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Abstract

Unmanned aerial vehicles (UAVs) have had an impressive number of

real-world applications and will continue to play a significant role in

the future. Yet, UAV-assisted communication is constrained by scarce

resources - a common issue in wireless communication. Optimal re-

source allocation is thus of critical importance for UAVs to operate

and fulfil their missions. Although resource allocation in UAV-assisted

communication is not a new topic, many challenges exist. Resource

allocation is a non-trivial task due to the constraints of UAVs (such

as flight time, deployment strategy, cache storage) and the many con-

straints of the wireless network supported by UAVs (such as power of

the base station, quality-of-service), amid the presence of numerous

users and devices. Moreover, optimisation problems in this context

are often highly non-convex and difficult to solve.

Inspired by the aforementioned discussion, this thesis proposes opti-

mal resource allocation strategies in UAV-assisted wireless communi-

cation, taking into account resources such as spectrum, power, and

cache in specific UAV use cases. In particular, Chapter 3 looks at a

spectrum-sharing cognitive radio network where the UAVs are de-

ployed as flying base stations to provide network coverage to the

secondary network in a disaster area. A learning-aided optimisation



scheme is designed to allocate radio resources under the constraints of

maximum tolerable interference. Chapter 4 considers integrating re-

configurable intelligent surfaces onboard the UAVs to extend network

coverage in a massive multiple-input multiple-output system. The

joint problem of optimal power allocation and phase-shift is solved,

subject to deployment strategy and minimum data throughput. Fi-

nally, in Chapter 5, the UAVs assist in content caching in an integrated

terrestrial-non terrestrial network. The joint optimisation problem

of user clustering, cache placement, and power allocation is solved

efficiently by using a distributed approach. In all these cases, low-

complexity algorithms are proposed and their usefulness is confirmed

through simulation.
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Chapter 1

Introduction and overview

1.1 UAV-assisted wireless communication

Wireless communications is being advanced in the way that more capacity is

added, together with an increasingly higher data rate, yet at ultra-low latency

and extremely high reliability of data transmission. These are the challenges

to be met by the evolving wireless technologies, amongst which are unmanned

aerial vehicles (UAVs). Not long ago since UAVs first found their way into the real

world applications, they have rapidly emerged to become an important component

of wireless technologies. In the UK, it is estimated that by 2030, UAVs could

contribute up to 45 billion pounds to the UK economy, with 920,000 UAVs being

in use [1].

UAVs’ main advantages of flexible mobility and cost-effectiveness have en-

abled their application in a plethora of use cases and scenarios, from search and

1



1.1 UAV-assisted wireless communication

rescue to coverage, data collection, monitoring, and delivery, each with its own

communication requirements regarding connectivity, traffic demands and adapt-

ability in a fluid environment [2]. For instance, in disaster relief, since a quick

network recovery is a priority and crucial to rescue missions, UAVs’ fast deploy-

ment makes them particularly suitable for establishing a temporary network that

aids rescue efforts.

From the communication perspective, UAVs’ roles are categorised into three

main types: UAVs acting as relays, UAVs acting as flying base stations to provide

ubiquitous coverage, and UAVs assisting in information dissemination and data

collection [3]. UAVs operate at a high altitude above the ground, making it

possible to establish line-of-sight (LoS) connections with both the base station

and ground users, avoiding obstructions and blockages (e.g., high buildings, trees

etc.) in between, and improve quality-of-service for users. In remote areas or

when the terrestrial networks are underdeveloped, UAVs are a quick and efficient

solution by flying above and providing network connection within a wide region.

Furthermore, UAVs can be tasked with data collection from wireless sensor nodes

[4], assist in improving data transmission in vehicular ad hoc networks [5], or

support in content delivery [6].

UAV-assisted communication is characterised by four features. First of all,

UAV-assisted communication has LoS connections for the air-to-air, air-to-ground

and ground-to-air links. In particular, the air-to-air links undergo free space prop-

agation since the UAVs operate at a high altitude and without obstructions in

between. The latter two types of links are more complex due to propagation block-

age, and must depend on the environment and the elevation angle of the UAVs [7].

Secondly, a UAV-assisted wireless network has three-dimensional topology as a

2
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result of the UAVs’ high altitude that extends the network topology vertically.

Thirdly, the network topology may change quickly due to the movements of UAVs

and users. Last but not least, UAVs’ operation is limited by their energy capac-

ity, which is also their major drawback. The battery is drained out after only

half an hour to a few hours, depending on the complexity and requirements of

the missions they undertake. This further exacerbates the challenge of resource

allocation and management in wireless networks supported by UAVs. The de-

ployment of UAVs entails decision making on their three-dimensional locations,

trajectory, hover time, on-board power, UAV clustering and user association.

This is a challenging task, having to consider effects from a number of parame-

ters/factors such as UAV channel gain, channel models communication between

UAVs in a fleet, and the environment in which they are deployed [8].

UAVs are not a stand-alone technology and combining UAVs and other wire-

less technologies can bring about advantages and opportunities. At the same

time, by integrating resource-constrained UAVs into wireless networks that cur-

rently have scarce resources, new related problems arise. The next section will

detail the research challenges in resource allocation in UAV-assisted wireless com-

munication.

1.2 Research challenges in resource allocation

for UAV-assisted wireless communication

UAVs’ short operational time and their high mobility in a dynamic environment

with many constraints pose the need for optimisation of their operation [9]. When

3



1.2 Research challenges in resource allocation for UAV-assisted
wireless communication

we take into account UAVs’ unique features and the intertwine between stringent

constraints on energy and flight time [10], resource allocation in UAV-assisted

communication should follow optimisation objectives while satisfying certain con-

straints such as the deployment of UAVs, power budget, and UAVs’ cache storage.

In this thesis, the resource allocation problems to be considered in UAV-

assisted wireless communication are related to power, spectrum, clustering, and

cache. Resource allocation problems in UAV-assisted wireless communication are

often optimisation problems of high complexity, non-convex and combinatorial

nature. Solving these problems is often very challenging and takes up a lot of

compute resources. In addition, most of the research on resource allocation has

not considered solving time of optimisation problems. In what follows, we will

look at these challenges in more detail.

1.2.1 Resource allocation with spectrum sharing in UAV-

assisted networks

UAVs are currently sharing unlicensed spectrum bands with other wireless, ter-

restrial technologies and devices. These bands will soon become overcrowded

due to the tens of billions of Internet-of-Things devices that are operating within

the bands, coupled with the growing number of UAVs themselves. On the other

hand, licensed spectrum offers the access to adequate channel capacities, which is

particularly suitable for the deployment of real-time applications in UAV-assisted

communications [11]. Therefore, spectrum sharing serves as an option to increase

the radio resources available to UAVs. In particular, cognitive radio networks

(CRN) offer secondary users (unlicensed users, i.e., UAVs) the capability of shar-

4
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ing bandwidth with primary users (licensed users) provided that the interference

imposed on the latter is kept below a certain threshold.

Spectrum sharing for UAV-assisted networks has received tremendous atten-

tion from the research community. There has been research to improve spectrum

sensing performance [12], to jointly optimise trajectory and power allocation for

UAV-CRN to maximise achievable rate of UAV-SU link [13], or to jointly opti-

mise location and spectrum sensing duration of the UAVs to maximise network

throughput [14].

Most of the studies have only considered a simple system set-up (e.g., one

single UAV), and a long computation time has been required to solve the optimi-

sation problems. In addition, the dominance of LoS links in UAV communication

may cause severe intra- and inter-cell interference that should be managed, espe-

cially in the case of spectrum sharing [15].

1.2.2 Power allocation in UAV-reconfigurable intelligent

surface- assisted networks

The advances in meta-materials have brought a new technology to wireless com-

munication, that is reconfigurable intelligent surface (RIS). A RIS is a planar

structure comprised of hundreds or thousands of reflecting units that reflect in-

coming signals without amplifying (passive RIS) or with amplifying the signals

(active RIS). This thesis only considers passive RISs.

RISs have many advantages, such as:

• Throughput enhancement by forming LoS links between base stations and

users, especially when there are blockages and obstacles in between.
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• Low power consumption: RISs reflect signals without the need for a power

amplifier. Even so, since the phase shifts of the RIS elements can be changed

by the RIS controller, they will require a very small amount of power for

running the controller and reconfiguring the RIS elements [16,17].

• Low implementation complexity: There are many options for the instal-

lation location of RIS panels, such as on building facades, indoor walls,

rooftops, street intersections, or onboard UAVs.

RISs have been considered a great deal in the literature, but in these studies,

they were mainly installed at fixed locations. By contrast, when a RIS panel is

mounted onboard a UAV to form an aerial RIS, the UAV coverage and communi-

cation quality can be improved [17]. To this end, the location of the aerial RISs

and phase shift of the RISs should be carefully selected.

As an exciting topic, integrating RISs and UAVs has continued to draw the

attention of the research community. Nonetheless, most of the studies were of

an exploration nature, relying on simple system models with a single aerial RIS

assisting the network, or having a single end user to support. This is in fact

a limitation of state-of-the-art research since the number of devices is growing

rapidly and one RIS can hardly make sufficient impact to a system in reality. It

is only practical to use multiple aerial RISs to efficiently support numerous users.

1.2.3 User clustering and cache placement in UAV-aided

content caching

UAVs are connected to the core network via backhaul links from a macro base

station or satellite that may be congested during peak hours. In order to al-
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leviate this problem, the UAVs can cache popular content in advance (during

off-peak hours), and deliver to ground users when requested. Hence, caching at

the UAVs during off-peak hours will avoid the use of congested backhaul links

and reduce energy consumption at the UAVs during operation while improving

transmission rate for users [18]. However, the content popularity may change

over time, requiring a frequent update in the caches. In addition, due to the limit

in cache capacity, cache placement at UAVs should be optimised to improve the

performance of UAV-assisted networks.

Caching enabled by UAVs has been examined in conjunction with UAV de-

ployment, trajectory, and power allocation. In [6], multiple UAVs cooperate in

providing content services to multiple users. The authors maximised the mini-

mum throughput amongst the users served by these UAVs, by jointly considering

cache placement, UAV trajectory and transmission power. User clustering was

not considered, and the UAVs were not able to exchange cached data. This can

increase transmission time to users. In [19], for an integrated satellite-terrestrial

network support by cache-enabling UAVs, a UAV would have to request the con-

tent directly from a satellite if it does not have this content in its cache. Given

the long distances from the satellite, transmission time is longer, compared with

the case the content is sent by a neighbour UAV having the files.

While satellite communication has begun to regain its popularity, there is a

lack of research on UAVs supporting satellite and caching in satellite-terrestrial

networks [6]. Additionally, inter-UAV communication also merits more investi-

gation, especially in content caching.

