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Abstract—Employing deep learning methodologies for com-
puter vision tasks, particularly in the domain of radar image
analysis, necessitates access to a large and diverse dataset. In
the context of radar imagery, the creation of such a dataset
often entails the intricate task of reconstructing images from raw
radar back-scattered data. This reconstruction process involves
handling substantial data volumes, which can be computationally
intensve and time-consuming. In this research, a deep learning
framework is proposed for target classification utilizing solely the
radar back-scattered data, completely bypassing the need for
image reconstruction procedure, thereby significantly reducing
the classification time. To make the dataset generation easier,
a computational imaging (CI) numerical model is employed.
Subsequently, the deep learning model is trained using this
dataset, and following the training phase, it is tested with radar
back-scattered data that is not included in the network training.
The outcomes of this evaluation confirm the benefit of training a
deep learning model to perform image identification tasks based
on radar back-scattered signatures.

Index Terms—Deep learning, convolutional neural network,
radar imaging, computational imaging

I. INTRODUCTION

Deep learning techniques have shown remarkable success in
addressing different computer vision tasks in context of radar
imaging, such as classification [1], [2], object detection [3],
[4], segmentation [5], [6], and image processing tasks, such
as super-resolution [7], [8]. Leveraging these methodologies
yields impressive results with rapid processing times. How-
ever, developing effective deep learning models for these tasks
is not a straightforward task. It necessitates the generation
of a substantial dataset for model training, and the lack
of a universal model applicable across all tasks add to the
complexity. Each specific task demands a tailored dataset of
radar images for problem-solving. Generating such datasets
for radar imagery is a multi-faceted process, involving the
establishment of the imaging system, acquisition, processing
of back-scattered data, and subsequent image reconstruction
based on these measurements. This undertaking often involves
the handling of large data volumes [9], particularly when deal-
ing with electrically large imaging scenes, hence, making data
generation for deep learning model development a formidable
challenge.

This study presents a neural network architecture designed
to directly analyze raw radar back-scattered measurements as
input data and employ this information to classify the target re-
sponsible for generating the back-scattered data. This approach

eliminates the need for time-consuming reconstruction and
processing of images from the back-scattered measurements,
streamlining the target classification process. The dataset gen-
eration for training the learning model is facilitated through the
utilization of a computational imaging (CI) numerical model
[10]. This model is specifically designed to simulate the acqui-
sition of back-scattered data from diverse imaging targets. In
the context of this study, the dataset is generated by employing
two-dimensional (2D) computer-aided design (CAD) models
representing a set of threat objects as the imaging targets. In
essence, this research problem encompasses the classification
of five distinct object classes.

II. RELATED WORKS

The integration of radar signals and deep learning models
has gained significant attention in recent years. This section
provides an overview of noteworthy contributions in this field.
[11] showcased the substantial enhancement of automotive
radar sensor classification capabilities through the application
of deep learning methods. In [12], an innovative approach was
introduced involving the fusion of millimetre-wave (mmW)
radar and camera sensors using deep learning for object de-
tection and tracking. [13] employed a convolutional neural net-
work (CNN) to detect targets in radar data, primarily focusing
on car detection within a 2D spatial context. [14] proposed a
method for human identification based on radar micro-Doppler
signatures, leveraging deep CNNs to extract discriminative
features from these signatures, enabling accurate identification.
In [15], results demonstrating the classification of diverse
target classes in automotive radar systems was presented.
their approach combined convolutional and recurrent neural
network units for robust target classification. [16] also adopted
a similar combination of convolutional and recurrent networks
for the classification of moving targets. [17] proposed an
innovative method for object detection type classification in
automotive applications. This method harnessed deep learning
techniques with radar reflections, providing valuable object
class information for a diverse set of targets. Lastly, an efficient
neural network classifier named EfficientNetv2-s was intro-
duced for the classification and recognition of radar emitter
signals, as detailed in [18].

These research efforts collectively illustrate the effective
integration of radar signal processing and deep learning,
showcasing its potential in diverse applications such as object
detection and target classification in radar-based systems.



III. DATA GENERATION

The set-up of the CI numerical model used for data gener-
ation is shown in Fig. 1.

Fig. 1: The set-up of the imaging model used for data gen-
eration. The sizes of the transmit and receive coded apertures
along with the imaging scene are highlighted.

