Detailed analysis of ITPR1 missense variants guides diagnostics and therapeutic design

Published in:
Movement Disorders

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2023 the authors.
This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 23. Nov. 2023
Detailed Analysis of ITPR1 Missense Variants Guides Diagnostics and Therapeutic Design

Jussi Pekka Tolonen, MD, PhD,1,2 Ricardo Parolin Schnekenberg, MD, PhD,1,3 Simon McGowan, PhD,4 David Sims, PhD,4 Meriel McEntagart, FRCP,5 Frances Elsmie, MD, FRCP,5 Debbie Shears, MBBS, PhD,3 Helen Stewart, MD, FRCP,3 George K. Tofaris, FRCP, PhD,1,2 Tabib Dabir, MD, DCH, MRCP,6 Patrick J. Morrison, DSc,7 Diana Johnson, BM, BSc, MD,8 Marius Hadjivassiliou, MD, PhD,9 Sian Ellard, PhD, FRCPath,10 Charles Shaw-Smith, MRCP, PhD,11 Anna Znaczko, MRCP,12 Tabib Dabir, MD, DCH, MRCP,6 Mohnish Suri, FRCP,12 Ajoy Sarkar, MRCPCH, FRCPEdin,12 Rachel E. Harrison, BM, BS, PhD,12 Gabriela Jones, MBChB, BSc,12 Henry Houliden, MD, PhD,13 Giorgia Ceravelo, MD,13,14 Joanna Jarvis, BM, MD,15 Jonathan Williams, FRCPath, PhD,16 Morag E. Shanks, PhD,16 Penny Clouston, FRCPath, PhD,16 Julia Rankin, MD,17 Lubov Blumkin, MD,18,19 Tally Lerman-Sagie, MD, PhD,18,20 Penina Ponger, MD,18,21 Salmo Raskin, MD, PhD,22 Katarina Granath, BM,23 Johanna Uusimaa, MD, PhD,23,24 Emma McCann, MBChB, BSc,25 Shelagh Joss, MBChB, Med,26 Alexander J.M. Blakes, BMCh, MSc,27,28 Kay Metcalfe, FRCP, MD,27,28 Helen Kingston, MD, FRCP,28 Marta Bertoli, MD,29 Rachel Kneen, BM, BS,30 Sally Ann Lynch, MD,31 Inmaculada Martínez Albaladejo, MD,32 Austen Peter Moore, FRCP,33 Wendy D. Jones, MRCP,34 Genomics England Research Consortium,35 Esther B.E. Becker, PhD,1,2, and Andrea H. Németh, MBBS, FRCP, DPhil,1-3

1Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
2Kavli Institute of Nanoscale Science Discovery, University of Oxford, Oxford, UK
3Oxford Center for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, University of Oxford, Oxford, UK
4Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
5South West Regional Genetics Service, St. George’s University Hospitals, London, UK
6Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
7Patrick G. Johnston Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
8Sheffield Clinical Genetics Service, Sheffield Children’s NHS Foundation Trust, Sheffield, UK
9Department of Neurology, Royal Hallamshire Hospital, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
10Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, UK
11Peninsula Clinical Genetics Service, Royal Devon University Hospital, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
12Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
13Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
14Unit of Pediatric Emergency, Department of Adult and Childhood Human Pathology, University Hospital of Messina, Messina, Italy
15Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
16Oxford Regional Genetics Laboratory, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
17Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
18Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
19Pediatric Movement Disorders Service, Pediatric Neurology Unit, Edith Wolfsen Medical Center, Holon, Israel
20Magen Center for Rare Diseases-Metabolic, Neurogenetic, Wolfsen Medical Center, Holon, Israel
21Movement Disorders Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
22Genetika Centro de Aconselhamento e Laboratório, Curitiba, Brazil
23Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
24All Wales Medical Genetics Service, Wrexham Maelor Hospital, Wrexham, UK
25Liverpool Women’s Hospital Foundation Trust, Liverpool, UK

Funding agency: This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101023312, Nuffield Department of Clinical Neurosciences (University of Oxford), Ataxia UK, Action Medical Research (GN2063), the Wellcome Trust (161/037, 223521/Z/21/Z), Henry Smith Charity, the John Fell Oxford University Press Research Fund, the Medical Research Council (MR/V007068/1), Orionin Tutkimussäätiö, Sigrid Jusélius Stiftning, Stiftelsen Alma och K. A. Snellman Stiftlig, Lastentautien Tutkimussäätiö, and the Research Council of Finland (356676, 331436).