7



1.2 Research challenges in resource allocation for UAV-assisted
wireless communication

1.2.4 Challenges in solving complex optimisation prob-

lems in UAV-assisted communications

In the literature, most optimisation problems considered in UAV-assisted com-

munication have been solved efficiently [20]. However, the increasing number of

devices in wireless networks (e.g., IoT devices, sensors) will result in an expo-

nential increase in optimisation problems’ complexity. In UAV-assisted wireless

networks, it is even more challenging due to the dynamic network topology, e.g.,

the 3D locations and the number of UAVs impose more stringent constraints on

the optimisation problem.

In addition, reducing execution time (e.g, for time-critical applications such

as in disaster management) when solving optimisation problems in UAV deploy-

ment and radio resource allocation is a challenging but an interesting research

direction. Real-time optimisation has attracted attention from research commu-

nities in 5G networks and beyond and will become a promising research trend

in wireless communications. Yet, for meeting the requirement of solving opti-

misation problems within strict time-frame to inform real-time choices in UAV

communications, the current research literature is not sufficient [21].

Real-time optimisation in the context of UAV-assisted communication is not

yet a mature technology, and thus, its potential lies ahead. Particularly, the ap-

plication of real-time convex optimisation into solving challenges associated with

UAVs is still limited. Few studies have attempted to evaluate the solving time

of their proposed techniques, or provided an optimal solution to the deployment

and resource allocation problems in real-time.

Further to this, machine learning (ML) methods have been widely adopted
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in UAV research, with a range of methods employed in solving various problems

(e.g., UAV path planning, trajectory design, resource allocation, energy efficiency

maximisation) [22]. Distributed methods are also able to solve optimisation prob-

lems efficiently.

This thesis adopts optimisation methods, ML methods and distributed ap-

proach where appropriate to alleviate the aforementioned challenges. Convex

optimisation has many advantages as will be discussed in Chapter 2, while ML

methods and distributed approach work well in solving optimisation problems

and reducing execution time.

1.3 Thesis’s focus

Inspired by the aforementioned discussion, this thesis aims to provide optimal

resource allocation strategies in UAV-assisted communication. In particular, the

thesis involves the study of optimal strategies for the allocation of power resources

in accordance with spectrum resources and/or caching resources in UAV-assisted

wireless networks under different scenarios. The main methodology in this thesis

is mathematical modelling and simulation using Matlab where the effectiveness

of the proposed algorithms is demonstrated. Convex optimisation, together with

ML methods and game theory, is the approach to solving optimisation problems

of resource allocation.

The focus of this thesis is on resource allocation in UAV-assisted communi-

cations with resource constraints that are specific to the use cases being taken

into account. This thesis looks at several scenarios of UAV-assisted and commu-

nication, such as when the UAVs act as flying base stations or relays to support
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in providing network coverage, or when the UAVs assist in content caching. By

aiming at optimal deployment strategies and resource allocation, this thesis pro-

poses optimisation algorithms that are useful to the research and application of

UAVs in the aforementioned cases, and potentially have a positive impact. For

instance, the efficient deployment of UAVs in search and rescue missions will

reduce the security and safety risks, operation costs and human lives [2], while

UAVs carrying RISs are beneficial to users suffering from obstruction or blockage

in urban areas.

1.4 Thesis’s contributions

The thesis proposes optimal strategies for resource allocation in UAV-assisted

communication. Optimisation problems taking into consideration different re-

sources in UAV-assisted wireless networks are jointly optimised. Unlike most

studies in the literature, the studies in this thesis are formed from a more prac-

tical viewpoint, with numerous devices (satellites, UAVs, RISs, user equipments)

co-existing in the system. This large number of devices entails a large number

of variables and constraints, making the optimisation problems difficult to solve.

Nonetheless, low-complexity optimisation algorithms that are capable of solving

UAVs’ resource allocation problems in specific contexts are proposed and proven

to outperform other benchmark schemes.

To this end, convex optimisation is the main approach to solving optimisation

problems in resource allocation, and is supplemented by ML methods (e.g., deep

neural networks, clustering methods, genetic algorithm) and game theory (e.g.,

non-cooperative game) in order to solve the optimisation problems that are too
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complex or difficult. Another reason behind the use of the aforementioned meth-

ods is to speed up the process of yielding an optimal solution where appropriate,

i.e., making a scheme work faster is crucial, for example, in scenarios where real-

time optimisation is necessary, as will be seen in parts of this thesis. It is shown

that the proposed algorithms are efficient in handling UAV’s resource allocation

problems.

The thesis has the following contributions:

• A new, real-time power allocation scheme is proposed for UAV-assisted

communications with spectrum-sharing, where the UAVs can serve as relays

to connect users that require mission-critical services (e.g., in the event of

natural disasters). The optimal resource allocation scheme is designed in

terms of the number of UAVs used and the power allocated in the primary

and secondary networks. Execution time and throughput maximisation are

jointly considered, via the deployment of the UAVs and resource (UAV’s

power) allocation under stringent constraints. In addition, unlike most

other studies that did not consider relevant wireless network challenges [8],

we consider the interference impinged on the ground users. Chapter 3 will

present the proposed scheme in detail.

• A UAV’s quick deployment strategy supported by machine learning (a deep

neural network in this instance) is proposed. In the literature, an approach

to UAV’s deployment considers UAV’s trajectory location, speed, and ac-

celeration, as in [3, 21, 23]. By contrast, this thesis considers the UAV’s

deployment problem as a UAV positioning optimisation problem to provide

a best-effort transmission service (as in Chapter 3 and Chapter 4).
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• A framework for maximising the total network throughput when multiple

aerial RISs are used to extend network coverage, is proposed. The UAV-

mounted RISs are passive reflectors in this scenario. The UAVs’ power

allocation is optimised jointly with the RISs’ phase shift in a highly non-

convex optimisation problem. Not all users will equally receive the benefits

of throughput improvement, as such, we also consider users with lowest

throughput (i.e, users at the edge of the coverage area) to reveal the im-

pact of our proposed scheme. Chapter 4 provides the details of how this

optimisation problem is solved and the proposed scheme evaluated.

• A real-time, jointly optimal scheme of ground user clustering, UAV cache

placement and resource allocation is designed for minimising total latency

in an integrated satellite-UAV-terrestrial network. Due to the extremely

complex nature of the original problem, it is decomposed into three sub-

problems as mentioned above. Since we aim to solve the problem/sub-

problems and solve them quickly, a distributed method consisting of game

theory, genetic algorithm, and quick estimation technique, is proposed, al-

lowing the original optimisation problem to be solved in real-time. As a

benchmark, convex optimisation methods (first-order approximation) ap-

plied to the sub-problem of power allocation is presented. Moreover, inter-

UAV communication is taken into account when we attempt to reduce net-

work latency. Finally, the UAVs’ power divided between inter-UAV com-

munication and UAV-ground user communication is explored. The details

are given in Chapter 5.
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1.5 Thesis’s organisation

The thesis is comprised of 6 chapters and organised as follows. Chapter 1 has

just established the context for resource allocation in UAV-assisted wireless com-

munications, the motivation, and contribution of this thesis.

Chapter 2 presents the many methods used in solving resource allocation

problems in UAV-assisted wireless networks and provides background information

for understanding the studies in the subsequent chapters. Chapter 2 is based on

references [J1-3] in the Author’s publication list.

In Chapter 3, we look into UAVs in disaster scenarios. When a disaster strikes,

utility networks and other infrastructure can get disrupted. Telecommunications

base stations in the disaster areas can be out of order, making mobile and net-

work communication within their coverage impossible. This affects (i) users in

the disaster areas who need to connect to their family or emergency and rescue

services, and (ii) the rescue teams who need to communicate with others in the

safe area, for example with the hospitals. To provide urgent network connection

in the disaster areas, multiple UAVs can be sent to set up temporary network

coverage. Chapter 3 analyses the problem of spectrum sharing in a UAV-enabled

wireless network where the UAVs can gain access to both licensed and unlicensed

spectrum. Real-time optimisation algorithms of low-complexity are proposed for

the primary and secondary networks, aiming at optimising the total throughput

in the primary and secondary networks under the constraints of strict tolera-

ble interference imposed on the primary users. A deep neural network plays an

important role in reducing the execution time in UAV deployment optimisation

problems, making it suitable as a real-time solution. Chapter 3 is published as
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[J3] in the Author’s publication list.

Chapter 4 considers using UAVs to extend and improve network coverage by

integrating a RIS panel on-board multiple UAVs. RIS is a suitable candidate

that complements the current state-of-the-art network and communication tech-

nologies by providing spectrum/energy efficiency in a cost-efficient manner. The

integration of RISs and UAVs that combines the benefit of UAVs and RISs as

smart reflection units (UAV-RISs) has been proven to expand reliable wireless

network operation and improve network performance. Employing multiple UAV-

RISs (aerial RISs), we solve the problem of total network throughput maximisa-

tion by optimising the RIS phase shifts and UAVs’ power allocation. Chapter 4

is published as [J2] and based on [C2] in the Author’s publication list.

In Chapter 5, the roles of UAVs are seen in two aspects: they are used as

relays to improve network coverage, and they also assist in content caching. We

consider a satellite-UAV-user network where several low Earth orbit satellites,

many UAVs and a lot of ground users are operating. Since high latency often

incurs in satellite communication due to long distance transmission, the main aim

of the study in this chapter is to minimise the total network latency, subject to

ground user clustering, cache placement at the UAVs, and power allocation at the

satellites and UAVs. A distributed approach is proposed to solve the problem in

real-time. A more centralised approach is also presented - the purpose is to have

a benchmark as to how well the quick estimation technique works. In addition,

the impact of inter-UAV communication on the network latency is evaluated.

Chapter 5 is published as [J1] and based on [C1] in the Author’s publication list.

Finally, Chapter 6 summarises the key findings in the thesis and discusses

research directions for future investigation.

14



Chapter 2

Background and literature review

2.1 Approaches to solving resource allocation

optimisation problems in UAV-assisted com-

munication

2.1.1 Convex optimisation approach

A general convex optimisation problem takes the form of minimising a convex

function (or maximising a concave function) subject to linear constraints. From

this definition, convex optimisation comes in different classes [24]: linear pro-

grams, quadratic programs, geometric programs, convex optimisation problems

with generalised inequality constraints (conic programs, semi-definite programs),

and vector optimisation programs 1.

Convex optimisation has many advantages. An important feature of convex

optimisation that has gained it the widespread adoption is that any locally op-

1This chapter is based on references [J1-3] in the Author’s publication list.
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timal solution is also globally optimal [24]. In addition, there are methods and

algorithms that can solve convex optimisation problems efficiently [25], such as

Newton’s method and interior-point methods.

Many optimisation problems in wireless communication can be formulated

as or transformed into convex optimisation problems: downlink beamforming

problems can be formulated as semi-definite and second-order cone program-

ming (e.g., [26–28]), sensor network localisation problems can be relaxed to a

semi-definite programming (e.g., [29]), the problem of energy-efficiency in UAV

communications and networks has been generally formulated as a fractional max-

imisation problem (e.g., [3, 21]), to name but a few.

