Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials

Published in:
The Lancet

Document Version:
Publisher’s PDF, also known as Version of record

Queen’s University Belfast - Research Portal:
Link to publication record in Queen’s University Belfast Research Portal

Publisher rights
Copyright © 2012 The Authors
This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited

General rights
Copyright for the publications made accessible via the Queen’s University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen’s research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials

Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)

Summary

Background Moderate differences in efficacy between adjuvant chemotherapy regimens for breast cancer are plausible, and could affect treatment choices. We sought any such differences.

Methods We undertook individual-patient-data meta-analyses of the randomised trials comparing: any taxane-plus-anthracycline-based regimen versus the same, or more, non-taxane chemotherapy (n=44 000); one anthracycline-based regimen versus another (n=7000) or versus cyclophosphamide, methotrexate, and fluorouracil (CMF; n=18 000); and polychemotherapy versus no chemotherapy (n=32 000). The scheduled dosages of these three drugs and of the anthracyclines doxorubicin (A) and epirubicin (E) were used to define standard CMF, standard 4AC, and CAF and CEF. Log-rank breast cancer mortality rate ratios (RRs) are reported.

Findings In trials adding four separate cycles of a taxane to a fixed anthracycline-based control regimen, extending treatment duration, breast cancer mortality was reduced (RR 0·86, SE 0·04, two-sided significance [2p]=0·0005). In trials with four such extra cycles of a taxane counterbalanced in controls by extra cycles of other cytotoxic drugs, roughly doubling non-taxane dosage, there was no significant difference (RR 0·94, SE 0·06, 2p=0·33). Trials with CMF-treated controls showed that standard 4AC and standard CMF were equivalent (RR 0·98, SE 0·05, 2p=0·67), but that anthracycline-based regimens with substantially higher cumulative dosage than standard 4AC (eg, CAF or CEF) were superior to standard CMF (RR 0·78, SE 0·06, 2p=0·0004). Trials versus no chemotherapy also suggested greater mortality reductions with CAF (RR 0·64, SE 0·09, 2p<0·0001) than with standard 4AC (RR 0·78, SE 0·09, 2p=0·01) or standard CMF (RR 0·76, SE 0·05, 2p<0·0001). In all meta-analyses involving taxane-based or anthracycline-based regimens, proportional risk reductions were little affected by age, nodal status, tumour diameter or differentiation (moderate or poor; few were well differentiated), oestrogen receptor status, or tamoxifen use. Hence, largely independently of age (up to at least 70 years) or the tumour characteristics currently available to us for the patients selected to be in these trials, some taxane-plus-anthracycline-based or higher-cumulative-dosage anthracycline-based regimens (not requiring stem cells) reduced breast cancer mortality by, on average, about one-third. 10-year overall mortality differences paralleled breast cancer mortality differences, despite taxane, anthracycline, and other toxicities.

Interpretation 10-year gains from a one-third breast cancer mortality reduction depend on absolute risks without chemotherapy (which, for oestrogen-receptor-positive disease, are the risks remaining with appropriate endocrine therapy). Low absolute risk implies low absolute benefit, but information was lacking about tumour gene expression markers or quantitative immunohistochemistry that might help to predict risk, chemosensitivity, or both.

Funding Cancer Research UK; British Heart Foundation; UK Medical Research Council.

Introduction The Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) was established in 1985 to coordinate individual-patient-level meta-analyses of all randomised trials of adjuvant treatments.1 A previous report1 on the trials that had begun by 1995 reviewed polychemotherapy versus no adjuvant chemotherapy and anthracycline-based chemotherapy (with doxorubicin or epirubicin) versus CMF (cyclophosphamide, methotrexate, fluorouracil), but did not take dosage into account and did not review taxanes.

The present report reviews the preliminary taxane trial results and updates the other chemotherapy trial results, assessing the relevance of scheduled drug dosage and investigating whether any of the available patient or tumour characteristics (eg, age, nodal status, tumour differentiation, oestrogen receptor [ER] status, use of tamoxifen) affect the proportional reductions with modern chemotherapy in breast cancer recurrence and death.

Methods Trials Methods of trial identification, data checking, analysis, and involvement of trialists in the interpretation of results are as in previous EBCTCG reports.14 Information about each individual patient was sought during 2005–10 from all randomised trials begun during 1973–2003 of: (1) taxane-based versus non-taxane-based regimens (data for 33 trials, begun in 1994–2003); (2) any anthracycline-based regimen versus standard or near-standard CMF.
vs control) in all subgroups together should generally be

rates (years 0–4) might be more sensitive than effects on

statistically reliable, the overall χ^2_1 for the RR (treatment

years 0–4), so the webappendix reports effects on early

proportional reductions might be less extreme than in

materially affected by differences in follow-up duration

other outcomes, because they are substantial and not

between different regimens, effects on early recurrence

women without recurrence. Breast cancer mortality RRs

mortality rate among all women minus that among

compared, results, and log-rank analyses.

Statistical analysis

For each main chemotherapy comparison, forest plots

(see table for the terminology used for these and selected

other regimens; 20 trials, begun in 1978–97); (3) higher

versus lower anthracycline dosage (six trials, begun in

1985–94); and (4) polychemotherapy versus no adjuvant

chemotherapy (64 trials, begun in 1973–96, including

22 of various anthracycline-based regimens and 12 of

standard or near-standard CMF).

Trials of intensive chemotherapy with stem-cell rescue

or of variation only in dose-density are not included.

Datasets from taxane trials had to await trial publication,

so they arrived from 2005 to 2010; although 33 are

included (n=45000), three are not (n=7000; started by

2003 and unreported before mid-2010; see forest plot in

webappendix p 23). Otherwise, all main analyses include

99% or more of all relevant patients in closed trials.

Results

Taxane-based regimens versus active controls

For each trial of taxane-based versus non-taxane-based

chemotherapy, forest plots (webappendix pp 21–26) describe

the separate trials and their results, graphs illustrate absolute risks in various

circumstances, and detailed subgroup analyses explore whether proportional risk reductions depend on patient

or tumour characteristics. All text figures plus many more detailed analyses, and trial references, are in the

webappendix (which needs magnified viewing).

Recurrence, ER, and nodal status are defined as before. Statistical analyses are stratified as before by trial, age,

ER status, and, except in neoadjuvant trials, nodal status.