Received: 30 July 2023; Revised: 16 September 2023; Accepted: 16 October 2023

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.29651

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Dr. E. Becker, Nuffield Department of Clinical Neurosciences, Dorothy Crowfoot-Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; E-mail: esther.becker@ndcn.ox.ac.uk; Dr. A. Németh, Nuffield Department of Clinical Neurosciences, University of Oxford, 6th Floor West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; E-mail: andrea.nemeth@ndcn.ox.ac.uk

Esther B. E. Becker and Andrea H. Németh share senior authorship.

Relevant conflicts of interest/financial disclosures: The authors declare that no competing interests exist.
ABSTRACT: Background: The ITPR1 gene encodes the inositol 1,4,5-triphosphate (IP₃) receptor type 1 (IP₃R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood.

Objectives: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy.

Methods: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction.

Results: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP₃-binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression.

Conclusions: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies.

Key Words: ITPR1; IP₃R1; spinocerebellar ataxia type 29; Gillespie syndrome; cerebellum; next-generation sequencing

Inositol 1,4,5-triphosphate receptors (IP₃R1–3) are critical players in intracellular calcium signaling, mediating the release of calcium ions from the endoplasmic reticulum (ER) into the cytosol. Activation of the tetrameric channel is induced by simultaneous binding of four molecules of inositol 1,4,5-triphosphate (IP₃), one to each subunit comprising the IP₃R channel. The subunits consist of five key domains: an N-terminal suppressor domain, the loss of which appears to increase IP₃ binding to its binding domain; the IP₃-binding domain; a cytosolic regulatory domain; a transmembrane channel domain; and a cytosolic C-terminus. The domains are organized in a tetrameric “mushroom-like” structure, with the stalk inserted into the ER membrane and the cap exposed to the cytosol. This organization makes the IP₃ binding core accessible to IP₃, and the regulatory domain available for many protein interactions (eg, with carbonic anhydrase 8, CAR8) and post-translational modifications that regulate the receptor activity. Binding of IP₃ triggers conformational changes that are transmitted intramolecularly over a large distance to open the C-terminal channel pore.

Expression of ITPR1 (OMIM *147265) encoding the type 1 IP₃R is ubiquitous, and IP₃R1 is the predominant neuronal IP₃ receptor enriched in the Purkinje cells of the cerebellar cortex, where it regulates Purkinje cell development and calcium homeostasis. A knockout of the Itp1 gene in mice results in very early lethality, severe ataxia, and epileptic seizures without an overt cellular phenotype. In humans, ITPR1 is considered a hub gene for cerebellar ataxias. Pathogenic variants in ITPR1 cause neurodegenerative spinocerebellar ataxia
type 15 (SCA15)\(^\text{17}\) (OMIM #606658), and congenital SCA2\(^\text{18}\) (OMIM #117360), Gillespie syndrome\(^\text{19,20}\) (OMIM #206700), and severe pontine/cerebellar hypoplasia.\(^\text{21}\) The IP\(_3\)R1 channel further contributes to neurodegeneration\(^\text{22}\) in SCA\(^\text{23,24}\) (OMIM #183090), SCA\(^\text{25}\) (OMIM #109150), Huntington’s disease\(^\text{26,27}\) (OMIM #143100), familial Alzheimer’s disease\(^\text{28,29}\) (OMIM #607822), and has been implicated in mouse models of ATM- and APTX-related ataxias,\(^\text{30}\) making the IP\(_3\)R1 channel an attractive druggable target. While the enrichment of IP\(_3\)R1 expression in the Purkinje cells may account for the predominantly cerebellar features observed in IP\(_3\)R1-related disorders,\(^\text{17-20,31}\) the pathophysiological basis for these different phenotypes is poorly understood. Furthermore, cerebellar atrophy was recently highlighted as a hallmark of IP\(_3\)R1-related disease,\(^\text{32}\) but concordance between cerebellar atrophy and symptom progression is unclear.

