI 
score, which stands at 0.61. The graph is color coded by 
predicted survival values (on the left) and group labels (on the 
right). It is noteworthy that both graphs share the same 
underlying structure but are visualized slightly differently. Each 
node within the graphs represents a group of patients, with the 
edges denoting the similarity among these patients. The 
numbers on the nodes indicate their respective sizes. 

 
Fig.4. Mapper graph constructed on the latent representation of the data learnt 
by the patient stratification model. The graphs are colored by the survival 
prediction (left) and the cluster labels (right). 

Analyzing the graph colored by group labels (right), we can 
discern that the Mapper algorithm adeptly separated the two 
groups. One of the primary components exclusively comprises 
samples from one of the groups (yellow). Additionally, a single 
node containing 16 patients from the same group can be 
observed. The second major component (purple) retrieved by 
the Mapper primarily comprises patients from the second 
discovered group. As indicated by their colors, two nodes 
within this component contain a mixture of patients from both 
groups. This implies that some patients cannot be definitively 
assigned to either group, suggesting potential characteristics 
that are common to both. Further exploration of this 
phenomenon could lead to the identification of a new subgroup. 

Upon examining the colors of the nodes within the left- 
hand graph, we notice that the two discovered groups exhibit 
distinct survival characteristics. However, the presence of two 

components representing the yellow group may suggest some 
internal heterogeneity within this group. The single node 
appears to represent patients with potentially higher survival 
compared to the rest of the group. This information opens 
avenues for further exploration of the biological differences 
among patients within these two components. Such nuances 
may not be readily apparent solely based on grouping labels 
provided by the DL stratification model. 

In Fig. 5, we present a series of different Mapper graphs 
constructed within the latent space on the same dataset which 
differ only by their parameter selection of the number of bins 
and the size of the overlap. This illustrates how important it is 
to have appropriate parameter settings to enable a meaningful 
interpretation. It is noteworthy that the NMI metric penalizes 
the division of discovered subgroups into multiple components, 
even when those components exhibit homogeneity in terms of 
the group labels. This characteristic aligns with our objective of 
retrieving, to the greatest extent possible, the same number of 
groups as indicated by the DL stratification model. However, 
it’s important to consider that relaxing the selection criteria 
(i.e., exploring Mapper graphs with lower NMI values) may 
potentially lead to the discovery of intriguing subgroups within 
the overarching stratification groups. This is particularly 
relevant as each stratification group is represented by multiple 
components of the Mapper graph. 

 
Fig. 5. Mapper graphs constructed with different parameters values on the 

latent representation of the data. Each Mapper graph is colored by the cluster 
labels and has its NMI value calculated. 



To showcase the versatility of our proposed approach, we 
applied it with DL stratification models employing different 
architectures. In this scenario, we modified the model depicted 
in Fig. 2 to exclude the inclusion of survival loss during the 
training process. In such a configuration, the model learns the 
latent space, enabling the detection of biologically 
homogeneous clusters without the necessity of incentivizing the 
latent space with survival information. Similar to our previous 
approach, we utilized the latent representation of the multi-
omics data as the input for the Mapper graph. In this instance, 
we employed the 𝐿2-norm as the lens function. The resultant 
Mapper graph (with the greatest NMI), color coded by the 
group label, is presented in Fig. 6. Notably, the Mapper 
algorithm once again effectively discerned the two groups 
learned by the DL stratification model. As observed previously, 
we can identify subgroups of patients who may not clearly 
belong to just one of the groups. Additionally, the shapes of 
each group (resembling branches) provide indications of 
potential subgroups that warrant further investigation. 

 
Fig. 6. Mapper graph constructed on the latent representation of the data 

learnt by the deep clustering model, colored by cluster labels. 

VI. CONCLUSIONS 
We introduce a novel approach for interpreting the results 

generated by DL patient stratification models. Specifically, we 
propose the utilization of topological tools to represent the 
latent space learned by the model as a similarity graph. To 
facilitate this, we adapt the NMI metric to serve as an evaluation 
method for Mapper graphs concerning their alignment with the 
outputs provided by the DL stratification model. Through the 
application of this approach to real-life data, we illustrate that 
visualizing the stratification groups as a similarity graph can 
unveil phenomena that might remain undetectable when solely 
examining the labels assigned to each patient. In our future 
work, we intend to further enhance this approach by integrating 
feature selection and AI explainability techniques into the 
Mapper graph. This will enable the identification of key 
features responsible for shaping the overall structure or specific 
portions of the graph. 

 

REFERENCES 
[1] F.	Jiang,	Y.	Jiang,	H.	Zhi,	Y.	Dong,	H.	Li,	S.	Ma,	Y.	Wang,	Q.	Dong,	H.	Shen,	

and	Y.	Wang,	“Artificial	intelligence	in	healthcare:	past,	present	and	
future,”	Stroke	and	vascular	neurology,	2017.	 