If a log-rank statistic $z=(o−e)/\sqrt{v}$ and $b=(o−e)/v$, the event rate ratio (RR, newer treatment vs control) is estimated as $exp(b)$ with standard error $SE=(RR−1)/z$. Either RR and its SE are cited, or confidence limits for RR are derived from those for b (by normal approximations). $2p$ indicates two-sided significance, and n the number of patients to the nearest 500 or 1000 (with, for balance, control groups that were compared with more than one active group double-counted or triple-counted).

Breast cancer mortality rate in each year is the overall mortality rate among all women minus that among women without recurrence. Breast cancer mortality RRs are estimated from the corresponding log-rank analyses of mortality with recurrence (obtained by subtracting log-rank analyses of mortality without recurrence [ie, censored at recurrence] from those of overall mortality; webappendix p 1). For indirect comparisons between different regimens, effects on early recurrence rates (years 0–4) might be more sensitive than effects on other outcomes, because they are substantial and not materially affected by differences in follow-up duration (or chance effects on recurrence rates in later years when proportional reductions might be less extreme than in years 0–4), so the webappendix reports effects on early recurrence, any recurrence, and mortality.

For at least some major subgroup analyses to be statistically reliable, the overall χ^2_1 for the RR (treatment vs control) in all subgroups together should generally be large (eg, at least 25, but preferably 50, or even 100). For, if there is little real heterogeneity between the RRs, this overall χ^2_1 (plus the small χ^2 for heterogeneity between treatment RRs in different subgroups) gets partitioned between the subgroups in approximate proportion to numbers of events, to yield χ^2_1 in each. If χ^2_1 in a major subgroup should be only about 10 or less after such a split, chance could well make it non-significant or null.

For, a subgroup-specific treatment effect that, given the overall findings, should be about 3 SE (yielding $\chi^2_1=9$, $2p=0·003$) could easily by chance be less than 2SE (and hence not significant). Statistical analyses utilised programs written by the EBCTCG in FORTRAN.

Role of the funding sources

The funders had no role in study design, conduct, or reporting. The Secretariat had full access to all data. The decision to publish was by the writing committee, after circulation to all collaborators.

See Online for webappendix

Articles
Figure 1: Time to recurrence, breast cancer mortality, and overall mortality for taxane-plus-anthracycline-based regimens (Tax+anthr) versus control with (left) the same or (right) more non-taxane chemotherapy (82% N+).

These varied treatment comparisons can be grouped by how the chemotherapy regimen in the control group compared with the non-taxane chemotherapy in the taxane group: the same (ie, unconfounded trials of the effects of adding four separate cycles just of a taxane to a constant background chemotherapy regimen, thereby prolonging treatment duration; n=11000), double (ie, strongly confounded trials in which the effects of adding four separate cycles of a taxane to an anthracycline-based regimen were counterbalanced in controls by roughly doubling the number of cycles of non-taxane chemotherapy; n=10000), or intermediate (n=23 000). Only in some of the trials with an intermediate control regimen was the taxane given concurrently with any other cytotoxic agents.

In the unconfounded taxane trials, which all began in 1994–99, little follow-up beyond year 8 is yet available; figure 1 (left-hand side) gives absolute effects on 8-year recurrence, breast mortality, and overall mortality in these trials. Effects were moderate for recurrence, and slightly smaller (but still highly significant) for breast cancer mortality and overall mortality. 8-year breast cancer mortality was 21·1% for the taxane groups versus 23·9% for the control groups (absolute gain 2·8%; SE 0·9; RR 0·86, SE 0·04, 2p=0·0005; for overall mortality the absolute gain was similar. By contrast, in the trials of adding four cycles of a taxane versus roughly doubling the non-taxane chemotherapy, there was little net difference in recurrence, breast cancer mortality (foot of figure 2A; n=10 000; RR 0·94, SE 0·06, 2p=0·16), or overall mortality (webappendix pp 7–8 and 21–25); again, however, comparisons varied, and follow-up was short.

Figure 1 (right-hand side) describes these and all other trials in which the effects of the taxane were counterbalanced by giving the controls more non-taxane chemotherapy (n=33 000) with data on numbers dead in each treatment group, only 30 000 of whom had data on the times to any deaths (webappendix p 23). In these confounded taxane trials, little follow-up beyond 5 years is yet available, but on average their 5-year findings again show small but significant reductions in recurrence, breast cancer mortality, and overall mortality. Chemotherapy regimens varied greatly, so real treatment effects in different trials could well differ, even though chance makes it difficult to assess this reliably, particularly with short follow-up and some trials not yet available. Only one trial (GEICAM9906) involved weekly paclitaxel.

Figure 2 shows selected subgroup analyses for breast cancer mortality in all 44 000 women. Its first three sections group the treatment comparisons in various ways, without showing how the chemo therapy regimen in the control group compared with the non-taxane chemotherapy in the taxane group: the same (ie, unconfounded trials of the effects of adding four separate cycles just of a taxane to a constant background chemotherapy regimen, thereby prolonging treatment duration; n=11000), double (ie, strongly confounded trials in which the effects of adding four separate cycles of a taxane to an anthracycline-based regimen were counterbalanced in controls by roughly doubling the number of cycles of non-taxane chemotherapy; n=10000), or intermediate (n=23 000). Only in some of the trials with an intermediate control regimen was the taxane given concurrently with any other cytotoxic agents.

In the unconfounded taxane trials, which all began in 1994–99, little follow-up beyond year 8 is yet available; figure 1 (left-hand side) gives absolute effects on 8-year recurrence, breast mortality, and overall mortality in these trials. Effects were moderate for recurrence, and slightly smaller (but still highly significant) for breast cancer mortality and overall mortality. 8-year breast cancer mortality was 21·1% for the taxane groups versus 23·9% for the control groups (absolute gain 2·8%; SE 0·9; RR 0·86, SE 0·04, 2p=0·0005; for overall mortality the absolute gain was similar. By contrast, in the trials of adding four cycles of a taxane versus roughly doubling the non-taxane chemotherapy, there was little net difference in recurrence, breast cancer mortality (foot of figure 2A; n=10 000; RR 0·94, SE 0·06, 2p=0·16), or overall mortality (webappendix pp 7–8 and 21–25); again, however, comparisons varied, and follow-up was short.

Figure 1 (right-hand side) describes these and all other trials in which the effects of the taxane were counterbalanced by giving the controls more non-taxane chemotherapy (n=33 000) with data on numbers dead in each treatment group, only 30 000 of whom had data on the times to any deaths (webappendix p 23). In these confounded taxane trials, little follow-up beyond 5 years is yet available, but on average their 5-year findings again show small but significant reductions in recurrence, breast cancer mortality, and overall mortality. Chemotherapy regimens varied greatly, so real treatment effects in different trials could well differ, even though chance makes it difficult to assess this reliably, particularly with short follow-up and some trials not yet available. Only one trial (GEICAM9906) involved weekly paclitaxel.