With increasing interest in disease-specific American College of Medical Genetics and Genomics/American Association of Molecular Pathology (ACMG/AMP) variant interpretation guidelines,\(^\text{33-35}\) and with prospects for gene-specific therapies being developed, we performed detailed genotype–phenotype analyses of IP\(_3\)R1 missense variants. We describe the genetic variants and clinical features for a cohort of 46 patients with early-onset ataxia, highlighting cases where cerebellar atrophy was demonstrated by serial imaging, and correlate the imaging findings with the clinical phenotypes. Genotype–phenotype correlation has previously been hindered by inconsistent transcript annotation in the literature.\(^\text{18-20,31,36}\) We investigated IP\(_3\)R1 expression by quantitative polymerase chain reaction (PCR) to determine relative transcript levels and standardized IP\(_3\)R1 variant nomenclature. Our data provide valuable information for the clinical interpretation of IP\(_3\)R1 missense variants and a focus for future preclinical studies towards new therapeutics.

Methods

The Deciphering Developmental Disorders Cohort

The Deciphering Developmental Disorders (DDD) study investigated children with undiagnosed developmental disorders across the UK and Ireland, utilizing exome sequencing in molecular diagnostics. Written informed consent for all patients was obtained through the DDD study,\(^\text{37,38}\) or directly by their physician.

The DDD diagnostics framework has been described previously.\(^\text{39,40}\) Briefly, fragmented genomic DNA was used for targeted pull-down with a custom Agilent SureSelect 55 MB Exome Plus Enrichment System (Agilent, Santa Clara, CA, USA) and 75-base pair paired-end reads were sequenced on an Illumina HiSeq. Average sequencing depth (ratio of sequenced bases to targeted bases) was 903 across the whole targeted sequence or 933 across autosomal targets only. Alignment was performed with the Burrows-Wheeler Aligner (v.0.59), and realignment around indels was performed with the Genome Analysis Toolkit (GATK).\(^\text{40}\) Putative de novo variants were identified from exome data with DeNovoGear software.

The DDD study identified 62 patients with variants in IP\(_3\)R1. We filtered these individuals according to: (1) absence of other pathogenic variants; (2) conservation of nucleotides and amino acids; (3) low allele frequency in ExAC and gnomAD; and (4) availability of clinical information. Variants were considered disease-causing if they met the ACMG criteria for likely pathogenic or pathogenic\(^\text{33}\) and were associated with an appropriate phenotype. Five cases where a variant of unknown significance (VUS) was considered the most likely cause of the probands’ phenotypes were included to increase the likelihood of determining pathogenicity in the future.

Clinical Collaborations

Additional individuals were identified through specialist ataxia or neurogenetics clinics in Brazil, Finland, Ireland, Israel, Italy, Spain, and the UK. Targeted sequencing across a panel of known ataxia genes, or exome sequencing, was performed, and candidate variants were confirmed by Sanger sequencing. Sequencing, sequence analysis, variant calling, and variant annotation were performed according to in-house protocols of the respective National Health Service (NHS) genetics laboratories or external laboratories.

All variants were analyzed by the variant interpretation programme Alamut (http://www.interactive-biosoftware.com), and by the standard pathogenicity prediction programmes Polyphen,\(^\text{41}\) SIFT,\(^\text{42}\) and CADD.\(^\text{43}\) Nucleotide conservation was estimated by PhyloP.\(^\text{44}\)

The 100,000 Genomes Cohort

The 100,000 Genomes Project, funded by NHS England, investigates patients with undiagnosed rare disease and/or cancer using genome sequencing. Details of the diagnostics pipeline are published.\(^\text{45}\) Briefly, genome sequencing was performed with TruSeq DNA PCR-free sample preparation (Illumina) on a HiSeq 2500 sequencer with mean depth of 32× and a depth greater than 15× for at least 95% of the reference human genome. Genome sequencing reads were aligned to the Genome Reference Consortium human genome build 37 (GRCh37) with Isaac Genome Alignment Software. Family-based variant calling of single-nucleotide variants (SNVs) and indels was performed with Platypus variant caller. Variants were interpreted against the ACMG criteria.