When the problems become complex or the number of variables increases,

it will take considerably longer to solve those problems, especially in large-scale

scenarios. An optimisation algorithm often falls within the categories of iterative

algorithms, indicating that a (large) number of iterations will have to be made in

order to reach optimal solutions. The running of such a procedure is often costly,

requiring both computation resources and time, thus restricts the algorithm’s

suitability for time-sensitive tasks. Let us take the mixed-integer programming as

an example. Mixed-integer optimisation problems are those with integer decision

variables. In special cases, these are binary problems where the decision variable

is 0 or 1. Mix-integer programming is difficult to solve, and the solution time

may increase exponentially with the problem size.

Practical problems in UAV networks and communications are usually non-

linear programming and involve a large numbers of variables [21]. The optimisa-

tion of UAV deployment [20,30] or resource allocation [31,32] in a UAV-assisted

wireless network may result in mixed-integer nonlinear programming problems.
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Fortunately, CVXPY embedded in Python can solve this class of problem, by us-

ing an appropriate solver (e.g., ECOS BB). In other cases, the formulated optimi-

sation problems are non-convex due to the non-convexity nature of the objective

functions (such as maximising a convex function as in [3]) or the non-convexity

of the constraints (as in [20]). Compared with convex optimisation problems,

non-convex optimisation problems are more difficult to solve. There is no general

method of solving non-convex problems whilst there are many local optima. An

approach to this situation is to transform the non-convex problems into convex

ones that are easier to handle.

Alternatively, there are solving approaches that can reduce computational

complexity of optimisation problems, as detailed in the next subsections.

2.1.2 Machine learning methods

A great number of ML methods have been adopted to improve the performance

of UAV-assisted communication or reduce solving time [33]: supervised learning

methods (such as support vector machines, neural networks), unsupervised learn-

ing (such as K-means), reinforcement learning, self-learning (such as federated

learning, transfer learning) [22], and nature-inspired algorithms (such as genetic

algorithms, particle swarm optimisation algorithms). Many ML algorithms, e.g.,

evolutionary or genetic algorithms, can reduce the computational complexity of

combinatorial problems, and are suitable for solving complex, large-scale optimi-

sation problems.

Learning-based approaches have been used in solving clustering optimisation

in UAV-user association. In [23], a constrained K-means clustering method was
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proposed for grouping ground sensors and estimating the minimum of UAVs

needed in collecting data from these ground sensors. The K-means method has

been shown to significantly reduce solving time in comparison with peer-to-peer

UAV-ground sensor scheme. In another study, the use of a deep neural network

with several layers can estimate the behaviour of the optimisation algorithm,

reduce the error of solution and with that, computation time [31].

The deployment of UAVs as relays can improve network connectivity, energy

and spectral efficiency when their clustering strategies are optimised [8]. For ex-

ample, in [30], a clustering model based on constrained K-means procedure was

designed to group users in a disaster scenario. Other approaches see reinforce-

ment learning and deep reinforcement learning being applied to optimise UAV’s

trajectory. In [34], given the lack of prior and full knowledge of the system, re-

inforcement learning was used to solve UAVs’ trajectory design with the aim to

minimise energy consumption while maximising network throughput. In [35], a

UAV was used as a relay in an emergency situation. The authors designed the

UAV trajectory by using double deep Q network, whereas transfer learning was

integrated to reduce training time.

2.1.3 Centralised optimisation approach versus distributed

optimisation approach

Compared with a distributed approach, a centralised approach often produces

better optimal solutions. On the other hand, the distributed approach can ensure

faster running time, yet cannot yield as good an optimal solution as the centralised

approach. This thesis relies on both the centralised and distributed approaches.
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Particularly for distributed methods, the thesis adopts a non-cooperative game

(game theory) and a genetic algorithm (ML method).

In Chapter 5, game theory is applied to solve the problem of ground user

clustering/association in a satellite-UAV-terrestrial network, which is formulated

as a binary programming. The suitability of a game theory method is based

on the following reasons: (i) Fairness: In conventional optimisation, optimising

network latency for all the users in the considered network may result in very

low latency for some users while very high latency for some other. By contrast,

the non-cooperative game proposed in the chapter will allow the ground users

to choose their best responses, given the actions of the others. In other words,

each and every user can choose the cluster that gives them the lowest latency,

given the clustering of the other users. (ii) Discrete programming: The clustering

variable is binary with two possible values of 0 and 1 for all the users. Hence, it

is possible to model the clustering problem as a game in which the users choose

their actions from a set of possible actions (i.e., to be associated with this UAV

or not). (iii) Parallel computing: The game theory-based algorithm can solve the

sub-problems of optimising the users’ response in a parallel manner, on multiple

processors. This reduces the time for finding the optimal solution.

Similarly, a genetic algorithm is applied to solve the problem of cache place-

ment at the multiple UAVs in Chapter 5. The reasons are as follows: (i) Discrete

programming: The indicator of cache placement for a file is a binary variable

with possible values of 0 and 1. In their simplest form, the chromosomes in a ge-

netic algorithm are also modelled as binary strings. Thus, the chromosomes can

represent the cache placement well. (ii) Parallel computing: Cache placement of

each UAV cluster can be solved in parallel, thereby reducing running time. (iii)
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Applicability: Genetic algorithms can be applied to solve various complex prob-

lems. However, genetic algorithms also have some drawbacks, for example the

difficulties in choosing parameters such as crossover/mutation probability. This

issue is also discussed.

A comparison of the centralised and distributed methods used for solving the

joint optimisation of user clustering, cache placement and resource allocation in

SUINs is given in Chapter 5.

2.2 Resource allocation in UAV-cognitive radio

networks in mission-critical communication

In mission-critical communication, such as in the event of a natural disaster,

unmanned aerial vehicles (UAVs) play a significant role. The UAVs have to

stay airborne above the affected area to aid first responders in search and rescue

mission and assessing the gravity of the disaster as promptly as possible [9].

The UAVs’ operation is conventionally mandated in the unlicensed spectrum

bands shared with other wireless technologies including the IEEE S-Band, IEEE

L-Band, and ISM-Band. These bands are becoming more crowded due to the

escalating proliferation of Internet-of-Things devices and device-to-device com-

munications. Hence, supporting the UAVs’ operation in a cognitive radio net-

work (CRN) becomes a promising technique of increasing the UAVs’ available

radio resources in addition to the unlicensed band. The integration of UAVs into

spectrum-sharing networks has attracted substantial interest from the research

community [12,36,37]. In [12], the authors enhanced the spectrum sensing perfor-
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mance, by arranging for a UAV to perform spectrum sensing by circularly flying

over the primary user (PU) in order to sense and access the idle spectrum. By

contrast, the UAV can also operate concurrently with the PU [36], where it acts

as a relay to forward the messages from both the PU and SU to the designated

receivers.

While combining a UAV with CRNs is capable of improving the spectral ef-

ficiency, there are several technical problems associated with UAV-assisted com-

munication. One of the most important issues is the UAV’s energy consumption,

which represents the main drawback of UAVs’ applications [13, 38]. To address

this issue, joint trajectory and power allocation optimisation has been conceived

for UAV-CRNs in [13]. Given this transmission strategy, the average achievable

rate of the UAV to SU link can be optimised subject to the UAV’s speed, location

and transmit power. Although the aforementioned contributions have shed light

on the UAVs’ application, especially on their suitability in disaster relief efforts,

UAV-assisted communication is still facing limitations that should be addressed

for ensuring the success of search and rescue missions. In particular, a prompt

action is required of network controllers in support of UAV communications due

to the dynamically changing environment [9], which is one of the most critical

constraints in UAV applications. In all the UAV-assisted optimisation scenarios

found in the open literature [12, 13, 36–38] and the references therein, solving a

convex optimisation problem can only be achieved after a long period of time,

which is not particularly suitable for mission-critical services. Therefore, max-

imising the performance of UAV communication networks is vital.

In [39], the authors utilised UAVs as a solution to enhance the average se-

crecy rate in the cognitive communication networks, by optimising UAVs’ robust
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trajectory and transmit power allocation. In [40], considering the downlink trans-

mission of UAV-enabled networks in coexistence with device-to-device commu-

nication, the authors proposed a joint design of device-to-device assignment and

resource allocation for maximising ground terminals throughput. In addition,

in [14], the authors have formulated and solved the throughput maximisation

problem, by jointly combining optimal location and spectrum sensing duration of

the UAVs. However, the cognitive UAV network considered in [14] only consists

of a single (primary) receiver, which is generally different from our model. More-

over, aiming at maximising a SU’s throughput, the work in [41] studied the joint

optimisation problem of the UAV placement and power allocation. However, the

authors in [41] considered only a cognitive/secondary UAV transmitter commu-

nicating with the ground SU. Very recently, the energy efficiency of UAV-CRNs

in disaster recover scenarios have been investigated in [20,23,42].

In summary, most of the previous studies have only considered a simple system

set-up and involved a long solving time of optimisation problems. Additionally,

the interference caused by the dominance of LoS links in UAV-assisted commu-

nications has not been well addressed.

2.3 Resource allocation in aerial-reconfigurable

intelligent surface (UAV-RIS)- assisted wire-

less communication for coverage extension

Reconfigurable intelligent surface (RIS) is considered as a key technology for be-

yond 5G communications [43]. Being significantly advantageous in terms of spec-
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trum/energy efficiency and cost-effectiveness, RIS has been shown to be a suitable

candidate that complements the current state-of-the-art network and communi-

cation technologies. In massive multiple-input multiple-output (MIMO) systems,

the use of RISs can serve as an approach to overcome the major challenges of

energy consumption and hardware costs in network coverage extension.

A typical RIS is a programmable two-dimensional structure comprised of a

large number of elements that reflect signals towards the receivers without am-

plifying them. The RIS elements can be finely adjusted to control the radio

propagation for numerous purposes. In fact, in wireless communications, the

RIS phase shifts have often been optimised in association with other factors such

as beamforming design, transmit power, and RIS placement. Particularly, the

problem of maximising the weighted sum-rate of all the users in a RIS-aided

multiuser multiple-input single-output system was considered in [44], by jointly

optimising the beamforming design at the access point and phase vectors of the

RIS’s reflecting elements. To this end, the authors proposed a method based

on the block coordinate descent (BCD) when perfect channel state information

(CSI) of the channels between the access point-RIS and RIS-user is known, and a

procedure based on successive convex approximation in the case of imperfect CSI.

Considering the problem of weighted sum-rate maximisation within the uplink

from vehicles to the base station (BS), the authors in [45] proposed an alternating

algorithm that yields the jointly optimal power control, receive filtering and RIS

phase. In [46], an aerial RIS-assisted cell-free massive MIMO system where a

number of access points serve several users that are obstructed by tall buildings

or distributed in a fairly remote location, was studied. The authors examined

the single-user case and optimised the user’s achievable rate subject to the trans-
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mit power allocation, the access point’s precoding vector, RIS phase shift and its

placement with respect to horizontal coordinate and height.