Figure 2 shows selected subgroup analyses for breast cancer mortality in all 44 000 women. Its first three sections group the treatment comparisons in various ways, without...
finding clear evidence of differences in the average treatment effect. Its first section groups the taxane comparisons as unconfounded, intermediate, or strongly confounded, as above (for the trial-specific details corresponding to these groupings see webappendix pp 21–26) and the next two sections group the treatment

![Table](https://example.com/table.png)

![Figure](https://example.com/figure.png)

Figure 2: Subgroup analyses of breast cancer mortality (mortality with recurrence, by log-rank subtraction) for taxane-plus-anthracycline-based regimens versus the same, or more (less than doubled or roughly doubled), non-taxane cytotoxic chemotherapy.

D=doxetaxel. P=paclitaxel. 4(D100) q3w=four doses of docetaxel 100 mg/m² at intervals of 3 weeks. 4(P175) q3w=four doses of paclitaxel 175 mg/m² at intervals of 3 weeks. ER=oestrogen receptor. NS=not significant. *First four subgroups are as in the forest plots (webappendix pp 21–26) that give details of each trial’s cytotoxic regimens. †Taxane courses do not overlap other chemotherapy courses. ‡Taxane given concurrently with anthracycline.

comparisons in other ways. Later sections, again without clear evidence of heterogeneity of treatment effect, subdivide by age (finding significant benefit even at ages 55–69 years; few were older, but their results suggest favourable effects of taxanes even in old age), nodal status before chemotherapy (4000 had node-negative disease), and ER status. Results are also given for subsets of ER-positive disease by HER2 status (generally by immunohistochemistry, classified where possible by standard criteria for definite positivity), age, and differentiation (with a trend towards greater taxane benefit in well differentiated [RR 0.68, SE 0.16, 2p=0.04, n=3000] or moderately differentiated [RR 0.77, SE 0.2, 2p=0.001, n=11000] ER-positive tumours than in poorly differentiated ER-positive tumours). Most of the women with ER-positive disease had endocrine therapy after their chemotherapy.

More detailed subgroup analyses of recurrence and breast cancer mortality (webappendix pp 7–8) found no consistent heterogeneity of the proportional risk reductions by age, nodal status, ER status, progesterone receptor status, tumour differentiation (although only 4000 were well differentiated; webappendix p 8), tumour diameter, or combinations of these. Proportional risk reductions appeared similar in years 0–1, 2–4, and (provisionally) 5+ after entry, so the indirect treatment comparisons in figure 2 should not have been materially affected by differences between taxane trials in follow-up duration. If there is real heterogeneity between effects in different subgroups, this should be clearer for recurrence (overall $\chi^2=48$) than for breast cancer mortality (overall $\chi^2=22$), but neither χ^2 value is big enough for subgroup analyses to be wholly reliable.

Anthracycline-based regimens versus active controls

For trials of an anthracycline-based regimen versus CMF, forest plots for each of several different outcomes (webappendix pp 27–32) give one descriptive line per trial: name, regimens compared, and results. The control regimen was generally standard CMF (otherwise it was near-standard CMF; to challenge anthracycline-based regimens rigorously, however, these analyses exclude CMF regimens with the dose per cycle of any drug less than that in near-standard CMF; see table). Again, most of the women with ER-positive disease would have been given endocrine therapy after their chemotherapy.

Figure 3 (left-hand side; n=9500) shows results from the trials with anthracycline dose per cycle at least 60 mg/m² doxorubicin or 90 mg/m² epirubicin and with...
cumulative anthracycline dosage more than 240 mg/m²
doxorubicin or 360 mg/m² epirubicin (eg, CAF or CEF).
The findings for recurrence, breast cancer mortality, and
overall mortality show a definite improvement over CMF.
Averaging the results for all these trials, the RRs were
0·89 for recurrence (SE 0·04, 2p=0·003; this included
what might have been mainly a chance excess incidence
of contralateral disease), 0·80 for breast cancer mortality
(SE 0·05, 2p=0·0001), and 0·84 for overall mortality
(SE 0·04, χ²₁=9·9, 2p=0·0002). By contrast, standard 4AC
and standard CMF appeared equivalent (right-hand side
of figure 3; n=5000).