Total RNA Isolation and cDNA Synthesis

Total RNA from human fetal cerebellar tissue (female, 20 post-conception weeks) was acquired
commercially (AMS Biotechnology (Europe) Ltd., Abingdon, UK). Postnatal cerebellar samples were obtained from the Oxford Brain Bank (REC 15/SC/0639). Total RNA was isolated using the RNeasy Mini kit (QIAGEN Ltd., Manchester, UK) according to the manufacturer’s instructions and eluted in nuclease-free water. Approximately 30 mg of cortical cerebellar tissue was sonicated for 10 s using a Soniprep 150 Ultrasonic Disintegrator (MSE (UK) Ltd, London, UK) in RLT lysis buffer (QIAGEN). Samples were kept on ice during handling. 1000 ng of total RNA and oligo(dT) primers were used to synthesize cDNA with the SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific, Paisley, UK) in RLT lysis buffer (QIAGEN). Samples were kept on ice during handling. 1000 ng of total RNA and oligo(dT) primers were used to synthesize cDNA with the SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific, Paisley, UK) according to the manufacturer’s instructions. RNA concentrations were measured using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).

Quantitative PCR

Quantitative PCR (qPCR) was performed using the Fast SYBR Green Master Mix (Thermo Fisher Scientific) with a StepOnePlus Real-Time PCR System (Applied Biosystems, Paisley, UK). Custom qPCR primers were designed to target a region shared by all ITPR1 transcripts (exon–exon junction between exons 1 and 2) or alternatively spliced isoforms. A duplication event around the S1 site prevented the reliable quantification of the transcripts that lack S1 (ie, S1– transcripts). Thus, the S1+ transcripts are presented as a fraction of total ITPR1 mRNA. For the S2 and S3 sites, we used one primer pair to quantify transcripts that include the alternatively spliced site (S2+ and S3+) and one primer pair spanning the junction of the flanking sequences (S2– and S3–). The data are presented as a fraction of S+ to S– transcripts. The qPCR primers are listed in Supplementary Table S1. Relative expression levels were normalized to ACTINB and GAPDH using the standard $2^{-\Delta\Delta CT}$ technique.

Analysis of Single-Nucleus RNA Sequencing Data

The single-nucleus RNA sequencing dataset used in this study was published previously. Re-analysis was performed as in the original publication using Seurat and other necessary packages in R. Data on ITPR1 in the developing human brain was extracted from the BrainSpan Developmental Transcriptome dataset (RNA-Seq Genome v10).

Results

Novel ITPR1 Variants and Standardized Variant Nomenclature

To characterize previously unreported cases of spinocerebellar ataxia type 29 (SCA29) and Gillespie syndrome (GLSP), we utilized next-generation sequencing data from the DDD study (Table S2), the 100,000 Genomes Project, and multiple clinical collaborations (see Supplementary Fig. S1 for study flow). Overall, we identified 46 probands who met our filtering criteria with 52% of individuals carrying a known missense variant (Table 1). Some 52% (24/46) of cases were de novo and 82% (23/28) of variants had been classified as disease-causing by the reporting laboratories (Table 1). The molecular characteristics of each variant are shown in Supplementary Tables S3 (DDD, clinical collaborations) and S4 (100,000 Genomes Project).

The 46 probands carried 28 unique ITPR1 variants, of which 17 had not been reported previously and were distributed in the N-terminus (n = 8), the regulatory domain (n = 4), and the C-terminus (n = 5) (Fig. 1, Supplementary Tables S3 and S4). The first 200 residues in the N-terminus comprise the suppressor domain, containing a single known pathogenic variant (p.Arg36Cys) with a gain-of-function effect of increased IP$_3$ binding. As part of our study, we identified two cases harboring the same p.Arg36Cys variant (one published recently with limited phenotypic information$^{[10]}$) and three cases of previously unreported variants p.Asp34Val and p.Glu106Lys. The aspartate and arginine at positions 34 and 36, respectively, have been shown to regulate the function of the suppressor domain.$^{[49,51]}$ We therefore confirmed the p.Arg36Cys as a key suppressor domain variant, potentially destabilizing the inhibitory effect this domain has on IP$_3$ binding.$^{[4]}$ A review of the literature and our data further highlighted variants p.Thr267Met, p.Arg269Trp, p.Val1562Met, p.Gly2554Arg, and p.Lys2611del as mutational hotspots (Fig. 1). In our entire dataset, only one case, harboring the p.Val1562Met