Recently, the integration of RISs and unmanned aerial vehicles (UAVs) has

been explored in a number of studies to further improve network performance.

The benefits of RIS and UAV integration include but are not limited to: improve-

ments in the performance of the air-to-ground network by line-of-sight (LoS) con-

nections thanks to the altitude of the UAVs and any RIS mounted on the UAV(s);

the ability to overcome blockage effects when users are obstructed from the BS

signals by obstacles such as buildings; and the potential to enhance communica-

tion for as many users as possible with the optimised deployment of the UAVs

and RISs.

In [47], a caching-enabling UAV was exploited as a two-way relay to assist

information transmission to multiple terrestrial user pairs. In [48], the authors

proposed a novel prediction model to avoid service interruption caused by the

movement of mobile users in wireless networks with the support of multiple UAVs.

However, the works in [47] and [48] do not consider the combination of RISs and

UAVs. In [49], the authors introduced a RIS to assist a UAV-enabled orthogonal

frequency division multiple access communication network, aiming at maximising

the system sum-rate by a joint design of the UAV’s trajectory, RIS scheduling,

and resource allocation. In [50], the authors considered using a RIS mounted on

a high-rise building to assist a UAV in providing wireless service. The problem

of minimising the UAV’s energy consumption via deciding its trajectory design,

the RIS’ phase shift, power allocation policy, and decoding order, was solved

by applying a decaying deep Q-network. In [51], a terrestrial RIS panel was

used to provide secure communication between a UAV and a ground user, in
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the presence of an eavesdropper. The authors maximised the average worst-

case secrecy rate with respect to the UAV’s trajectory, RIS beamforming, and

legitimate transmitters’ power, by using alternating optimisation. In [52], a UAV

was deployed to support terahertz (THz) communication, in the presence of a RIS

that assists the transmission. The authors proposed to jointly optimise the UAV’s

trajectory, RIS phase shifts, THz sub-band allocation, and the power control,

in order to maximise the minimum average rate amongst all user equipments

(UEs). In [53], the authors considered UAVs as aerial users and deployed a RIS

on a building wall to reflect signals towards the UAVs from a BS with down-

tilt antennas, the aim being to increase the UAVs’ received signal. Their results

indicated that a small RIS can significantly improve the signal gain for the UAVs.

As mentioned in [54], there are two possible UAV/RIS configurations, namely

(i) airborne UAV - terrestrial RIS (e.g., the RIS is mounted on a facade of a build-

ing), and (ii) aerial RIS (e.g., the RIS is carried by an airborne UAV). There are

studies that support aerial RISs over terrestrial RISs in terms of average data rate

and LoS probability achievable for downlink between the RIS and users [55]. The

former also have 360◦ full-angle reflections, stronger channels, and reduced signal

power loss as the result of reduced number of reflections [56]. In [55], the authors

considered a MISO system and deployed a UAV-RIS to maximise the downlink

transmission capacity in order to serve a NLoS user. Particularly, a reinforcement

learning approach was proposed to optimise the location and reflection coefficient

of the UAV-RIS. In [57], the energy efficiency maximisation problem was stud-

ied for a UAV-RIS assisted communication system. Maximum-ratio transmission

was applied for the design of beamforming vector at the multi-antenna base sta-

tion and an alternating optimisation technique was proposed to jointly optimise
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the power allocation and RIS phase shifts. In [56], an aerial RIS was deployed

to assist a BS in extending network coverage, the objective being to maximise

the worst-case signal-to-noise ratio by jointly optimising the transmit beamform-

ing, the aerial RIS’s placement, and its three-dimensional passive beamforming.

In [58], the authors could enhance the secure energy efficiency of an aerial RIS-

assisted system by up to 38%, by jointly optimising the UAV’s trajectory, RIS

phase shifts, user association, and transmit power. Successive convex approxi-

mation and alternating methods were used as the solving approach. In [59], the

authors analysed the performance of an aerial RIS system in three modes: (i)

only the UAV performs relaying, (ii) only the RIS performs reflecting, and (iii)

the UAV performs relaying and the RIS performs reflecting, while the receivers

use selection combining. An analytic criterion was derived, allowing the optimal

selection of different modes that maximise the ergodic capacity and energy effi-

ciency of the system. In [60], an aerial RIS is deployed to passively relay data

from a number of Internet-of-Things devices to the BS. The authors aimed to

optimise the aerial RIS’s altitude, RIS phase shifts, and communication schedule,

to minimise the elapsed time between when data is sampled until an update of

receipt is generated at the BS (i.e., to minimise the age-of-information). A deep

reinforcement learning algorithm based on proximal policy optimisation was pro-

posed and shown to significantly minimise the sum age-of-information.

Chapter 4 is focused on aerial RIS systems by combining the benefit of UAVs

(flexibility) and RISs (low profile and light weight) [44] as smart reflection units

(UAV-RISs) to expand reliable wireless network operation and to serve many

users at high quality-of-service (QoS). The considered system not only leverages

the benefits of both the UAVs and RISs but also alleviates their drawbacks.
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Specifically, a low-cost UAV is limited in terms of battery and bandwidth, making

it impractical as a small-cell flying BS. Now, implementing a RIS panel onboard

the UAV can significantly reduce the energy consumption. Instead of having to

regularly reposition the UAV according to the updated network topology (due to

UEs’ mobility), we can tune the phase shifts of the RIS to form new LoS links

that can avoid the need for the UAV’s constant movement.

At the time of writing, to our knowledge, only a few papers have addressed

the scenarios of aerial RISs. In [54], the authors proposed the integration of RIS

and UAV for future beyond 5G and 6G wireless networks. Promising use cases

and new communication design issues such as UAV trajectory optimisation, RIS

beamforming, channel estimation were discussed to show the benefits of both

terrestrial and aerial RIS deployment in enhancing the network performance. In

[61], the authors studied a UAV-assisted multiple-RIS symbiotic system, aiming to

minimise the weighted sum bit error rate. To this end, they proposed a relaxation-

based method to solve the problem, subject to the UAV’s optimal trajectory, RIS

phase shift and scheduling. In [62], a RIS panel was mounted on a UAV to

assist in transmission between a BS and a ground user. The authors derived the

analytic expressions for the achievable symbol error rate, ergodic capacity and

outage probability, and showed that RIS-assisted UAV communication systems

can offer up to 10 times higher capacity compared to UAV communications.

Furthermore, most of the previous work was developed based on a simplified

set-up with one UAV-RIS (e.g., [55, 57]), or a single ground end user (e.g., [62]).

Very few attempts have been made with multiple UAV-RIS set-up. In [63], the

authors proposed an iterative algorithm that updates the BS’s power coefficients

and block length in an alternating manner. Multiple UAV-RISs were proposed
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to support ultra-reliable low-latency communication. The authors solved the

problem of minimising the decoding error probability at the users’ end subject

to blocklength constraint at the BS, power allocation, latency requirements and

UAV-RIS clustering constraints. In [64], several aerial RISs were employed for

energy efficiency in a heterogeneous network. The joint optimisation of UAVs’

trajectory/velocity, subcarrier allocations, RIS phase shifts, and active beam-

formers at the base stations was decomposed into two sub-problems which were

solved by applying dueling deep Q-network learning approach and successive con-

vex approximation method. It is important to note that the ability of multiple

UAV-RISs to support ground users in practice has been confirmed [65], but not

yet investigated thoroughly.

In summary, the previous studies in integrating RISs and UAVs were relying

on simple system models with a single aerial RIS or a single end user, and thus

limiting the application of UAV-RISs in practice.

2.4 Resource allocation in integrated satellite-

UAV-terrestrial networks

Among other expected features, the sixth generation (6G) wireless networks will

be capable of providing ubiquitous connectivity [66]. This will address the issue of

inadequate network coverage in many areas. In fact, 80% of the Earth’s surface is

now not connected to terrestrial networks [67], mainly due to under-developed in-

frastructure or the lack thereof. To wirelessly connect these areas, the integration

of satellite and terrestrial networks in 6G is a favourable approach.
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Satellites have been only commercialised in broadcasting services such as tele-

vision, audio broadcasting, or location positioning, which do not require real-time

connections or high data-rate transmission. One of the main reasons was the pro-

hibitive cost of constructing, launching, and maintaining satellites compared to

terrestrial networks. The recent advances in technology have now noticeably di-

minished the cost of satellite communication deployment. At the same time, the

development of terrestrial networks has gradually saturated, whilst there are still

many uncovered areas. For these reasons, satellite communication is re-gaining

its popularity to become an attractive component in 6G communications [68].

Although satellite communication with ubiquitous coverage has the ability to

outweigh other approaches in providing global coverage, it still exhibits major

limitations as a result of high path-loss and long latency [69]. 2 To confront high

attenuation by long distances, direct signal transmission between satellites and

ground users would require mobile devices of bulky size to accommodate both

high-capacity batteries and high-gain antennas. This makes it hard for satel-

lite communication to reach lightweight handheld devices, especially Internet-of-

Things (IoT) devices distributed everywhere over the Earth. In this context,

using unmanned aerial vehicles (UAVs) as flying relay stations to improve the

quality of signals between satellites and ground users plays a key role.

UAVs have recently been a research hot-spot in wireless communications.

Important UAV applications include data collection, localisation, tracking [71,72],

and fast network deployment such as in emergency situations [73]. With the rapid

2Propagation delay accounts for long latency in satellite communication. Although low
Earth orbit satellites have the lowest latency compared with the other two types of satellites (i.e.,
medium Earth orbit and geostationary equatorial orbit satellites), their one-way propagation
delay is 4 ms [70] - this is higher than the end-to-end latency of 1 ms required in 5G.
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development of UAVmanufacturing technology, future UAVs are expected to have

the characteristics of high energy efficiency usage, high-capacity batteries, long

flight time, and low cost. Nevertheless, users’ fast movements and jitters caused

by winds pose a challenge since the channels can change quickly over time [72].

Thus, the requirements of real-time optimisation and real-time computing are

indispensable in UAV-assisted networks in order to quickly respond to changes

in channels [74].