<table>
<thead>
<tr>
<th>Deaths/women</th>
<th>Allocated anthracycline</th>
<th>Allocated CMF</th>
<th>Anthracycline deaths</th>
<th>Ratio of annual death rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log-rank O–E</td>
<td>Variance of O–E</td>
<td>Anthracycline CMF</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A) Cumulative anthracycline dosage, if dose per cycle is at least A60/E60 (trend χ²=8·0; 2p=0·005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A30 or E30–60 (eq, CAF/CEF)</td>
<td>378/2082 (18·2%)</td>
<td>475/2097 (22·7%)</td>
<td>-50·0</td>
<td>198·0</td>
</tr>
<tr>
<td>A30 or E60–90</td>
<td>396/2766 (14·3%)</td>
<td>471/2770 (17·0%)</td>
<td>-35·9</td>
<td>183·1</td>
</tr>
<tr>
<td>A60 (standard 4AC)</td>
<td>877/2555 (34·2%)</td>
<td>886/2557 (34·6%)</td>
<td>-8·5</td>
<td>405·6</td>
</tr>
<tr>
<td>Dose/cycle=A60/E60</td>
<td>357/1530 (23·4%)</td>
<td>375/1502 (23·8%)</td>
<td>-11·1</td>
<td>160·1</td>
</tr>
<tr>
<td>(B) Cyclophosphamide in CMF oral/iv (χ²=0·9; 2p=0·3; NS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C100–110 oral/cycle</td>
<td>1651/6530 (25·3%)</td>
<td>1834/6525 (28·1%)</td>
<td>-98·8</td>
<td>788·8</td>
</tr>
<tr>
<td>C120–140 iv/cycle</td>
<td>358/2413 (14·8%)</td>
<td>356/2401 (14·8%)</td>
<td>-6·6</td>
<td>157·9</td>
</tr>
<tr>
<td>(C) Concurrent endocrine therapy (if ER+)? (χ²=0·1; 2p=0·8; NS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>57/502 (11·4%)</td>
<td>62/502 (12·4%)</td>
<td>-2·9</td>
<td>29·0</td>
</tr>
<tr>
<td>No (any endocrine only after chemotherapy ended)</td>
<td>1952/8441 (23·3%)</td>
<td>2128/8424 (25·3%)</td>
<td>-102·5</td>
<td>917·8</td>
</tr>
<tr>
<td>(D) Entry age (trend χ²=0·9; 2p=0·9; NS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45 years</td>
<td>871/3398 (25·6%)</td>
<td>991/3454 (28·7%)</td>
<td>-54·8</td>
<td>422·8</td>
</tr>
<tr>
<td>45–54 years</td>
<td>738/3399 (21·7%)</td>
<td>773/3356 (22·0%)</td>
<td>-10·6</td>
<td>344·3</td>
</tr>
<tr>
<td>55–69 years</td>
<td>375/1956 (19·1%)</td>
<td>396/1920 (20·6%)</td>
<td>-20·2</td>
<td>169·3</td>
</tr>
<tr>
<td>>70 years</td>
<td>18/106 (17·0%)</td>
<td>25/112 (22·3%)</td>
<td>-2·2</td>
<td>8·7</td>
</tr>
<tr>
<td>Unknown</td>
<td>7/79 (8·9%)</td>
<td>5/84 (6·0%)</td>
<td>2·4</td>
<td>1·8</td>
</tr>
<tr>
<td>(E) Nodal status (trend χ²=0·9; 2p=0·3; NS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0–N1</td>
<td>461/3865 (11·9%)</td>
<td>541/3869 (14·0%)</td>
<td>-40·5</td>
<td>233·1</td>
</tr>
<tr>
<td>N1–3</td>
<td>520/2442 (21·3%)</td>
<td>543/2418 (22·5%)</td>
<td>-10·0</td>
<td>243·4</td>
</tr>
<tr>
<td>N4+</td>
<td>612/1234 (49·6%)</td>
<td>647/1233 (52·5%)</td>
<td>-23·1</td>
<td>273·4</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>416/1402 (29·7%)</td>
<td>459/1406 (32·6%)</td>
<td>-31·9</td>
<td>196·8</td>
</tr>
<tr>
<td>(F) ER status (χ²=0·1; 2p=0·8; NS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER-poor</td>
<td>120/4488 (26·8%)</td>
<td>128/4518 (28·5%)</td>
<td>-43·7</td>
<td>564·6</td>
</tr>
<tr>
<td>ER+</td>
<td>569/3279 (17·4%)</td>
<td>610/3257 (18·7%)</td>
<td>-26·5</td>
<td>267·0</td>
</tr>
<tr>
<td>ER unknown</td>
<td>239/1276 (20·3%)</td>
<td>293/1151 (25·5%)</td>
<td>-35·2</td>
<td>113·2</td>
</tr>
<tr>
<td>Subsets of ER+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+ ≥100 fmol/mg</td>
<td>247/1027 (23·0%)</td>
<td>279/1094 (25·5%)</td>
<td>-21·2</td>
<td>108·3</td>
</tr>
<tr>
<td>ER+ ≥100 fmol/mg</td>
<td>166/450 (19·1%)</td>
<td>166/450 (19·8%)</td>
<td>-15·4</td>
<td>42·0</td>
</tr>
<tr>
<td>ER+, age ≤55 years</td>
<td>426/1093 (38·1%)</td>
<td>435/1145 (38·5%)</td>
<td>-22·9</td>
<td>202·3</td>
</tr>
<tr>
<td>ER+, 55–69 years</td>
<td>134/846 (15·8%)</td>
<td>140/847 (16·5%)</td>
<td>-3·6</td>
<td>61·1</td>
</tr>
<tr>
<td>ER+, poorly differentiated</td>
<td>131/868 (15·1%)</td>
<td>130/793 (16·4%)</td>
<td>-4·1</td>
<td>52·7</td>
</tr>
<tr>
<td>ER+, moderately/well differentiated</td>
<td>125/952 (13·1%)</td>
<td>136/1047 (13·0%)</td>
<td>-18</td>
<td>58·3</td>
</tr>
<tr>
<td>Total</td>
<td>2009/8943 (22·5%)</td>
<td>2190/8926 (24·5%)</td>
<td>-105·4</td>
<td>946·8</td>
</tr>
</tbody>
</table>

* 99% or 95% CI
* Global heterogeneity: χ²=9·9; p<0·1

Figure 4: Subgroup analyses of breast cancer mortality (mortality with recurrence, by log-rank subtraction) for any anthracyline-based regimen versus standard CMF (or near standard CMF). A=doxorubicin (Adriamycin), E=epirubicin. Dose/cycle (and cumulative dosage) is given after the drug name in mg/m². A60/E60 means 60 mg/m² of doxorubicin or 90 mg/m² of epirubicin. n=intravenous. NS=not significant. ER=oestrogen receptor. IHC=immunohistochemistry. *First four subgroups are as in the forest plots (webappendix pp 27–32) that give details of each trial’s cytotoxic regimens.
In these trials there was a significant trend towards greater efficacy with higher cumulative anthracycline dosage ($\chi^2=8.0, \text{ df}=2, p=0.005$; figure 4A). This trend was not necessarily due just to the extra anthracycline, however, because higher dosage was often accompanied by other additional chemotherapy (webappendix pp 29). The regimens with the highest cumulative anthracycline dosage include CAF and CEF (which, like standard CMF, have 14 days per cycle of oral cyclophosphamide), and were, on average, significantly better than standard CMF at reducing breast cancer mortality (RR 0.78, SE 0.06, $2p=0.0004$; figure 4A).

The foregoing comparisons between the effects of different anthracycline-based regimens in different trials are indirect. Few trials have compared directly one anthracycline-based regimen versus another (webappendix pp 45–50), and their results are not yet mature. Those in which all drugs varied together showed significantly greater efficacy with higher than lower dosage. Trials in which only the anthracycline dose per cycle varied showed, in aggregate, only non-significantly greater efficacy; one compared a standard versus lower anthracycline dose per cycle ($\chi^2=4.8, \text{ df}=1, p=0.03$, $\chi^2=12.0, 2p=0.0004$; figure 4A). This trend was not necessarily due just to the extra anthracycline, however, because higher dosage was often accompanied by other additional chemotherapy (webappendix p 29). The regimens with the highest cumulative anthracycline dosage include CAF and CEF (which, like standard CMF, have 14 days per cycle of oral cyclophosphamide), and were, on average, significantly better than standard CMF at reducing breast cancer mortality (RR 0.78, SE 0.06, $2p=0.0004$; figure 4A).