TABLE 1 Summary table of ITPR1 variants in the present study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (n)</td>
</tr>
<tr>
<td>Varianta</td>
<td></td>
</tr>
<tr>
<td>Known</td>
<td>52% (24/46)</td>
</tr>
<tr>
<td>Novel</td>
<td>48% (22/46)</td>
</tr>
<tr>
<td>Variant origin</td>
<td></td>
</tr>
<tr>
<td>De novo</td>
<td>52% (24/46)</td>
</tr>
<tr>
<td>Inherited</td>
<td>9% (4/46)</td>
</tr>
<tr>
<td>Unknown</td>
<td>39% (18/46)</td>
</tr>
<tr>
<td>Variant classification</td>
<td></td>
</tr>
<tr>
<td>Pathogenic</td>
<td>36% (10/28)</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>46% (13/28)</td>
</tr>
<tr>
<td>Variant of unknown significance (VUS)</td>
<td>18% (5/28)</td>
</tr>
</tbody>
</table>

aFor each individual; range of individuals with the same variant, 1–7.
variant, was not associated with ataxia but global development delay (Supplementary Table S4). This variant lies within the CAR8-binding region and was the first published missense variant associated with SCA29 of a very mild phenotype. Finally, in our cohort, the only variants associated with GLSP were p.Gly2554Arg and p.-Lys2611del, both previously reported in GLSP.

Variant calling for the present study revealed significant inconsistencies in ITPR1 variant nomenclature which confounded variant interpretation. The variable terminology is explained by alternative splicing of the ITPR1 mRNA at three sites (S1, S2, and S3, corresponding to exons 12, 40–42, and 23, respectively, Supplementary Fig. S2), resulting in at least three different mRNA transcripts being used for variant mapping. Based on previously published RNA sequencing datasets, ITPR1 mRNA is expressed in cerebellar Purkinje cells from early embryonic development to adulthood (Supplementary Fig. S3). Using custom qPCR primers (Supplementary Fig. S2A), we determined that the three splice sites are also expressed from fetal to postnatal samples (Supplementary Fig. S2B–D). Concurring with previous data in rodents, the S3 site undergoes a shift towards shorter isoforms whereby the S3– transcripts predominated in the postnatal samples (Supplementary Fig. S2D). Taken together, our data suggest that the three alternatively spliced sites are expressed in the human cerebellum. Consequently, we mapped disease-causing variants, both from published literature (Supplementary Table S5) and our own datasets (Supplementary Tables S3 and S4) to the longest ITPR1 transcript (NM_001378452.1) (Fig. 1), which contains all three splice sites. This protein isoform is 2758 amino acid residues in length and is listed as the canonical IP3R1 isoform in UniProt (Q14643-1) and Ensembl (ENST00000649013.2, MANE select transcript).

Core Phenotypes, Neuroradiological Findings, and Atypical Features

Detailed clinical information is summarized in Table 2. Most cases (n = 40, 87%) resemble SCA29

FIG. 1. Pathogenic IP3R1 missense variants cluster in three functional domains. The ITPR1 gene encodes a protein of 2758 residues with four functional domains (residues 1–223: suppressor [green], residues 226–578: IP3-binding [blue], residues 605–2217: regulatory [gray], residues 2227–2758: transmembrane channel [yellow]), and multiple interaction partners. Shown are previously published variants and variants identified as part of the present study, categorized as internal truncating (red square), frameshift (blue circle), missense (yellow circle), and in-frame codon deletion (red circle), and grouped by diagnosis (SCA29/pontocerebellar hypoplasia [PCH], and GLSP). Homozygous variants are shown in red text, whereas novel variants are highlighted on a white background. Variants associated particularly with PCH are shown in blue text. Variants with published experimental validation are further denoted by a blue star. Each variant is listed with the known number of cases per variant indicating multiple mutational hotspots. [Color figure can be viewed at wileyonlinelibrary.com]
clinically with five cases of aniridia resulting in the diagnosis of GLSP. Only one individual presented with adult-onset ataxia requiring further evaluation of variant pathogenicity (p.Glu1449Ala, VUS). Some 92% of cases with sufficient data were identified within the first year of life with initial symptoms consisting of hypotonia, delayed developmental milestones, or ophthalmological findings (Table 2). Independent sitting was delayed until after the first year of life in 67% of individuals, and a significant proportion of individuals had not attained independent walking at last assessment (Table 2). Ataxia was observed in 97% of individuals for whom clinicians had specifically reported presence or absence of ataxia. Intellectual disability was formally diagnosed in 45% of cases. Considering the high proportion of cases with milder cognitive impairments (ie, learning disability, Supplementary Tables S6 and S7), the core phenotype of SCA29 is ataxia with cognitive impairment (Table 2). Nevertheless, our dataset does include individuals with normal cognition (5/34, 13.9%) or limited motor symptoms (5/28, 14.3%), which is in agreement with the range of phenotypes described in published case reports of ITPR1 missense variants (n = 86, Supplementary Tables S5 and S8).