The integration of satellites and UAV-assisted networks has only just begun

to attract researchers’ interest. Thanks to high mobility and flexibility, UAVs as

relay base stations can be easily integrated into satellite-terrestrial networks with

many important roles, such as signal delivery [75], data collection in IoT net-

works [76], supplementary for terrestrial small base stations [77], and the support

for uplink communication [78]. In addtion, in [79], a hybrid satellite-UAV relay

network with non-orthogonal multiple access (NOMA) and coordinated multi-

point was studied with respect to two problems of relay selection and power

allocation (PA). In [80], the PA problem was solved to maximise the ergodic

sum-rate of a NOMA-based satellite-UAV-terrestrial network for maritime on-

demand services. In [81], machine learning methods were applied in the form

of a graph neural network and reinforcement learning, to solve the problems of

link selection and UAV trajectory in a UAV-aided hybrid satellite-terrestrial net-

work. In spite of some noticeable improvements in performance, cache placement

in UAVs, which plays an important role in mitigating backhaul congestion for

satellites, has still not been considered [79,81]. In terms of a cache-assisted UAV,

the work in [19] considered aerial networks consisting of a satellite and an UAV,

and achieved the total throughput improvement compared to benchmarks. Ad-
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ditionally, in [82], the authors proposed a cache-enabled integrated satellite-UAV

network to provide connectivity for vehicle users, resulting in an enhancement of

energy consumption for both the satellite and UAVs. However, in [19, 82], the

system models with only one satellite and/or one UAV do not reflect realistic

scenarios where several satellites and multiple UAVs will have to co-exist. To

improve the content pushing phase in cache placement, the NOMA scheme pro-

posed in [83] can be used to leverage efficiently the limited spectrum resource

to push multiple common files to content servers. In addition, using inter-UAV

communication for exchanging cached data between the UAVs can reduce file

transmission time to users compared with sending by satellites from long dis-

tances. However, to the best of our knowledge, there is a lack of work considering

inter-UAV communication to support integrated satellite-terrestrial networks.

In summary, UAVs supporting satellites and caching in satellite-terrestrial

networks merit more investigation. Further to this, there are still many research

gaps in UAV-enabled caching. For example, previous studies did not consider

user clustering and the cooperation between UAVs in content delivery.
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Chapter 3

Spectrum-sharing UAV-assisted

mission-critical communication:

Learning-aided real-time

optimisation

This chapter 3 proposes a UAV communications scheme with spectrum-sharing

mechanism to provide mission-critical services such as in disaster recovery and

public safety. Specifically, the UAVs can serve as flying base stations to provide

extended network coverage for the affected area under spectrum-sharing cogni-

tive radio networks (CRNs). To cope with the effects of network destruction

caused by a disaster, we propose a real-time optimisation framework for resource

allocation (e.g., power and number of UAVs) for CRNs assisted by UAV relays.

The proposed optimisation scheme aims at optimising the network throughput

3This chapter is published as [J3] in the Author’s publication list.
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of primary and secondary networks under the stringent constraint of maximum

tolerable interference impinged on the primary users. We also propose a deep

neural network (DNN) model to significantly reduce the execution time under

real-time solution of mixed-integer UAV deployment problems. For both primary

and secondary networks, our real-time optimisation algorithms impose low com-

putational complexity, hence, have a low execution time in solving throughput

optimisation problems, which demonstrates the benefit of our approach proposed

for spectrum-sharing UAV-assisted mission-critical services.

3.1 Introduction

We extend the work in [20] by conceiving advanced optimisation techniques and

training deep neural networks (DNNs). We propose a practical optimisation

technique for enabling cognitive UAV communications to restore reliable network

coverage in disaster-relief missions. Explicitly, joint execution time and through-

put optimisation is conceived, which involves the deployment of UAVs under the

control of mix-integer optimisation programming and robust resource allocation

under throughput maximisation. The numerical results demonstrate the benefits

of our approaches proposed for UAV-CRNs.

The main contributions are as follows:

• We consider CRNs assisted by UAVs acting as relays, to cope with the net-

work destruction in the event of a natural disaster. We then propose optimal

resource allocation algorithms to maximise the throughput of primary and

secondary networks under the rapid UAVs’ deployment. Our model consid-

ers real-time optimisation in embedded UAV-CRN communication invoked
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for recovering wireless communication services.

• For the UAV deployment, an amalgamated optimisation and machine learn-

ing method relying on a DNN model is proposed that leads to a significant

reduction in the execution time for real-time solution of mixed-integer UAV

deployment problems. This technique results in a learning-based optimisa-

tion programming.

• For the throughput maximisation of primary and secondary networks, we

propose real-time optimisation algorithms to maximise the total throughput

and guarantee the QoS fairness, i.e., maximise the worst-case scenario (PU

or UAV) in the networks.

• All proposed optimal resource allocation algorithms have low-complexity

for solving the non-convex throughput maximisation problem with rapid

UAV deployment under both power budget and quality-of-service (QoS)

constraints for dealing with the challenges of limited spectral and power

resources in UAV systems. Our solutions become capable of supporting

real-time applications in disaster recovery scenarios with low execution time

in solving practical optimisation problems.

3.2 UAV-CRN system and channel model

3.2.1 System model

We consider multiple UAVs acting as relays in a CRN in disaster relief efforts.

The macro base station (BS) is equipped with a massive multiple-input multiple-
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output (MIMO) array, in which the N transmit antennas are utilised to serve KP

primary users (PUs) located in the primary network (safety area). Meanwhile, in

the secondary network (disaster area), the UAVs are deployed as small-cell flying

base stations that are connected to the cellular networks via the BS; the aim is

to restore reliable wireless network(s) operation in the disaster area and to serve

as many SUs as possible in the disaster area.

Figure 3.1: A model of UAV-enabled cognitive small-cell network in disaster relief.

All the SUs that are served are represented by M groups given by the set

of KS = {K1, ...,KM}, supported by the set of UAVs M = {1, ...,M} required

for restoring reliable network operation. We set the number of PUs and SUs to

KP = {1, ..., KP} and KS = {1, ..., KS}, respectively. Both the PUs and SUs

are randomly distributed in the primary and secondary networks constituted by

the set of K = {KP ,KS}. The deployment and trajectory design of the UAVs

is controlled by the terrestrial BS as shown in Fig. 3.1. Apart from the BS, all

other terminals are single-antenna equipped.
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3.2.2 Channel model

We define the three-dimensional location of the BS, the UAVs and of all the

users (PUs and SUs) as (x0, y0, H0), (xm, ym, Hm), m ∈ M and (xk, yk, 0), k ∈

K, respectively. The antenna heights of the BS and a UAV m are respectively

denoted as H0 and Hm. We assume a UAV’s antenna altitude is also the UAV’s

altitude. These locations are determined by using the Global Positioning System

(GPS) and stored at the ground station.

Due to the line-of-sight (LoS) propagation and the three-dimensional nature

of UAV-enabled communications, we can exploit the air-to-air link to enhance the

BS-UAV links, as LoS propagation is highly likely to occur in the air-to-air links.

Hence, the path loss between the BS and the m-th UAV follows the free-space

path loss model as [42, 84]

β0,m =
β0

d20,m + (H0 −Hm)2
, m = 1 : M, (3.1)

where β0 is the channel’s power gain at reference distance d0, and the horizontal

distance between the BS and the m-th UAV is d0,m =
√
(x0 − xm)2 + (y0 − ym)2.

By contrast, the air-to-ground (ATG) channels are more complex due to the

effects of propagation blockage such as shadowing, blockage geometry and disaster

paraphernalia. The path-loss expression between them-th UAV and the k-th user

is denoted as [7]

βm,k = PLm,k + ηLoSP
LoS
m,k + ηNLoSP

NLoS
m,k , (3.2)

where ηLoS and ηNLoS are the average additional losses for the LoS and NLoS
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paths, respectively. Here, the distance-related path loss is given by

PLm,k = 10 log

(
4πfcRm,k

c

)α

, (3.3)

where fc is the carrier frequency (Hz), c is the speed of light (m/s), and α ≥ 2 is

the path loss exponent. The probability of LoS is given by [85]

PLoS
m,k =

1

1 + a exp

[
−b

(
arctan

(
Hm

dm,k

)
− a

)] , (3.4)

where a and b are constants, depending on the environment. Then, we have

PNLoS
m,k = 1− PLoS

m,k .

Finally, we can rewrite (3.2) as

βm,k = 10α log(Rm,k) + A× PLoS
m,k +B, (3.5)

where A = ηLoS − ηNLoS, B = PLm,k + ηNLoS, and Rm,k denotes the distance

between the m-th UAV and the k-th user, formulated as

Rm,k =
√

d2m,k +H2
m, k ∈ K, (3.6)

where dm,k =
√

(xm − xk)2 + (ym − yk)2 is the Euclidean distance between the

m-th UAV and the k-th user.
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3.2.3 Transmission scheme

3.2.3.1 Primary network

Let us consider the transmission in the primary network where the BS transmits

its signal to the PUs. The signal received at the k-th PU (k ∈ KP ) is given by

y0,k =
√

P0g
T
0,kf0,ks0,k︸ ︷︷ ︸

desired signal

+
∑

k′∈KP \{k}

√
P0g

T
0,kf0,k′s0,k′︸ ︷︷ ︸

co-tier interference

+
M∑
l=1

gl,k
√

Plsl,0︸ ︷︷ ︸
inter-cell interference

+nk,

(3.7)

where P0 is the transmit power of the BS; g0,k ∈ CN is the channel coefficients

between the BS and k-th PU; f0,k ∈ CN and s0,k ∈ C are the beamforming vector

and the information transmitted from the BS with |s0,k|2 ≤ 1.

Here, we utilise the structure of the air-to-air links by including both large-

scale and small-scale fading effects as g0,k =
√

β0,kh0,k, where h0,k is the small-

scale fading coefficients for channels from BS to k-th PU. Moreover, Pl is the

transmit power of the l-th UAV; nk ∼ CN(0, σ2
k) is the additive white Gaussian

noise. To elaborate the right-hand side of (3.7), the first term is the desired signal

designated for the kth PU, the second term is the co-tier interference from the

remaining PUs, and the last term is the inter-cell interference from the UAVs in

the secondary network.4

In this chapter, we employ efficient maximal ratio transmission criterion in

beamforming design for the massive MIMO array at the BS, which is formulated

as [86]: f0,k =
√
p0,k

g∗
0,k

∥g0,k∥
, where p0,k is the power control coefficient.

4We assume that the SUs in the disaster area are located far from the PUs, hence their
interference imposed on the PUs is negligible.
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Then, we introduce ρ0,k,j = gT
0,kg

∗
0,j/∥g0,j∥.