The foregoing comparisons between the effects of different anthracycline-based regimens in different trials are indirect. Few trials have compared directly one anthracycline-based regimen versus another (webappendix pp 45–50), and their results are not yet mature. Those in which all drugs varied together showed significantly greater efficacy with higher than lower dosage. Trials in which only the anthracycline dose per cycle varied showed, in aggregate, only non-significantly greater efficacy; one compared a standard versus lower anthracycline dose per cycle ($\chi^2=4.8, \text{ df}=1, p=0.03$, $\chi^2=12.0, 2p=0.0004$; figure 4A). This trend was not necessarily due just to the extra anthracycline, however, because higher dosage was often accompanied by other additional chemotherapy (webappendix p 29). The regimens with the highest cumulative anthracycline dosage include CAF and CEF (which, like standard CMF, have 14 days per cycle of oral cyclophosphamide), and were, on average, significantly better than standard CMF at reducing breast cancer mortality (RR 0.78, SE 0.06, $2p=0.0004$; figure 4A).

The foregoing comparisons between the effects of different anthracycline-based regimens in different trials are indirect. Few trials have compared directly one anthracycline-based regimen versus another (webappendix pp 45–50), and their results are not yet mature. Those in which all drugs varied together showed significantly greater efficacy with higher than lower dosage. Trials in which only the anthracycline dose per cycle varied showed, in aggregate, only non-significantly greater efficacy; one compared a standard versus lower anthracycline dose per cycle ($\chi^2=4.8, \text{ df}=1, p=0.03$, $\chi^2=12.0, 2p=0.0004$; figure 4A). This trend was not necessarily due just to the extra anthracycline, however, because higher dosage was often accompanied by other additional chemotherapy (webappendix p 29). The regimens with the highest cumulative anthracycline dosage include CAF and CEF (which, like standard CMF, have 14 days per cycle of oral cyclophosphamide), and were, on average, significantly better than standard CMF at reducing breast cancer mortality (RR 0.78, SE 0.06, $2p=0.0004$; figure 4A).

The foregoing comparisons between the effects of different anthracycline-based regimens in different trials are indirect. Few trials have compared directly one anthracycline-based regimen versus another (webappendix pp 45–50), and their results are not yet mature. Those in which all drugs varied together showed significantly greater efficacy with higher than lower dosage. Trials in which only the anthracycline dose per cycle varied showed, in aggregate, only non-significantly greater efficacy; one compared a standard versus lower anthracycline dose per cycle ($\chi^2=4.8, \text{ df}=1, p=0.03$, $\chi^2=12.0, 2p=0.0004$; figure 4A). This trend was not necessarily due just to the extra anthracycline, however, because higher dosage was often accompanied by other additional chemotherapy (webappendix p 29). The regimens with the highest cumulative anthracycline dosage include CAF and CEF (which, like standard CMF, have 14 days per cycle of oral cyclophosphamide), and were, on average, significantly better than standard CMF at reducing breast cancer mortality (RR 0.78, SE 0.06, $2p=0.0004$; figure 4A).
and 0.84 (SE 0.05, 2p=0.0004) for overall mortality. Most of these trials studied standard CMF (and the remainder studied near-standard CMF; see table).

Treatment effects are larger for chemotherapy versus no chemotherapy than for one type of chemotherapy versus another, and because the χ² values for the overall effects are fairly large, the findings in some major subgroups could be informative. In the webappendix (pp 11–14), the findings for early recurrence (years 0–4), any recurrence, and breast cancer mortality are split by treatment schedule, detailed patient characteristics, site of first recurrence, and time period. For anthracycline-based regimens, there was no good evidence of any heterogeneity of the proportional risk reductions with age, nodal status, ER status, tumour differentiation, or tumour diameter, or combinations of these. Figure 6 gives some of these subgroup analyses for anthracycline-based regimens. By contrast with figure 4, few trials had 60 mg/m² doxorubicin per cycle or 90 mg/m² epirubicin per cycle. Most that did studied CAF (or near-standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus tamoxifen alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus chemotherapy alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus chemotherapy alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).

In figure 6 (and webappendix pp 11–12), the proportional risk reductions with chemotherapy versus no chemotherapy than for one type of chemotherapy versus another, and because the χ² values for the overall effects are fairly large, the findings in some major subgroups could be informative. In the webappendix (pp 11–14), the findings for early recurrence (years 0–4), any recurrence, and breast cancer mortality are split by treatment schedule, detailed patient characteristics, site of first recurrence, and time period. For anthracycline-based regimens, there was no good evidence of any heterogeneity of the proportional risk reductions with age, nodal status, ER status, tumour differentiation, or tumour diameter, or combinations of these. Figure 6 gives some of these subgroup analyses for anthracycline-based regimens. By contrast with figure 4, few trials had 60 mg/m² doxorubicin per cycle or 90 mg/m² epirubicin per cycle. Most that did studied CAF (or near-standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus chemotherapy alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus chemotherapy alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).

The proportional risk reductions appeared similar in trials of chemotherapy versus no adjuvant therapy and in trials of chemotherapy and tamoxifen (generally started concurrently) versus tamoxifen alone (figure 6C), suggesting that chemotherapy effects and tamoxifen effects are largely independent. Supporting this finding, in ER-positive disease the proportional risk reductions with chemotherapy plus tamoxifen (started concurrently) versus chemotherapy alone were somewhat more effective than standard 4AC (or 4EC) (RR 0.78, SE 0.09). The other regimens, all with lower anthracycline dose per cycle (but, in some, additional other drugs), appeared, on average, almost as effective (RR 0.82, SE 0.05) as standard 4AC. Taking all these trials of anthracycline-based regimens together, the average effect approximated that of standard 4AC (or of standard CMF).
(10–99 or >100 fmol/mg). This finding suggests that the extreme RR in figure 4 for disease with ER greater than 100 fmol/mg could be partly a chance subgroup finding. Combination of the breast cancer mortality results for disease with ER greater than 100 fmol/mg for any anthracycline-based regimen versus no chemotherapy and