Three patients received a genetic diagnosis of SCA29 as part of this study. Atypical features and neuroradiological findings are presented in Table 3 and Supplementary Tables S9 and S10. The neuroradiological findings were heterogeneous (Table 3, Supplementary Tables S9 and S10). In our dataset, brain imaging of cases was variously reported as unremarkable (28%), cerebellar hypoplasia (24%), or cerebellar atrophy (62%), and occasionally both hypoplasia and atrophy. In those cases in which serial scanning was available (see variants p.Arg269Trp, p.-Leu605Phe, p.Leu1688Pro, p.Ile2439Phe, p.-Gly2554Arg, p.Phe2594Ser, Supplementary Tables S9 and S10), the degree of atrophy did not correlate with the subjective severity of ataxia or intellectual disability, both of which commonly remain stable or may improve. Importantly, in none of the cases with proven cerebellar atrophy was a decline in function or clinical regression reported. Extra-neurological features were reported in several patients without genotype–phenotype association (Table 3, Supplementary Tables S9 and S10). These range from dysmorphic features in the face or extremities to abnormalities in other organ systems such as the heart, where atrioventricular septal defects and pulmonary stenosis are seen in 9% (3/35) and 6% (2/35) of individuals with available data. The individual with adult-onset ataxia (p.Glu1449Ala, VUS) presented with distal sensory neuropathy, which has not previously been reported with ITPR1 variants.

Pathogenic Missense Variants Cluster in Three Functional Domains

To evaluate genotype–phenotype correlations in the three-dimensional space, we projected published missense variants onto the rat IP3R1 tetrameric protein structure. Homozygous truncating variants (p.-His93fs*64, p.Arg728*, and p.Gln1567*) are only reported in GLSP. Known missense variants cluster in two major groups: an N-terminal cluster consisting solely of SCA29-associated missense variants (Supplementary Fig. S4A) and a C-terminal cluster in...
TABLE 3 Summary of neuroimaging and extra-cerebellar findings in the present study