For the power control coefficients p0 = [p0,k]k∈KP
and pM = [Pm]m∈M, the

network interference imposed on the primary network is characterised by the

co-tier interference formulated as

Iintrak (p0) =P0

∑
k′∈KP \{k}

p0,k′|ρ0,k,k′ |2, k ∈ KP , (3.8)

and the inter-cell interference inflicted by the secondary network5

Iinterk (pM) =
∑
m∈M

Pm|βatg
m,k|

2, k ∈ KP . (3.9)

The information throughput of the k-th PU (in nats) is given by

R0,k(p0,pM) = ln

(
1 +

P0p0,k|ρ0,k,k′|2

Iintrak (p0) + σ2
k

)
. (3.10)

To ensure the quality-of-service (QoS) of the primary network, the QoS con-

straints have to be investigated in the face of inter-cell interference

Iinterk (pM) ≤ IPU
th , (3.11)

where IPU
th is the maximum tolerable interference still capable of ensuring the

5Since it is very hard to estimate the air-to-ground channel, i.e., small-scale fading, be-
tween the UAVs and PUs, the inter-cell interference from the secondary network can only be
approximated with respect to large-scale fading, as determined in (3.9).
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QoS of the PUs. Thus, the total throughput of the primary network is

Rpri(p0,pM) =
∑
k∈KP

R0,k(p0,pM). (3.12)

3.2.3.2 Secondary network

Simultaneously, we consider the transmission in the secondary network where the

UAVs also forward the signals from the SUs to the BS. The signal received at the

BS from the m-th UAV is written as

ym,0 = gT
m,0fm,0

√
Pmsm,0︸ ︷︷ ︸

desired signal

+
M∑

l=1,l ̸=m

gT
m,0fl,0

√
Plsl,0︸ ︷︷ ︸

inter-cell interference

+n0 (3.13)

where Pm is the m-th UAV’s transmit power; gm,0 is the channel coefficients

between the m-th UAV and BS; fm,0 is transmit beamforming vector and sm,0 is

information transmitted by the m-th UAV; and |sm,0|2 ≤ 1, n0 ∼ CN(0, σ2
0) is the

additive white Gaussian noise. The inter-cell interference imposed on the BS is

caused by the other UAVs transmitting signals from their SUs to the BS.

We apply maximal ratio transmission for the transmission of the secondary

network and we also introduce ρm,0,l = gT
m,0g

∗
l,0/∥gl,0∥.

The information throughput of the BS (in nats) received by the m-th UAV

can be written as

Rm,0(pM) = ln

(
1 +

Pm|ρm,0,m|2

IBSm (pM) + σ2
0

)
, (3.14)

where IBSm (pM) =
∑

l∈M,l ̸=m Pl|ρm,0,l|2 represents the inter-cell interference im-
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posed on the BS. Thus, the total throughput of the secondary network is ex-

pressed as the total throughput of all UAVs, i.e.,

Rsec(pM) =
∑
m∈M

Rm,0(pM). (3.15)

3.3 Problem formulation

Our main target is to maximise the network throughput of either the primary or

secondary network by using BS association and power allocation optimisation for

CRNs assisted by UAVs. Hence, we define two optimisation problems: the max-

imisation of the primary network throughput (MaxPRI) and the maximisation of

the secondary network throughput (MaxSEC). The corresponding optimisation

problems are respectively formulated as

Problem I : max
p0,pM ,(m,k)

Rpri(p0,pM) (3.16a)

s.t.
∑
k∈KP

p0,k ≤ 1, Pm ≤ Pmax
m ,m ∈ M, (3.16b)

Rm,0(pM) ≥ r̄m,0, m ∈ M, (3.16c)

R0,k(p0,pM) ≥ r̄0,k, k ∈ KP , (3.16d)

(m, k) ∈ Km,m ∈ M, k ∈ Km, (3.16e)

Problem II : max
p0,pM ,(m,k)

Rsec(pM) (3.17a)

s.t. (3.16b)− (3.16e), (3.17b)
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where the constraint (3.16b) represents the power requirements at the UAVs and

the BS, while the constraints (3.16c) and (3.16d) formulate the QoS requirement

of the UAV-BS and BS-PU links, respectively. The constraint (3.16e) corresponds

to the deployment of the UAVs at the beginning. We set Km = {1, ..., Km} and∑
m∈MKm = KS.

The problems in (3.16)-(3.17) are non-convex problems with the non-convexity

of objective functions (3.16a) and (3.17a), and constraint functions (3.16c)-(3.16e).

Moreover, when large-scale scenarios are considered, the problems become very

complex due to the large number of UAVs (M) and users in the deployment area.

For efficiently solving the non-convex problems (3.16)-(3.17), we separate the two

problems into two sub-problems. Firstly, the user association with UAV clus-

tering will be proposed that will satisfy constraint (3.16e) under the deployment

of UAVs. Then, a DNN is applied for constructing the optimisation strategy of

UAV deployment for the real-time context considered. Finally, the optimal power

is assigned for maximising the network throughput given QoS requirements.

3.4 Learning optimisation for a real-time sce-

nario of UAV deployment

3.4.1 Conventional optimisation approach for UAV de-

ployment

In order to guarantee the QoS of ATG links between UAVs and users, we consider

the coverage region by defining a circular disc of radius Dcov, which is related to
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the altitude of UAV m as follows:

Hm = Dm,cov tan(θ),∀m, (3.18)

where θ is set to 42.44◦ [87]. Therefore, a SU can be served by a UAV m in its

coverage area (m, k) ∈ Km if the Euclidean distance between the UAV and the

SU is less than the coverage distance Dm,cov, which is formulated as

dm,k ≤ Dmax
m,cov , k ∈ KS, (3.19)

where Dmax
m,cov = Hmax

m / tan(θ).

Let us define a binary variable um,k such that:

um,k =


1, if UAV m serves SU k

0, otherwise.

(3.20)

Given the limited operational range of the UAV, we formulate a UAV posi-

tioning optimisation problem to provide a best-effort transmission service for the

secondary network in each group

max
qm,um,k

M∑
m=1

Km∑
k=1

um,k (3.21a)

s.t. d2m,k ≤ (Dmax
m,cov)

2 + λm(1− um,k), (3.21b)

qm ∈ [qmin
m , qmax

m ], (3.21c)

um,k ∈ {0, 1}, (3.21d)

m ∈ M, k ∈ Km,
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where qm = [xm, ym, H
max
m ]T , λm is chosen as a specific value corresponding to

the maximum network coverage area of the m-th UAV (i.e., λm > (Dmax
m,cov)

2),

while (xmin, xmax) and (ymin, ymax) represent the lower and upper bounds of the

horizontal and vertical range of UAVs, respectively. The binary variable um,k

takes the value of 1 when UAV m serves SU k, and takes the value of 0 other-

wise. Notice that the problem in (3.21) is a mixed-integer (binary) quadratically

constrained programming problem, which is a non-convex one. Solving the above

problem, which belongs to combinatorial (or discrete) optimisation, is often very

difficult. Fortunately, the Python-embedded optimisation program CVXPY [88]

is capable of solving problem (3.21) using an appropriate solver.

Although conventional optimisation for UAV deployment relying on the CVXPY

platform for example can solve problem (3.21), the execution time imposed by

solving the related mixed-integer program is excessive, when the networking sce-

nario becomes more complex or the number of integer variables (um,k) increases.

The problem (3.21) is one of the most complex problem with the worst-case com-

plexity order of up to O(2mk) where m and k are the number of UAVs and SUs,

respectively. There are approaches to reducing the computational complexity of

combinatorial algorithms for solving this kind of problems such as exhaustive

search, evolution algorithm or genetic algorithms. As a result, we will propose

a new optimisation algorithm for UAVs deployment using a DNN for learning

optimisation in the next sub-section.
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3.4.2 Deep neural network for learning optimisation of

UAV deployment

While existing optimisation algorithms might be infeasible, the collaboration of

machine learning and optimisation offers simple and efficient techniques in dealing

with NP-problems [31,89,90], and complex and large-scale optimisation problems

in real-time applications. In this regard, DNN [91, 92] is an efficient machine

learning approach that can be applied in real-time optimisation methods.

In particular, to tackle the aforementioned problem, we apply a new optimi-

sation technique eminently suitable for real-time applications by amalgamating

DNN and optimisation algorithms. This technique results in learning-based op-

timisation programming [31].

Following the system setup in [31], we configure the network structure for our

DNN model as follows:

• The input of the network is the location of the UAVs and SUs (qm, q
SU
k ),

while the output of the network is the optimal value of q∗
m. We use ”linear

function” as the activation function at the output layer, and “sigmoid”

f(x) = 1
1+e−x as the activation function at the other layers. The DNN is a

dense, feed-forward, network that has 3 hidden layers with 200, 80, and 80

nodes.

• In the training stage, we use a large training data set (qm, q
SU
k ) for optimis-

ing and learning the weights of the DNN model. The cost function is the

mean squared error (MSE) and the mini-batch stochastic gradient descent

(SGD) optimisation algorithm is used [31].
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• In the testing stage, we also generate the structure based on the same

distribution during the training stage. Each distributed location experiment

is passed through the trained network and then we collect the resultant

optimal location of the UAVs.

The optimisation algorithms will be trained for learning the input/output re-

lationship by using a DNN model during the training stage. Several network

layers will approximate a training set of resource management algorithms by us-

ing a DNN model, which requires simple operations to implement a finite training

sample set. With the aid of sufficient training data set, their optimisation tech-

nique is capable of completely replacing the conventional optimisation processes

during the testing stage. If the learning-based optimisation algorithm learns the

updated formula, it can learn a new algorithm that is modelled as a neural net-

work. Learning the weights of the neural network and parameterising the updated

formula of the algorithm can provide useful function approximators, model any

updated formula with sufficient capacity, allow for efficient search and easily per-

form training process with backpropagation. The appropriate optimiser would

simply memorise the optimum, and after learning with sufficient training set,

the optimiser then converges to the optimum within a few steps regardless of

initialisation in the future.
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3.5 Maximising network throughput via robust

power allocation

After solving the UAV deployment problem, in this section, we conceive efficient

resource allocation for solving the network throughput maximisation problems

(3.16)-(3.17) in the absence of non-convex user association constraints (um,k). On

the other hand, the problems (3.16)-(3.17) are still non-convex since the objective

functions are non-concave. Hence, we consider the modified problems as

Problem I− B : max
p0,pM

Rpri(p0,pM) (3.22a)

s.t. (3.16b)− (3.16d). (3.22b)

Problem II− B : max
p0,pM

Rsec(pM) (3.23a)

s.t. (3.16b)− (3.16d). (3.23b)

To solve problems (3.22)-(3.23), we use some efficient approximation and log-

arithm inequalities [93] (see Appendix A for detailed proofs).

Hence, at the i-th iteration, the following convex problems are solved to gen-
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erate the feasible points:

Problem I− C : max
p0,pM

R̂
(i)
pri(p0,pM) (3.24a)

s.t.
∑
k∈KP

p0,k ≤ 1, Pm ≤ Pmax
m ,m ∈ M, (3.24b)

R̂
(i)
m,0(pM) ≥ r̄m,0, m ∈ M, (3.24c)

R̂
(i)
0,k(p0,pM) ≥ r̄0,k, k ∈ KP , (3.24d)

Problem II− C : max
p0,pM

R̂(i)
sec(pM) (3.25a)

s.t. (3.24b)− (3.24d), (3.25b)

where R̂
(i)
pri(p0,pM) =

∑
k∈KP

R̂
(i)
0,k(p0,pM);

R̂
(i)
sec(pM) =

∑
m∈M R̂

(i)
m,0(pM).

The form of R̂
(i)
m,0(pM) and R̂

(i)
0,k(p0,pM) are defined by (A.6) and (A.4), re-

spectively.