As illustrated in Fig. 1, the numerical model incorporates
two coded apertures [19], [20], one transmitter and one re-
ceiver, each measuring 0.5 m × 0.5 m (≈ 30λ × 30λ), and
separated by a distance of 0.0125 m. These coded apertures
play a pivotal role in creating spatio-temporally varying radi-
ation patterns for the purpose of probing the imaging scene.
This method involves subjecting the transmitted and received
electromagnetic waves to a sequence of diverse masks, each
endowed with spatially dynamic transparency properties. To
achieve this, a single mask is meticulously designed, featuring
intricately distributed complex weights spanning its entire
aperture [21]. This spatial-temporal transformation of the
aperture enables the realization of a substantially enlarged
aperture antenna capable of emitting quasi-random radiation
patterns. One notable advantage of this technique lies in its
ability to synthesize diverse measurement modes utilizing a
single frequency. This synthesis empowers the generation of an
array of radiation patterns, all meticulously designed to probe
the imaging scene. This deliberate reconfiguration imparts
a dynamic variation to the radiation field patterns from the
antenna, ultimately enhancing the capabilities of the imaging
system. For the studied CI model, the imaging scene, as
specified in Fig. 1, has the dimension of 0.3 × 0.3 (≈ 18λ ×
18λ), and is located at a distance of 0.5 m from the transmitter
and receiver apertures. The back-scattered from the imaging
scene, depicted by g, is modeled through the forward model
expressed as:

gM×1 = HM×N fN×1 + nM×1 (1)

Here, H denotes the sensing matrix, a fundamental element
that correlates the recorded back-scattered measurements to
the underlying imaging scene [22]. It is computed as the dot
product of the transmit and receive electric fields across the
entire measurements denoted by M measured for all N dis-
tinct pixels within the imaging scene. The scene’s reflectivity

distribution is characterized by the vector f and n denotes
the measurement noise. It is modeled as additive Gaussian
noise with zero-mean distribution. Its magnitude is governed
by the signal-to-noise ratio (SNR) level, a key parameter
that influences the performance and fidelity of the imaging
system. Considering the resolution limit of the aperture, in
this particular work, the imaging scene is discretized into N
= 9,409 pixels, and number of measurements to acquire the
scene information is equal to M = 500. The measurements
are performed at a single frequency of 18 GHz, and the back-
scattered measurements are subjected to a SNR level of 20 dB
[23].

From the forward model equation outlined in (1), the
generation of the back-scattered data, g, is carried out for the
development of the learning model. The dataset comprised of
imaging targets classified into five distinct threat categories:
guns, hammers, knives, scissors and wrenches. To this end, a
total of 3,810 data points are generated, with the following
distribution: 820 data points for guns, 800 for hammers, 980
for knives, 465 for scissors, and 750 for wrenches. To enhance
the diversity and robustness of the dataset, these imaging
targets are subjected to a series of geometric transformations.
These transformations encompassed horizontal shifts both to
the left and right, as well as vertical shifts to the top and
bottom within the imaging scene. Moreover, flips along both
the horizontal and vertical axes are introduced, adding further
variability. This augmentation strategy substantially expanded
the dataset to a total of 22,860 data points. For the subsequent
stages, the dataset is partitioned, where 20,000 data points
are reserved for the training phase, while the remaining 2,860
data points are selected for testing and evaluation of the model
post-training. Fig. 2 presents an illustrative demonstration of
the back-scattered data associated with two distinct imaging
targets.

In Fig. 2(a) and (b), unique patterns of the back-scattered
data that are specific to the respective target classes can be
observed.

IV. DEEP LEARNING MODEL

A. Model Architecture

In this section, details of the developed deep learning
architecture for the classification problem are provided. The
architecture is illustrated in Fig. 3.

As depicted in Fig. 3, the architectural framework consists
of dual channels, each dedicated to processing distinct compo-
nents of the input data: one channel for handling the real part
and the other for managing the imaginary part. The specific
filter sizes and quantities for the convolutional layers are
specified in the figure. Within each channel, the architecture
consists of a sequence of four layers, sequentially composed
of convolutional operations, Rectified Linear Unit (ReLU)
activation functions, and MaxPooling layers. Notably, at the
second and fourth layers within each channel, dropout layers
with a dropout rate of 0.5, is introduced, enhancing the model’s
robustness. Following this, the outputs from both channels
are concatenated and subsequently flattened. The flattened
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Fig. 2: (a) Absolute value of the back-scattered data gathered
for target (c). (b) Absolute value of the back-scattered data
gathered for target (d). The colourbars in (c) and (d) refer to
the normalized reflectivity values.

Fig. 3: The developed CNN architecture. The architecture uses
two inputs - one dedicated for real part of the input data, and
the other for imaginary part.

output is then directed through a densely connected neural
network, featuring two layers with 512 and 128 neurons,
respectively, for extracting high-level representations. Each of
these dense layers is accompanied by a ReLU activation layer.
Given that this specific problem entails five distinct classes,
the architecture culminates in five output nodes, integrated
with a softmax activation layer to output probabilistic class
predictions.