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage % (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroimaging</td>
<td></td>
</tr>
<tr>
<td>Unremarkable</td>
<td>28% (8/29)</td>
</tr>
<tr>
<td>Cerebellar hypoplasia</td>
<td>24% (7/29)</td>
</tr>
<tr>
<td>Cerebellar atrophy</td>
<td>62% (18/29)</td>
</tr>
<tr>
<td>Cardiovascular abnormalities</td>
<td></td>
</tr>
<tr>
<td>Septal defects</td>
<td>9% (3/35)</td>
</tr>
<tr>
<td>Pulmonic stenosis</td>
<td>6% (2/35)</td>
</tr>
<tr>
<td>Musculoskeletal abnormalities</td>
<td></td>
</tr>
<tr>
<td>Microcephaly</td>
<td>11% (4/35)</td>
</tr>
<tr>
<td>Scoliosis</td>
<td>3% (1/35)</td>
</tr>
<tr>
<td>Facial findings</td>
<td>23% (8/35)</td>
</tr>
<tr>
<td>Extremities</td>
<td>17% (6/35)</td>
</tr>
<tr>
<td>Seizures</td>
<td>9% (3/35)</td>
</tr>
</tbody>
</table>
Arg568) directly impact hydrogen bond formation between IP₃ and its binding domain, significantly reducing IP₃-binding affinities and leading to dominant negative effects. These variants may respond to positive modulators of IP₃R1 channel function. Interestingly, the first IP₃R1 potentiator was recently published with evidence to suggest it may reverse the LOF effect of the p.Thr267Met and p.Arg269Trp variants. In contrast, variants p.Arg36Cys, p.Val1562Met, and p.Ser1502Asp confer a GOF effect by interfering with different suppression mechanisms of the IP₃R1 channel potentially requiring IP₃R1 inhibitors as therapeutics. Polyglutamine-expansion disorders (ie, SCA2, SCA3, Huntington’s disease, and familial Alzheimer’s disease) involving a dysregulated IP₃R1 channel may also respond to IP₃R1 inhibition. The figure shows the protein structure for the rat IP₃R1 (Protein Data Bank: 7LHF) and ataxin-3 (light pink, Protein Data Bank: 3O65). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Different functional clusters of IP₃R1 missense variants guide therapeutic design. (A) Loss-of-function (LOF) variants such as p.Thr267Met, p.Arg269Trp, and p.Arg568Gly are likely to require potentiators of IP₃R1 channel function to be targeted therapeutically. (B) Gain-of-function (GOF) variants p.Arg36Cys, p.Val1562Met, and p.Ser1502Asp interfere with different suppression mechanisms of the IP₃R1 channel potentially requiring IP₃R1 inhibitors as therapeutics. Polyglutamine-expansion disorders (ie, SCA2, SCA3, Huntington’s disease, and familial Alzheimer’s disease) involving a dysregulated IP₃R1 channel may also respond to IP₃R1 inhibition. The figure shows the protein structure for the rat IP₃R1 (Protein Data Bank: 7LHF) and ataxin-3 (light pink, Protein Data Bank: 3O65). [Color figure can be viewed at wileyonlinelibrary.com]
distinguished by aniridia19,20 or SCA2918 with a few cases of severe pontine/cerebellar hypoplasia.21 N-Terminal variants are solely associated with SCA29, while C-terminal variants can cause either GLSP (p.-Gly2554Arg and p.Lys2611del) or SCA29. Some evidence points to a downstream transcription initiation site (TSS) 5’ to exon 57 of the \textit{ITPR1} gene giving rise to the aniridia in GLSP,64 but this TSS does not account for variants that have been associated with both GLSP and SCA29,31,58 or homozygous N-terminal truncating variants associated with GLSP.19,56,57 Even within the SCA29 diagnosis,18,52 the phenotype can range from mild learning disabilities without ataxia to severe, debilitating ataxia and significant intellectual disability. Therefore, the continuum of symptoms is unexplained by current genotype–phenotype evidence and points to the involvement of additional modulators. Nevertheless, the severity of symptoms in SCA29 emphasizes the necessity for early diagnosis and targeted rehabilitation.

Our data highlight two features of SCA29/GLSP that are less characterized: the distinction between cerebellar hypoplasia and atrophy, and extra-neurological features. Available evidence suggests that the natural history of SCA29 and GLSP is non-progressive. However, recent publications have provided evidence that superior vermian and/or hemispheric cerebellar atrophy may represent a hallmark of \textit{ITPR1}-related disorders.32,65 We report on at least six individuals in whom cerebellar hypoplasia was excluded by early brain imaging (3 months to 2 years) but who later developed cerebellar atrophy without evidence of clinical regression. At least four individuals were shown to have cerebellar hypoplasia shortly after birth. This distinction between hypoplasia and atrophy is important, as atrophy usually implies neurodegeneration and is unexpected in patients with clinically non-progressive disease. Repeated imaging can distinguish between the two, but we hypothesize that the clinical significance and mechanistic basis of cerebellar atrophy is uncertain. A prospective natural history study of SCA29 utilizing serial scanning and objective disease severity measures is necessary to confirm this finding. Such a study should further aim to provide systematic data on prevalence of \textit{ITPR1}-related diseases, and to add genomic diversity by including individuals from underrepresented populations.

Several individuals in the cohort present with structural malformations (eg, dysmorphic features and congenital heart defects). Previously, \textit{ITPR1} variants have been linked to hemifacial microsomia66 and cardiovascular malformations,57 mainly in association with GLSP. Interestingly, atrial septal defects and other cardiac abnormalities are seen in at least seven published cases and five individuals in our cohort suggesting a higher-than-expected prevalence considering the size of the cohort and the prevalence of congenital heart disease in the general population (1.4 and 3.1 per 1000 live births for atrial and ventricular defects, respectively).67 IP\textsubscript{3}R1 and IP\textsubscript{3}R2 have been implicated in the perturbation of cardiogenesis via deficient calcineurin-NFATc signaling,68 but causation between dysfunctional IP\textsubscript{3}R1 and congenital heart disease remains unclear.