We now proceed by proposing an algorithm to solve the proposed throughput

maximisation problems. In Algorithm 1, we propose a power allocation procedure

for solving problem (3.24). The initial point (p
(0)
0 ,p

(0)
M ) for (3.24) may be found by

random search for a point satisfying the constraints (3.24b)-(3.24d). The power

allocation procedure for solving problem (3.25) is similar to Algorithm 1.
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Algorithm 1 : Power allocation procedure for solving problem (3.24)

Input:

Set M , Km, Kp, P0, Pm.

Set the tolerance ε = 10−2 or the maximum number of iterations Imax = 20

to stop the algorithm.

Set i = 0 and a feasible point.

Repeat

Solve problem (3.24) for the optimal solution (p
(i+1)
0 ,p

(i+1)
M )

Set i := i+ 1

Until Convergence of the objective function in (3.24) or i > Imax.

Output: Optimal power control coefficients (p0,pM)

3.6 Simulation results

In this section, the performance of the considered system is evaluated by using

embedded optimisation programming, such as for example the CVXPY version

1.0.21 in Python [88]. The computational platform includes a PC having a AMD

Ryzen 7 2700X, CPU @3.7GHz and 32GB memory. Our DNN model was imple-

mented in Python 3.6 associated with Keras 2.2.4 using TensorFlow 1.13.1.

3.6.1 Simulation settings

We set the system parameters for our simulations as follows:

• The safety area is a circle coverage with a radius of 500m, the disaster area

is extended from the safety area with a radius up to 2000m.
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• The location of the BS is assumed at (0, 0, 30) while PUs and SUs are

randomly distributed in the primary network and secondary network, re-

spectively. The limited altitude of the UAVs (Hmin, Hmax) is (50, 150)m.

• The path loss from the BS to the PUs is as βatg
0,k = 148.1+37.6 log10R [dB],

R in km.

• The number of UAVs is provided as M = {4, 8}. The number of PUs is set

to KP = {10, 20, 30, 60} while the number of SUs in each group is set to

Km = {20, 30}. The maximum transmit power is set to 40W for the BS [94]

and 5W for UAVs.

• The tolerance and maximum number of iterations for convergence of algo-

rithms are ε = 10−3 and Imax = 10.

• The carrier frequency is fc = 2 GHz, bandwidth B = 10 MHz, white power

spectral density is σ2 = −130 dBm/Hz [87]. The QoS thresholds are set to

r̄m,0 = 40 Mbps and r̄0,k = 1 Mbps.

The parameters of the channel model are set as in [84,87,93].

3.6.2 Numerical results

The numerical results are conducted from our proposed approaches, i.e., MaxPRI

in (3.22) and MaxSEC in (3.23) and the two conventional methods to guarantee

the QoS fairness among the primary and secondary networks. More particularly,

four different cases are generated from the following algorithms:

• Primary network throughput maximisation (MaxPRI): maximising the pri-

mary network’s throughput as in (3.22).
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• Secondary network throughput maximisation (MaxSEC): maximising the

throughput of secondary network as in (3.23).

• Maximisation of minimum primary network throughput(MaxMinPRI): max-

imising the worst-case PU throughput, i.e., max
p0,pM ,(m,k)

min
k∈KP

R0,k(p0,pM), un-

der the same constraints as Problem I-A. Here, the worst-case PU through-

put is defined as the average throughput (in nats) of the PU with the lowest

throughput in the primary network.

• Maximisation of minimum secondary network throughput (MaxMinSEC):

maximising the worst-case UAV throughput, i.e., max
p0,pM ,(m,k)

min
m∈M

Rm,0(pM),

under the same constraints as Problem II-A. Here, the worst-case UAV

throughput is defined as the average throughput (in nats) of the UAV with

the lowest throughput in the secondary network.

For the sake of fairness, in all the four algorithms, we evaluate the average total

throughput (in nats) of all the PUs and UAVs in the system, i.e., Rpri(p0,pM) +

Rsec(pM). In each figure, four different curves are generated as follows:

• MaxPRI: the total throughput of both primary and second networks are

plotted where we only optimise the throughput of the primary network

as in (3.22) and while set the throughput of the secondary network not to

fall below its QoS constraint.

• MaxSEC: the total throughput of both primary and second networks are

plotted where we only optimise the throughput of the secondary network

as in (3.23) while set the throughput of the primary network not to fall
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below its QoS constraint. In addition, the maximum tolerable interference

impinged on the PUs is also satisfied as in (3.11).

• MaxMinPRI: the total throughput of both the primary and second networks

are plotted where we only maximise the worst-case PU throughput.

• MaxMinSEC: the total throughput of both the primary and second networks

are plotted where we only maximise the worst-case UAV throughput.

3.6.2.1 Convergence of the proposed algorithms
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Figure 3.2: The convergence of Algorithm 1 for solving Problem I-C (MaxPRI)
at M = 4, Km = 20, Pm = 35 dBm.

Figure 3.2 illustrates the convergence of Algorithm 1 for solving Problem I-C

(MaxRatePri) at M = 4, Km = 20, Pm = 35 dBm. It is observed that after a

few iterations, the objective function (3.24a) converges to its maximum value.
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3.6.2.2 Optimal total throughput versus power of UAVs

In Figure 3.3, we show the average total network throughput as a function of

the UAV’s power (Pm) for the proposed throughput maximisation problems.

As expected, the total network throughput with MaxPRI outperforms the oth-

ers, demonstrating the efficiency of the power allocation with primary network

throughput maximisation. Moreover, while MaxPRI and MaxSEC maximise the

sum of network throughput, MaxMinPRI and MaxMinSEC only optimise either

the PU or UAV with the worst throughput. Therefore, MaxPRI and MaxSEC

provide a better total throughput than MaxMinPRI and MaxMinSEC. In addi-

tion, although there is a big gap in network throughput between MaxPRI and

MaxMinPRI, the gap is not wide between MaxMinPRI, MaxSEC and MaxMin-

SEC. This indicates that maximising the worst-case UAV throughput is not costly.

For the considered schemes taking into account the secondary network through-

put maximisation, the total network throughput increases with the power of UAVs

until a threshold (e.g., approximately Pm = 25 dBm and Pm = 20 dBm in the

cases of M = 4, Km = 20 and M = 8, Km = 30, respectively). The higher the

number of UAVs, the lower the Pm threshold above which the network through-

put does not increase anymore. This is because the inter-cell interference caused

by the UAVs increases significantly with a large number of UAVs. Moreover, the

total network throughput with MaxMinSEC suffers a slight degradation when

the UAV power increases. This can be explained as follows: when there is an

increase in UAV power, the inter-cell interference becomes larger. MaxMinSEC

only aims to maximise the worst-case UAV throughput while it has to guarantee

the QoS threshold for all the users, resulting in the total network throughput
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being reduced by a small amount.
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Figure 3.3: Average total network throughput versus the power of UAVs (Pm)
with Kp = 60.
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3.6.2.3 Optimal throughput versus number of primary users
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Figure 3.4: Average total network throughput versus number of PUs (Kp) with
Pm = 35 dBm.
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Figure 3.4 plots the average total throughput versus different number of PUs in

the primary network considering different number of UAVs. We can observe from

the figure that the average total network throughput goes up when the number

of PUs is sufficiently small e.g., KP ≤ 30. However, the total throughput would

reduce with larger number of PUs due to the co-tier interference in the primary

network. As expected, given a particular UAV power, more UAVs are associated

with higher the average total throughput of the network.

3.6.2.4 The worst-case UAV and primary user throughput

Figure 3.5 denotes the worst-case UAV throughput versus a range of UAV power

at M = 8, Km = 30, Kp = 60 for different power allocation schemes. We can

see that by maximising the throughput of the UAV with the worst performance,

MaxMinSEC outperforms the other schemes in terms of the worst-case UAV

throughput. On the other hand, MaxSEC obtains lowest performance due to the

fact that it only focuses on maximising the total throughput of the secondary net-

work. Moreover, as mentioned above, the worst-case UAV throughput is limited

by the inter-cell interference when the power of the UAVs, Pm, is large enough,

especially in the case of MaxSEC.

In Figure 3.6, we evaluate the worst-case PU throughput for a range of differ-

ent number of PUs. MaxMinPRI provides the highest worst-case PU throughput

in comparison to the others because its objective function is to maximise through-

put of the worst-case PU. Moreover, the larger the number of PUs, the higher

the co-tier interference which reduces the PU throughput.
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Figure 3.5: Worst-case UAV throughput versus UAV power at M = 8, Km = 30,
Kp = 60.
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Km = 30, Pm = 35 dBm.
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3.6.2.5 Average execution time for solving optimisation problems

In Table 3.1, we provide the average execution time for solving the UAV de-

ployment problem via two proposed methods, i.e., conventional UAV deployment

(Conv Dep) and deep learning UAV deployment (DNN Dep) schemes. The accu-

racy metric describes how close the average optimal values achieved in DNN Dep

is to those achieved in Conv Dep. The figures demonstrate the potential of

learning-based optimisation algorithm by using the DNN model. As seen from

Table 3.1, our proposed learning-aided UAV deployment procedure exhibits a low

complexity and high accuracy, even upon dealing with large-scale scenarios.

Table 3.1: Execution time (s) of our UAV deployment algorithm both under con-
ventional optimisation (Conv Dep) and learning-aided optimisation using DNN
model (DNN Dep).

{M,KP , Km} Conv Dep DNN Dep Accuracy (%)
{2, 5, 10} 0.15s 0.027s 93.02
{4, 10, 20} 0.80s 0.028s 92.37
{8, 20, 30} 4.27s 0.028s 90.82

As shown in Table 3.2, the average execution time for solving optimisation

problems under sum rate maximisation and maximin worst-case rate in both

primary and secondary networks is provided. All simulation results are consumed

within milliseconds for up to 100 devices considered in the system.

3.7 Conclusions

In this chapter, a spectrum-sharing UAV communication scheme was conceived

for establishing network coverage for mission-critical services, e.g., in the event

of a natural disaster recovery. We proposed a novel learning-aided optimisation
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Table 3.2: Execution time (ms) of the proposed optimisation algorithms for op-
timising network throughput.

{M,Km, KP} MaxPRI MaxSEC MaxMinPRI MaxMinSEC
{4, 20, 10} 115 125 75 100
{4, 20, 30} 260 280 135 220
{4, 20, 60} 600 670 340 460
{8, 30, 10} 115 120 100 120
{8, 30, 30} 280 280 180 250
{8, 30, 60} 630 750 450 660

scheme for optimal radio resource allocation of the considered networks under

the stringent constraint of maximum tolerable interference. By employing the

deep learning approach, the UAVs deployment, i.e., the number of UAVs to serve

the secondary users, can be quickly established. We then developed the real-

time optimisation algorithms to optimise the throughput for both primary and

secondary networks. Our low-complexity algorithms lend themselves to real-

time deployment in the context of cognitive radio networks relying on UAVs.