B. Training Details

Upon finalizing the architecture of the deep learning model
and completing the data generation process, the training phase
is initiated. The training process is conducted using a NVIDIA
GRID M60-8Q GPU equipped with 8 GB of dedicated RAM.
The CNN model is implemented using TensorFlow and ac-
celerated with CUDA platform. The learning rate used for
training is 10−3 and the loss function used is sparse categorical

cross-entropy loss [24], denoted by LSCC , which is given by
the formula:

LSCC = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (2)

where, N is the number of samples, C is the number of
classes, yij is the indicator function that is 1 if the i-th sample
belongs to the j-th class, and 0 otherwise. pij is the predicted
probability of the i-th sample belonging to the j-th class. The
choice of sparse categorical cross-entropy loss is motivated by
the integer-encoded class labels used in this work (0, 1, 2, 3
and 4) for the five-class problem. The training process spanned
a total of 500 epochs and employed the Adam optimizer for
optimization [25]. The training and validation accuracy curves
for the entire training process of 500 epochs are shown in Fig.
4.

Fig. 4: Training and validation accuracy curves for 500 epochs.

V. RESULTS AND DISCUSSION

The trained deep learning model is first tested on simulated
radar data generated by the developed numerical model. As
mentioned in Section III, out of the 22,860 data samples, 2,860
are reserved for testing the trained model. The confusion ma-
trix and the classification report generated for the predictions
during the testing phase of these simulated data samples are
shown in Fig. 5 and Table I.

The precision, recall and F1-scores [26] for individual
classes are detailed in Table I. Analyzing the results, it is
evident that the model has demonstrated a high accuracy of
94% on the test dataset. Furthermore, the model’s inference
time for processing the entire dataset of 2,860 samples was
recorded as 277.4 seconds, translating to a frame rate of
96.9 milliseconds per sample. This suggests that the proposed
model can handle real-time scenarios.

The performance of the deep learning model is also assessed
in the presence of noise, where back-scattered data generated
by the numerical model is subjected to reduced SNR levels



Fig. 5: Confusion matrix for 2,860 predictions.

Table I: Classification report for 2,860 predictions.

Class Name Precision Recall F1-score Support
Gun 0.93 0.93 0.93 572

Hammer 0.93 0.94 0.93 572
Knife 0.94 0.93 0.94 572

Scissor 0.95 0.94 0.94 570
Wrench 0.93 0.94 0.94 574

Accuracy 0.94 2,860
Macro-F1 0.94 2,860

Weighted-F1 0.94 2,860

of 10 dB and 5 dB. The model’s accuracy is evaluated by
feeding test data samples with SNR levels of 10 dB and 5 dB,
respectively, into the learning model. The classification reports
summarizing the model’s performance under these conditions
are presented in Tables II and III.

Table II: Classification report for test data samples of 10 dB
SNR level.

Class Name Precision Recall F1-score Support
Gun 0.87 0.83 0.85 572

Hammer 0.85 0.86 0.85 572
Knife 0.84 0.83 0.84 572

Scissor 0.85 0.84 0.84 570
Wrench 0.84 0.88 0.86 574

Accuracy 0.85 2,860
Macro-F1 0.85 2,860

Weighted-F1 0.85 2,860

Tables II and III demonstrate a significant reduction in the
model’s accuracy, declining to 85% and 78%, respectively.
This decline can be attributed to the elevated noise levels
present in the back-scattered data. The model’s training pri-
marily focused on classifying targets using back-scattered data
at a fixed SNR level of 20 dB, hence, consequently, the model
exhibits reduced accuracy in handling data with lower SNR
levels.

Table III: Classification report for test data samples of 5 dB
SNR level.

Class Name Precision Recall F1-score Support
Gun 0.79 0.76 0.78 572

Hammer 0.76 0.77 0.77 572
Knife 0.78 0.77 0.78 572

Scissor 0.80 0.78 0.79 570
Wrench 0.75 0.79 0.77 574

Accuracy 0.78 2,860
Macro-F1 0.78 2,860

Weighted-F1 0.78 2,860

The classification accuracy on the dataset with elevated
noise levels can be improved by modifying the model ar-
chitecture through the incorporation of additional layers into
the neural network. However, such modifications can lead to
the development of a more complex network, resulting in an
increased parameter count. Consequently, this may introduce
overfitting issues during the training phase and subsequently
prolong the inference time. Alternatively, another approach
involves the adjustment of the training dataset by the inclusion
of back-scattered data that has been subjected to SNR levels of
10 dB and 5 dB. Subsequently, the learning model is trained
utilizing this revised dataset and evaluated on the test dataset.
Detailed classification reports for the predictions post-training
are included in Tables IV and V.

Table IV: Classification report for test data samples of 10 dB
SNR level after training the model on new dataset.