[2] X.	Liu,	L.	Faes,	A.	U.	Kale,	S.	K.	Wagner,	D.	J.	Fu,	A.	Bruynseels,	T.	
Mahendiran,	G.	Moraes,	M.	Shamdas,	C.	Kern	et	al.,	“A	compar-	ison	of	
deep	learning	performance	against	health-care	professionals	in	
detecting	diseases	from	medical	imaging:	a	systematic	review	and	
meta-	analysis,”	The	lancet	digital	health,	2019.	 

[3] B.	K.	Beaulieu-Jones,	W.	Yuan,	G.	A.	Brat,	A.	L.	Beam,	G.	Weber,	M.	
Ruffin,	and	I.	S.	Kohane,	“Machine	learning	for	patient	risk	stratifi-	
cation:	standing	on,	or	looking	over,	the	shoulders	of	clinicians?”	NPJ	
digital	medicine,	2021.	 

[4] G.	Carlsson,	“Topology	and	data,”	Bulletin	of	the	American	
Mathematical	Society,	2009.	 

[5] G.	Singh,	F.	Me	́moli,	G.	E.	Carlsson	et	al.,	“Topological	methods	for	the	
analysis	of	high	dimensional	data	sets	and	3d	object	recognition.”	
PBG@	Eurographics,	2007.	 

[6] C.	Loughrey,	P.	Fitzpatrick,	N.	Orr,	and	A.	Jurek-Loughrey,	“The	
topology	of	data:	Opportunities	for	cancer	research,”	Bioinformatics,	
2021.	 

[7] Y.	Bengio,	A.	Courville,	and	P.	Vincent,	“Representation	learning:	A	
review	and	new	perspectives,”	TPAMI,	2013. 

[8] A.	R.	Owens,	C.	E.	McInerney,	K.	M.	Prise,	D.	G.	McArt,	and	A.	Jurek-	
Loughrey,	“Novel	deep	learning-based	solution	for	identification	of	
prognostic	subgroups	in	liver	cancer	(hepatocellular	carcinoma),”	
BMC	bioinformatics,	2021.	 

[9] P.	J.	Rousseeuw,	“Silhouettes:	a	graphical	aid	to	the	interpretation	and	
validation	of	cluster	analysis,”	J.	Comput.	Appl.	Math.,	1987.	 

[10] P.	Linardatos,	V.	Papastefanopoulos,	and	S.	Kotsiantis,	“Explainable	ai:	
A	review	of	machine	learning	interpretability	methods,”	Entropy,	
2020.	 

[11] P.	Angelov	and	E.	Soares,	“Towards	explainable	deep	neural	networks	
(xdnn),”	Neural	Networks,	2020. 

[12] M.	T.	Ribeiro,	S.	Singh,	and	C.	Guestrin,	“”	why	should	i	trust	you?”	
explaining	the	predictions	of	any	classifier,”	in	ACM	SIGKDD,	2016.	 

[13] O.	Csisza	́r,	G.	Csisza	́r,	and	J.	Dombi,	“Interpretable	neural	networks	
based	on	continuous-valued	logic	and	multicriteria	decision	
operators,”	Knowledge-Based	Systems,	2020. 

[14] N.	Saul	and	D.	L.	Arendt,	“Machine	learning	explanations	with	
topological	data	analysis,”	in	VISxAI	Workshop,	2018. 

[15] P.	Xenopoulos,	G.	Chan,	H.	Doraiswamy,	L.	G.	Nonato,	B.	Barr,	and	C.	
Silva,	“Topological	representations	of	local	explanations,”	arXiv	
preprint	arXiv:2201.02155,	2022. 

[16] H.	Elhamdadi,	S.	Canavan,	and	P.	Rosen,	“Affectivetda:	Using	
topological	data	analysis	to	improve	analysis	and	explainability	in	
affective	computing,”	IEEE	TVCG,	2021. 

[17] L.	S.	Carlsson,	M.	Vejdemo-Johansson,	G.	Carlsson,	and	P.	G.	Jo	̈nsson,	
“Fibers	of	failure:	Classifying	errors	in	predictive	processes,”	
Algorithms,	2020. 

[18] M.Carriere,B.Michel,andS.Oudot,“Statistical	analysis	and	parameter	
selection	for	mapper,”	JMLR,	2018. 

[19] T.	O.	Kvalseth,	“On	normalized	mutual	information:	Measure	
derivations	and	properties,”	Entropy,	2017. 

[20] L.	Wei,	Z.	Jin,	S.	Yang,	Y.	Xu,	Y.	Zhu,	and	Y.	Ji,	“Tcga-assembler	2:	
software	pipeline	for	retrieval	and	processing	of	tcga/cptac	data,”	
Bioinformatics,	2018. 

[21] K.	Chaudhary,	O.	B.	Poirion,	L.	Lu,	and	L.	X.	Garmire,	“Deep	learning	
based	multi-omics	integration	robustly	predicts	survival	in	liver	
cancer,”	Clinical	Cancer	Research,	2018.	 

 
 
 

 