Table: Subgroup Analyses of Breast Cancer Mortality

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Deaths/women</th>
<th>Anthracycline deaths</th>
<th>Ratio of annual death rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Cumulative anthracycline dosage, if dose per cycle is at least A60/E90 (χ²=1·5; 2p=0·2; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzO (CAF)</td>
<td>324/1177 (27·5%)</td>
<td>456/1143 (39·9%)</td>
<td>-35·3</td>
</tr>
<tr>
<td>AzO (no trials)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AzO/E60 (standard 4AC/EC)</td>
<td>227/642 (28·4%)</td>
<td>267/792 (33·5%)</td>
<td>-25·6</td>
</tr>
<tr>
<td>Dose/cycle=A/E60</td>
<td>880/2830 (31·1%)</td>
<td>980/2798 (35·0%)</td>
<td>-19·0</td>
</tr>
<tr>
<td>(B) Anthracycline tested* (χ²=1·9; 2p=0·2; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin (A)</td>
<td>973/2626 (37·1%)</td>
<td>1185/2570 (46·1%)</td>
<td>-106·1</td>
</tr>
<tr>
<td>Epirubicin (E)</td>
<td>293/1283 (22·8%)</td>
<td>318/1283 (24·8%)</td>
<td>-20·5</td>
</tr>
<tr>
<td>A or E</td>
<td>150/845 (17·8%)</td>
<td>198/880 (22·5%)</td>
<td>-13·3</td>
</tr>
<tr>
<td>(C) Concurrent endocrine therapy (if ER+)† (χ²=0·3; 2p=0·6; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>607/2004 (30·3%)</td>
<td>693/2014 (34·4%)</td>
<td>-54·4</td>
</tr>
<tr>
<td>No (any endocrine only after chemotherapy ended)</td>
<td>462/1431 (32·3%)</td>
<td>514/1398 (36·8%)</td>
<td>-48·2</td>
</tr>
<tr>
<td>Random†</td>
<td>347/1319 (26·3%)</td>
<td>454/1321 (34·4%)</td>
<td>-37·2</td>
</tr>
<tr>
<td>(D) Entry age (trend χ²=2·0; 2p=0·2; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45 years</td>
<td>135/402 (33·6%)</td>
<td>127/353 (35·6%)</td>
<td>-4·9</td>
</tr>
<tr>
<td>45–54 years</td>
<td>338/1115 (30·3%)</td>
<td>419/1175 (35·7%)</td>
<td>-34·9</td>
</tr>
<tr>
<td>55–69 years</td>
<td>899/2995 (30·0%)</td>
<td>1071/2956 (36·2%)</td>
<td>-88·5</td>
</tr>
<tr>
<td>>70 years</td>
<td>43/225 (19·1%)</td>
<td>34/225 (15·3%)</td>
<td>-11·7</td>
</tr>
<tr>
<td>Unknown</td>
<td>1/17 (5·9%)</td>
<td>0/17 (0·0%)</td>
<td>0·2</td>
</tr>
<tr>
<td>(E) Nodal status (trend χ²=0·0; 2p=0·9; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0/N–</td>
<td>122/789 (15·5%)</td>
<td>137/761 (18·0%)</td>
<td>-12·0</td>
</tr>
<tr>
<td>N1–3</td>
<td>513/2257 (22·7%)</td>
<td>604/2217 (27·2%)</td>
<td>-51·3</td>
</tr>
<tr>
<td>N4+</td>
<td>575/1226 (46·9%)</td>
<td>741/1295 (57·2%)</td>
<td>-53·7</td>
</tr>
<tr>
<td>Other/unknown</td>
<td>206/482 (42·7%)</td>
<td>219/460 (47·6%)</td>
<td>-22·8</td>
</tr>
<tr>
<td>(F) ER status (χ²=0·1; 2p=0·7; NS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER–poor</td>
<td>403/1095 (36·8%)</td>
<td>464/1043 (44·5%)</td>
<td>-40·5</td>
</tr>
<tr>
<td>ER+</td>
<td>831/3100 (26·8%)</td>
<td>1063/3177 (33·5%)</td>
<td>-84·6</td>
</tr>
<tr>
<td>ER unknown</td>
<td>182/559 (32·6%)</td>
<td>174/513 (33·9%)</td>
<td>-14·9</td>
</tr>
<tr>
<td>Subsets of ER+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+, chemotherapy ± endocrine vs endocrine</td>
<td>659/2622 (25·1%)</td>
<td>852/2675 (31·9%)</td>
<td>-56·2</td>
</tr>
<tr>
<td>ER ≥ 10–99 fmol/mg</td>
<td>416/1271 (32·3%)</td>
<td>546/1442 (37·7%)</td>
<td>-25·3</td>
</tr>
<tr>
<td>ER ≥ 100 fmol/mg</td>
<td>274/1166 (23·3%)</td>
<td>337/1160 (29·1%)</td>
<td>-20·6</td>
</tr>
<tr>
<td>ER+, age ≤ 55 years</td>
<td>250/845 (29·6%)</td>
<td>316/843 (37·5%)</td>
<td>-19·4</td>
</tr>
<tr>
<td>ER+, age ≥ 55–60 years</td>
<td>542/2071 (26·2%)</td>
<td>677/2055 (32·9%)</td>
<td>-53·9</td>
</tr>
<tr>
<td>ER+, poorly differentiated</td>
<td>100/461 (21·7%)</td>
<td>120/477 (25·2%)</td>
<td>-12·2</td>
</tr>
<tr>
<td>ER+, moderately/well differentiated</td>
<td>228/985 (23·1%)</td>
<td>286/1026 (27·9%)</td>
<td>-27·8</td>
</tr>
<tr>
<td>Total</td>
<td>1416/4754 (29·8%)</td>
<td>1701/4733 (35·9%)</td>
<td>-139·9</td>
</tr>
</tbody>
</table>

Figure 6: Subgroup analyses of breast cancer mortality (mortality with recurrence, by log-rank subtraction) for any anthracycline-based regimen versus no chemotherapy

A = doxorubicin (Adriamycin). E = epirubicin. Dose/cycle (and cumulative dosage) is given after the drug name in mg/m²; A60/E90 means 60 mg/m² of doxorubicin or 90 mg/m² of epirubicin. NS = not significant. ER = oestrogen receptor. *First four subgroups are as in the forest plots (webappendix pp 33–38) that give details of each trial’s cytotoxic regimens. †In the SWOG 8814 trial of CAF in postmenopausal ER+ disease, tamoxifen started randomly with or after the chemotherapy.
versus CMF chemotherapy (figures 4 and 6) yields an RR of 0·77 (SE 0·07, 2p=0·002, n=3000), confirming at least some benefit of anthracycline-based regimens in this high-ER subgroup. Most women were aged 55–69 years at entry; results in the few who were older also suggest benefit (as in the taxane trials), but with wide uncertainty.