Class Name Precision Recall F1-score Support
Gun 0.88 0.88 0.88 572

Hammer 0.89 0.88 0.89 572
Knife 0.88 0.89 0.89 572

Scissor 0.90 0.89 0.89 570
Wrench 0.89 0.89 0.89 574

Accuracy 0.89 2,860
Macro-F1 0.89 2,860

Weighted-F1 0.89 2,860

Table V: Classification report for test data samples of 5 dB
SNR level after training the model on new dataset.

Class Name Precision Recall F1-score Support
Gun 0.84 0.85 0.85 572

Hammer 0.85 0.86 0.85 572
Knife 0.85 0.84 0.84 572

Scissor 0.86 0.84 0.85 570
Wrench 0.84 0.86 0.85 574

Accuracy 0.85 2,860
Macro-F1 0.85 2,860

Weighted-F1 0.85 2,860

As evident from the accuracy scores of 89% and 85% on test
dataset subjected to 10 dB and 5 dB SNR levels, respectively,



it can be concluded that training the neural network with
noisy data has resulted in a demonstrable improvement in the
accuracy scores.

VI. CONCLUSION

In this work, an alternate approach to solve the classification
problem in radar images leveraging deep learning model was
presented. The proposed method does not rely on the recon-
structed images from the radar imaging systems. Instead, the
learning model was designed to predict the respective classes
of the imaging target directly from the raw back-scattered
data acquired during the radar imaging process. The data for
the training and testing processes of the learning model were
generated using a CI numerical model. The learning model
was configured to accommodate the complex-valued back-
scattered data, utilizing two separate channels for the real and
imaginary components. Post training, the model was tested
with 2,860 test samples, where the model achieved an accuracy
score of 94% and an inference speed of 96.9 milliseconds
per sample. Furthermore, the model was also tested on noisy
dataset where the noise levels in the recorded back-scattered
data were varied. The results demonstrated a noticeable decline
classification accuracy to 85% and 78% at 10 dB and 5 dB
SNR levels, respectively. A remedy to this issue was proposed
in this work, wherein the training dataset was augmented
with back-scattered data corresponding to higher noise levels.
Following this adaptation, the model’s classification accuracy
significantly improved, reaching 89% at 10 dB SNR level and
85% at 5 dB SNR levels.

All these findings signify that the classification problem for
targets can also be accurately solved, even in the presence
of noise, by utilizing only the raw back-scattered data, thus,
eliminating the need for the image reconstruction process. This
can drastically simplify the signal processing layer of CI-based
imaging systems offering significant potential for achieving
real-time detection and classification.
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[17] M. Ulrich, C. Gläser, and F. Timm, “Deepreflecs: Deep learning for
automotive object classification with radar reflections,” pp. 1–6, 05 2021.

[18] Z. Sun, K. Li, Y. Zheng, X. Li, and Y. Mao, “Radar spectrum image
classification based on deep learning,” Electronics, vol. 12, no. 9, 2023.
[Online]. Available: https://www.mdpi.com/2079-9292/12/9/2110

[19] M. L. Don, C. Fu, and G. R. Arce, “Compressive imaging via a
rotating coded aperture,” Appl. Opt., vol. 56, no. 3, pp. B142–B153, Jan
2017. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?URI=
ao-56-3-B142

[20] C. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleas-
man, D. Smith, and W. Padilla, “Terahertz compressive imaging with
metamaterial spatial light modulators,” Nature Photonics, vol. 8, 08
2014.

[21] T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith,
“Dynamic metamaterial aperture for microwave imaging,” Applied
Physics Letters, vol. 107, no. 20, 11 2015. [Online]. Available:
https://www.osti.gov/biblio/22486109

[22] T. V. Hoang, V. Fusco, T. Fromenteze, and O. Yurduseven, “Computa-
tional polarimetric imaging using two-dimensional dynamic metasurface
apertures,” IEEE Open Journal of Antennas and Propagation, vol. 2, pp.
488–497, 2021.

[23] O. Yurduseven, M. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose,
and D. Smith, “Resolution of the frequency diverse metamaterial aper-
ture imager,” Progress in Electromagnetics Research, vol. 150, pp. 97–
107, 2015, publisher Copyright: © 2015, Electromagnetics Academy.
All rights reserved.

[24] X. Chai, W. Nie, K. Lin, G. Tang, T. Yang, J. Yu, and W. Cao, “An
open-source package for deep-learning-based seismic facies classifica-
tion: Benchmarking experiments on the seg 2020 open data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19,
2022.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[26] A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow : concepts, tools, and techniques to build intelligent systems,
second edition. ed. Sebastopol, CA: O’Reilly, 2019 - 2019.