In conclusion, our data provide evidence for a core SCA29/GLSP phenotype resulting from pathogenic IP\textsubscript{3}R1 missense variants in specific protein domains. We have standardized \textit{ITPR1} variant nomenclature to enable easier cross-comparison of variant novelty and pathogenicity between datasets. Our data highlight a diverse expression of \textit{ITPR1} transcripts in the cerebellum raising the question whether alternative splicing of \textit{ITPR1} mRNA could help explain why \textit{ITPR1} haploinsufficiency (SCA15) only manifests in adulthood. Finally, we identify key IP\textsubscript{3}R1 variants for preclinical research to guide therapeutic design for SCA29/GLSP and other disorders involving a dysregulated IP\textsubscript{3}R1 channel.

Acknowledgments: We thank the patients and their families involved in this study. We acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC), Brains for Dementia Research (BDR) (Alzheimer Society and Alzheimer Research UK), Autistica UK, and the NIHR Oxford Biomedical Research Centre. The Deciphering Developmental Disorders (DDD) study presents independent research commissioned by the Health Innovation Challenge Fund (Grant No. HCF-1009-003), a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute (Grant No. WT098051). The views expressed in this publication are those of the authors and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83), granted by the Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research (NIHR), through the Comprehensive Clinical Research Network. This study makes use of data generated by the DECIPHER community. A full list of centers that contributed to the generation of the data is available from https://deciphergenomics.org/about/stats and via email from contact@deciphergenomics.org. Funding for the DECIPHER project was provided by Wellcome (Grant No. WT223718/Z/21/Z). This research was made possible through access to the data and findings generated by the 100,000 Genomes Project. The 100,000 Genomes Project is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100,000 Genomes Project is funded by the NIHR and NHS England. The Wellcome Trust, Cancer Research UK, and the MRC have also funded research infrastructure. The 100,000 Genomes Project uses data provided by patients and collected by the National Health Service as part of their care and support.

Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.
Financial Disclosures of All Authors for the Preceding 12 Months

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 101023312 PEDIATAX (J.P.T). J.P.T. was further supported by the Research Council of Finland (Grant No. 356676), the Sigrid Jusélius Foundation, the Orion Research Foundation sr, and the Alma and K.A. Snellman Foundation, Oulu, Finland. This publication arises from research funded by the John Fell Oxford University Press Research Fund (J.P.T.). D.S. is funded by MRC. G.K.T. is supported by a MRC Senior Clinical Fellowship (MR/V007068/1). S.E. serves on the board of DECIPHER and received royalties for Emery’s Elements of Medical Genetics. C.S.-S. has received reimbursements for expert testimonies in medicolegal case reports. K.G. is supported by the Alma and K.A. Snellman Foundation, Oulu, Finland, and the Foundation for Paediatric Research. J.U. serves on the advisory board of Pfizer (DMD Advisory Board, Finland) and is funded by the Research Council of Finland (Decision No. 331436), the Foundation for Paediatric Research (Finland), and a state subsidy of the Oulu University Hospital, Finland. A.J.M.B. is supported by a Wellcome PhD Training Fellowship for Clinicians and the 4Ward North PhD Programme for Health Professionals (223521/Z/21/Z). S.A.L. serves on the advisory boards of the European Union of Medical Specialists, the European Society of Human Genetics, and the International Rare Disease Research Consortium. S.A.L. is employed by the HSE Ireland and has been funded by the Adelaide Health Foundation Ireland. A.P.M. has received speaker fees and royalties from Ipsen UK for the Livechart Botulinum Toxin Treatment Outcome system, and royalties for the ‘Handbook of Botulinum Toxin Treatment’ (Blackwell Science). W.D.J. is an honorary associate professor at University College London, London, and a patron of the ‘National Wiedemann–Steiner Warriors’ charity. E.B.E.B. is funded by the UKRI-MRC, UKRI-BBSRC, Cancer Research UK, LifeArc, and John Fell OUP Research Fund. A.H.N. was funded by Ataxia UK, John Fell OUP Research Fund, Henry Smith Charity, Nuffield Department of Clinical Neurosciences (University of Oxford), and Action Medical Research (GN2063). Authors declare employment by their respective institutes.