Figure 7 shows 10-year breast cancer mortality in trials of anthracycline-based regimens by age and ER status. The lack of apparent relevance of age or ER to the proportional risk reduction is somewhat confounded by regimen; almost half the evidence in older women with ER-positive disease (RR 0·78, SE 0·06, 2p=0·0002, n=4000) came from the one trial (SWOG8814) of CAF in 1500 postmenopausal women with tamoxifen-treated ER-positive disease, which showed that such chemotherapy substantially reduces breast cancer mortality in this major patient category.

In subgroup analyses for trials of standard or near-standard CMF versus no chemotherapy (webappendix pp 13–14) the proportional risk reduction appeared inversely related to age and nodal status, but again appeared independent of ER status (RR for breast cancer mortality 0·80, SE 0·10, 2p=0·05 for ER-positive disease and 0·74, SE 0·07, 2p=0·0002 for ER-positive disease).

Among both older and younger women with ER-positive disease, the effects of chemotherapy added to those of effective endocrine therapy. Combining (webappendix p 6, final section) these trials of CMF and the trials of anthracycline-based chemotherapy versus no chemotherapy, if both groups had 5 years of endocrine therapy then chemotherapy reduced breast cancer mortality both in women with entry age 55–69 years (chemoendocrine vs only endocrine therapy, RR 0·78, SE 0·07, 2p=0·001, n=3000) and in younger women (RR 0·72, SE 0·09, 2p=0·002, n=2000). Of these younger women, half were known to be premenopausal or perimenopausal (with RR 0·76, SE 0·13, 2p=0·06, n=1000), but information about chemotherapy-induced amenorrhoea was unavailable.

To help assess any life-threatening acute toxicity, the table on webappendix p 63 describes 1-year mortality without recurrence. In trials comparing two active regimens, this early mortality depended less on treatment group than on age, and before age 70 years it was relatively low (eg, 59/19477 [0·3%] for taxane-plus-anthracycline-based regimens vs 40/19386 [0·2%] for anthracycline-based control regimens, 2p=0·06). In trials of chemotherapy versus no chemotherapy, these 1-year hazards were notable only in the 1970s trials of 12 cycles of CMF and in one of the two trials11 of CAF.

There were also, as expected,16 some deaths from acute myeloid leukaemia and anthracycline cardiotoxicity.

Figure 7: At least four cycles of any anthracycline-based regimen (with mean effect roughly as for standard 4AC) versus no adjuvant chemotherapy: analyses of 10-year breast cancer mortality by age and ER status. RR (and its 95% CI) event rate ratio, from summed log-rank statistics for all time periods combined. Gain (and its SE)—absolute difference between ends of graphs. ER=oestrogen receptor. Anth=anthracyline. Event rates, %/year, are followed (in first events/woman-years). Error bars show ±1 SE
Numbers of acute myeloid leukaemia deaths without recurrence were 11 versus one for taxane plus other chemotherapy versus the same, or more, other chemotherapy; five each for anthracycline versus CMF; eight versus none for anthracycline versus nil; and one versus three for CMF versus nil. These excesses were mainly with two regimens: 225 mg/m²/cycle paclitaxel (7/1531 [0.5%] in the only trial) and CAF (5/2638 [0.2%] in one trial and 2/1177 [0.2%] in the other). Undue emphasis on particular regimens can, however, exaggerate any real hazards, some trials did not report causes of death, and effective follow-up duration differs greatly in different trials. Cardiac mortality RRs for any anthracycline-based regimen were 1.50 (SE 0.38) versus CMF, 1.61 (SE 0.31) versus nil, and 1.56 (SE 0.24, 2p=0.02) versus either. There were no other significant adverse effects on 10-year non-breast cancer mortality, and overall mortality always matched breast cancer mortality (webappendix pp 18–20).

Powerpoints of all figures conclude the webappendix.

Discussion

These meta-analyses yield five main findings. First, standard CMF and standard 4AC were roughly equivalent: with either, 2-year recurrence rates were halved, recurrence rates during the next 8 years were reduced by one-third, and breast cancer mortality rates were reduced by 20–25%.

Second, regimens with significantly lower dose per cycle appeared, collectively, somewhat less effective. Third, regimens with substantially more chemotherapy than standard 4AC (but not so intensive as to require stem-cell rescue) were somewhat more effective: in comparisons versus standard CMF or 4AC, a further proportional reduction of 15–20% in breast cancer mortality rates could be achieved by regimens such as CAF or CEF or by regimens such as 4AC plus four cycles of taxane (given 3-weekly; weekly paclitaxel may be promising, but was little studied). Reconciling reports of major benefit and no extra benefit in particular taxane trials, on average the taxane-plus-anthracycline-based regimens slightly but significantly improved outcome in comparison with an anthracycline-based control regimen (unless the taxane was counterbalanced in controls by roughly doubling the number of courses of other cytotoxic drugs). Fourth, in all chemotherapy comparisons 10-year overall mortality was correspondingly reduced since there was little excess non-breast-cancer mortality during the first year (partly because many patients got appropriate supportive care with, for some, substantial dose reductions to limit acute toxicity) or after it.

Multiplying together breast cancer mortality RRs for the first and third of these findings (standard CMF or standard 4AC vs no chemotherapy, and more effective regimens vs either of these; 0.775 × 0.825 = 0.64) would suggest about 36% breast cancer mortality rate reduction for the more effective regimens versus no chemotherapy. Although proportional reductions are slightly smaller for 10-year risks than for mortality rates (eg, a 36% reduction in the death rate in each year would reduce a 10-year risk of 30% to 20%), this calculation still suggests that the 10-year risk of death from breast cancer can be reduced by about a third, averaging over the different types of patient in these trials.

Finally, in all meta-analyses involving taxane-based regimens or anthracycline-based regimens, the proportional reductions in early recurrence, any recurrence, and breast cancer mortality appeared largely independent of age, nodal status, tumour diameter, tumour differentiation (poorly or moderately differentiated; relatively few were well differentiated), or ER status (ER-poor or ER-positive). Even in strongly ER-positive disease, chemotherapy did at least somewhat affect outcome, although not necessarily to exactly the same extent as in less strongly ER-positive disease.

In premenopausal women chemotherapy generally causes permanent or transient amenorrhoea, and this suppression of ovarian function accounts for some of its efficacy in ER-positive disease. Chemotherapy must, however, have had additional effects on outcome in some women with ER-positive disease, since chemoendocrine therapy produced a substantially greater proportional reduction in breast cancer mortality than did endocrine therapy alone (or chemotherapy alone) in women under 55 years of age but also in older women, in whom chemotherapy-induced amenorrhoea is irrelevant.

Although age did not much affect the proportional risk reductions with taxane-based or anthracycline-based chemotherapy, the gain in life expectancy from a given absolute reduction in the risk of death from breast cancer is greater for younger than for older women, as more years are lost by death at 50 than at 70 years of age. Few women over 70 years of age entered these trials; they may have had somewhat greater immediate hazards from chemotherapy, but appear to have had as great a reduction as younger women in breast cancer recurrence and mortality.

A pathological complete response to neoadjuvant chemotherapy is more likely with ER-negative than with ER-positive tumours, and it has been suggested that ER status can in certain circumstances affect the proportional risk reduction with adjuvant chemotherapy. Yet, in these meta-analyses the proportional reductions in breast cancer recurrence and mortality with adjuvant chemotherapy were roughly independent of ER status (and, in ER-positive disease, of age and of the other available tumour characteristics). Although not centrally remeasured, the ER measurements were good enough for ER status to predict both tamoxifen responsiveness and risk during years 0–1 (which was much greater in ER-poor than in ER-positive disease). Thus, there is no good reason to ascribe chemotherapy efficacy in ER-positive disease entirely to false-positive ER results (and, the proportional reductions in mortality rates were no greater in ER-negative than in ER-positive disease).

ER-positive disease is, however, heterogeneous, and can be broadly subdivided into luminal-A (HER2-negative, not
highly proliferative, and generally well differentiated) and luminal-B (more highly proliferative and hence, perhaps, more chemosensitive). Poor differentiation, although not very reproducible between pathologists, is somewhat related to proliferation (and was measured well enough to predict poor prognosis), but in ER-positive disease it did not predict chemosensitivity.

We did not have data on luminal-A/B status or on modern markers of tumour cell biology that can help to predict high or low risk, such as quantitative immunohistochemical measurements of a standard set of four factors (two hormone receptors, HER2, and the proliferation-related protein Ki-67), or multigene expression signatures, based on tumour RNA profile. These signatures mainly reflect four groups of genes, which are also associated with ER status, progesterone receptor status, HER2 status, and proliferation. The joint relevance of such factors to prognosis stems mainly from the proliferation-related measurements.

Certain trials have suggested that in ER-positive disease the levels of expression of various genes (including those related to proliferation) might correlate not only with prognosis but also with chemosensitivity, so they might help to predict benefit, or identify some higher-risk patients who would gain little from chemotherapy. We could not test such hypotheses. Three new trials (MINDACT, TAILORx, RxPONDER) have included more than 10,000 patients with ER-positive disease and measurements of gene expression profile who have been randomly allocated chemoendocrine therapy versus the same endocrine therapy alone. Their combined results will be able to assess reliably the prognostic relevance of such measurements (and of other measurements, including quantitative immunohistochemistry) and will help to assess any differences in chemotherapy RRs between subgroups.

While awaiting the results of these new trials, it appears that ER status, differentiation, and the other tumour characteristics available for the present meta-analyses had little effect on the proportional risk reductions with taxane-based or anthracycline-based regimens. The more effective of these regimens offer on average a one-third reduction in 10-year breast cancer mortality, roughly that would be obtained by a one-third reduction in that risk.

Relatively few patients in these trials (and even fewer of those with recurrence) had small, well differentiated tumours. By contrast, widespread mammographic screening finds many breast cancers with low disease burden, low proliferative index, and hence a high probability of being endocrine-responsive luminal-A tumours. The present meta-analyses were not directly informative about the effects of chemotherapy on such low-risk tumours, but in low-risk ER-positive disease treated with effective endocrine therapy any further risk reduction from adding chemotherapy cannot, in absolute terms, be large, and patients not helped by chemotherapy are harmed by its toxicity. This includes not only acute toxicity and leukaemogenicity but also any persistent neurotoxicity and anthracycline cardiotoxicity. Longer follow-up of the trials will help to assess the eventual risks and benefits more reliably.

Acknowledgments

This report is dedicated to Paul Meier (1924–2011), parent of Kaplan-Meier survival curves and effective advocate of widespread randomisation in US clinical research. The main acknowledgment is to the many participants in the trials and the many staff who treated them, undertook trials, and shared the data. EBCTCG is funded by core support to the Oxford University CTSU from Cancer Research UK, the British Heart Foundation, and the UK Medical Research Council; DC is supported by the BHF Centre for Research Excellence (RE/08/04).

Writing committee: a full list of 620 names of the EBCTCG collaborators has recently been published elsewhere

Internal (CTSU) R Peto, C Davies, J Godwin, R Gray, H C Pan, M Clarke, D Cutter, S Darby, P McGale, C Taylor, Y C Wang; External J Bergh, A Di Leo, K Albain, S Swain, M Piccart, K Pritchard.

Contributors

Analyses were planned by RP, CD, JG, and RG (methodologists) in collaboration with JB and ADL (clinical advisors), and undertaken by JG, HCP, CD, RG, and RP in Oxford. RP, CD, RG, JB, and KP drafted the report and revised it with advice from KA, ADL, MP, SS, and HCP, then all writing committee members, then all collaborating trialists. Finally, it was agreed by the whole writing committee. The EBCTCG secretariat, including CD, JG, RG, MC, SD, PM, YCW, and RP, identified trials, obtained datasets, and had full access to them.

Conflicts of interest

MP holds patents on genome grade index and recurrence score (marketed by Ispogen/Qiagen), KA has accepted infrequent honoraria for CME lectures and an ad hoc advisory board from Genomic Health Inc, and JB, ADL, KA, KP, and MP have each accepted honoraria or consultancy fees from 3–7 major pharmaceutical companies. SS and all internal writing committee members declare that they have no conflicts of interest. CTSU staff policy excludes honoraria or consultancy fees. EBCTCG is funded by Cancer Research UK, British Heart Foundation, and UK Medical Research Council grants. All writing committee members’ institutions perform some trials sponsored by industry, government, or charity grants, which are undertaken and interpreted independently of the funders. Industrial support of trials contributing to EBCTCG meta-analyses is listed in the trial publications (webappendix pp 64–68); although such sponsorship might delay data from recent studies, it does not otherwise affect the analyses.

Attendees at EBCTCG Steering Committee meetings

References