The numerical results demonstrated that our UAV deployment can be promptly

optimised in a large-scale scenario. The proposed schemes revealed a compelling

use case of real-time optimisation in wireless communication systems to cope with

the lack of network coverage after a disaster. Through the numerical results, we

have demonstrated the feasibility of the proposed real-time optimisation which is

computationally applicable with just a small amount of time needed for solving

it on the millisecond time-scale.
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Chapter 4

UAV-aided aerial reconfigurable

intelligent surface

communications with massive

MIMO system

To capture the advantages of UAVs and reconfigurable intelligent surface (RIS)

technologies, we propose the use of multiple passive aerial RISs in a massive

multiple-input multiple-output (MIMO) network.6 Each aerial RIS is comprised

of a RIS panel attached to a UAV, the intention being to support in extending

network coverage from the massive MIMO base station. Compared with sta-

tionary RISs, our proposed aerial RISs (termed as UAV-RISs) have the ability

to reach more users thanks to the line-of-sight links. Our aim is to maximise

the total network throughput by finding the optimal power control coefficients

6This chapter is published as [J2] and based on [C2] in the Author’s publication list.
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at the base station and the phase shifts of the multiple RISs used in the system.

This is jointly solved subject to the power consumption constraints, UAV-RIS

deployment, and quality-of-service required at the users. We apply zero-forcing

precoding for the beamforming design at the base station, and develop an it-

erative algorithm based on first-order approximation, block coordinate descent,

and alternating optimisation technique. Numerical results demonstrate that our

proposed method exhibits low computational-complexity and outperforms bench-

mark schemes in terms of the total network throughput achieved and improvement

for the users with worst-case throughput.

4.1 Introduction

In this chapter, we propose an aerial RIS communication scheme where each UAV

is equipped with a RIS panel for network coverage extension. Compared with the

previous work (e.g., [49–52,95–97]) in which the RIS panel is installed in a fixed

location such as a building facade, the considered scheme is more flexible and

more users can be reachable thanks to the UAVs’ agility. In addition, we use

multiple aerial RISs in our scheme - this is a research gap that has not been

sufficiently addressed in the literature.

Different from the aforementioned studies, in this chapter, we propose the

use of multiple UAV-RIS set-up for extending network coverage from the mas-

sive MIMO base station. Then, we formulate and solve a practical optimisation

framework to maximise the total network throughput by jointly optimising the

power allocation coefficients and the phase shifts of RIS panels under stringent

QoS and power constraints.

61



4.1 Introduction

In particular, the contributions of this chapter are summarised as follows:

• First, we propose a novel UAV-RIS assisted communication scheme for net-

work coverage extension in a massive MIMO system. We consider a more

complex yet practical setting with RIS-equipped UAVs acting as passive re-

flectors. We focus on the problem of maximising the total network through-

put by jointly optimising the power coefficients of the massive MIMO BS

(MBS) and the phase shifts of the multiple UAV-RISs deployed to support

the network. In addition, we adopt zero-forcing precoding in designing the

beamforming matrix to overcome the intra-cluster and inter-cluster inter-

ference imposed on the intended user equipments (UEs).

• Second, the optimisation problem is highly non-convex. To deal with this,

we decompose the original problem into two sub-problems: (i) a sub-problem

of UAV-RIS deployment, and (ii) a sub-problem of joint MBS transmit

power and RIS phase shift optimisation. For the former, we propose a pro-

cedure based on the K-means clustering to dispatch the UAV-RISs at the

beginning. For the latter problem, which is non-convex, we firstly solve

the problem separately with respect to each of the two variables, namely

the MBS transmit power and RIS phase shift, by proposing two algorithms

based on first-order approximation and BCD, respectively. Once the ap-

proaches to solving these two optimisation sub-problems are identified, we

propose an iterative algorithm in which the MBS power allocation is opti-

mised iteratively with the RIS phase shifts in an alternating fashion, until

convergence is reached. It should be noted that although the BCD method

has been frequently employed in the literature (e.g. [44]), this chapter con-
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siders a more complex setting where multiple UAV-RISs are involved.

• Lastly, we demonstrate the effectiveness of our proposed resource allocation

and phase shift optimisation scheme in supporting the aerial RIS-assisted

massive MIMO network. Simulation results also reveal the significant gain

of the proposed scheme over baseline ones in terms of total network through-

put achieved. Concurrently, it is suggested that the users with worst-case

throughput can also benefit from our proposed scheme. To be more specific,

our scheme outperforms all baseline schemes in terms of providing a better

throughput, which is improved by more than 10% in some cases.

The remainder of this chapter is organised as follows. In Section 4.2, we

introduce the UAV-RIS communication model as well as the transmission and

beamforming scheme. Section 4.3 describes the problem formulation, along with

our approach to solving it. Two sub-problems resulting directly from the orig-

inal problem are solved in the subsequent sections, i.e., the UAV deployment

problem (Section 4.4) and the joint power allocation and RIS phase shifts opti-

misation (Section 4.5). Simulation results are presented in Section 4.6, followed

by concluding remarks in Section 4.7.

Notations : Matrices and vectors are denoted by boldface upper and lower-

case letters, respectively. The transpose and conjugate transpose operation of a

matrix are respectively represented by the superscript T and H. CM×N denotes

the set of M ×N complex-valued matrices. For a matrix S, S ⪰ 0 indicates that

S is positive semi-definite, while rank(S) and tr(S) stand for its rank and trace,

respectively. IIIK denotes an identity matrix with size K×K. A Gaussian random

scalar x with 0 mean and covariance σ2
x is denoted by x ∼ CN(0, σ2

x).
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4.2 Aerial RIS (UAV-RIS) system model

4.2.1 System model

We consider the downlink in a massive MIMO communication network as illus-

trated in Figure 4.1. Due to severe shadowing and blocking effect, many ground

users experience low signal-quality from the MBS that is equipped with a large

L-antenna array. A set of K = {1, ..., K} single-antenna user equipments (UEs)

are randomly distributed in the deployment area and grouped into M clusters.

Then, multiple UAVs, each of which carries a RIS panel with N discrete elements,

are deployed to help extend the signal coverage to the ground UEs i.e., network

coverage extension, by reflecting the signal from the MBS. To support the M

clusters of UEs, we use M UAVs from the set of M = {1, ...,M} to connect the

UEs to the MBS where the m-th cluster can only serve a finite number of UEs,

Km = {1, ..., Km} for m ∈ M. The (m, k)-th UE denotes the k-th user in the

m-th cluster.

It is noted that the jittering effect in UAV platforms caused by UAV jitter

could severely reduce the quality of wireless channel in high carrier frequencies

[98]. However, there are only a few studies investigating the impact of UAV

jittering but mostly at millimetre frequency band (30-300 GHz), e.g., [99, 100].

Therefore, in this chapter, by considering a carrier frequency at 1-2 GHz band,

we simply assume that the jittering effect is very small and negligible.
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Figure 4.1: A system model of UAV-RIS communication.

4.2.2 Aerial RIS-assisted communication models

Without loss of generality, let us define the locations of the MBS, the UAV-RISs

and all the UEs as (x0, y0, H0), (xm, ym, Hm), m ∈ M and (xk, yk, 0), k ∈ K,

respectively, where H0 is the antenna height of the MBS and Hm is the m-th

UAV-RIS’s altitude. These location data are identified via the Global Positioning

System and stored at the fog nodes near the MBS.

The links between the MBS and the UAV-RISs can be considered as air-to-air

communication links, characterised by LoS propagation and three-dimensional

UAV-enabled communication. Consequently, the path loss of the link between

the MBS and the m-th UAV-RIS follows the free-space path loss model as [42,84]:

β0,m = β0R
−2
0,m, m = 1 : M, (4.1)

in which β0 is the channel’s power gain at a reference distance d0; and R0,m =√
d20,m + (H0 −Hm)2 is the distance between the MBS and the m-th UAV-RIS
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with d0,m =
√

(x0 − xm)2 + (y0 − ym)2.

By contrast, the air-to-ground channels between the UAV-IRSs and the dis-

tributed UEs are more complex due to the effects of propagation blockage includ-

ing shadowing, which can result in non-light-of-sight (NLoS) channels. Hence,

the path loss of the link between the m-th UAV-RIS and the (m, k)-th UE can

be formulated as [7]

βm,k = PLm,k + ηLoSPLoS
m,k + ηNLoSPNLoS

m,k , (4.2)

where ηLoS and ηNLoS are respectively the average additional losses for LoS and

NLoS. The distance path loss is expressed as

PLm,k = 10 log(
4πfcRm,k

c
)α, (4.3)

where fc is the carrier frequency (Hz), c is the speed of light (m/s), and α ≥ 2

is the path loss exponent. The distance Rm,k between the m-th UAV-RIS and

the (m, k)-th UE is Rm,k =
√
d2m,k +H2

m, with dm,k =
√

(xm − xk)2 + (ym − yk)2.

PLoS
m,k and PNLoS

m,k are the probability of LoS and NLoS, respectively, given by [85].

On the other hand, the small-scale fading coefficients for the channels from the

MBS to the m-th UAV-RIS and the m-th UAV-RIS to the (m, k)-th UE, denoted

by h0,m ∈ CN×L and hH
m,k ∈ C1×N , respectively, are assumed as independent and

identically distributed random variables with zero mean and unit variance, where

the superscript H represents the conjugate transpose operation.

Furthermore, let H0,m ∈ CN×L and HH
m,k ∈ C1×N denote the channel matrix

from the MBS to the m-th UAV-RIS and the m-th UAV-RIS to the (m, k)-th UE

66



4.2 Aerial RIS (UAV-RIS) system model

in the m-th cluster, respectively. Hence, the cascaded channel matrix of the link

from the MBS to the (m, k)-th UE via the m-th UAV-RIS, Gm,k ∈ C1×L, can be

shown as [96]

Gm,k = HH
m,kΦmH0,m, (4.4)

where H0,m =
√

β0,mh0,m and HH
m,k =

√
βm,kh

H
m,k. Φm = diag[ϕ1m, ϕ2m, ..., ϕNm]

is the phase shift matrix at them-th UAV-RIS, where ϕnm = αnme
jθnm with αnm ∈

[0, 1] and θnm ∈ [0, 2π] (∀n = 1 : N , m ∈ M) denoting the reflection amplitude

and phase shift of the n-th reflecting element, respectively. It is reasonable to

assume αnm = 1 since each reflecting element can only change the phase of

reflected signals but not the amplitude [101].

4.2.3 Transmission and beamforming scheme

As shown in Figure 4.1, the MBS transmits the signal to its UEs via the reflection

from the RIS panels deployed on the UAVs. The received signal at the (m, k)-th

UE in the m-th cluster is given as

ym,k =
√
P0Gm,kfm,ksm,k︸ ︷︷ ︸

desired signal

+
Km∑

l=1,l ̸=k

√
P0Gm,kfm,lsm,l︸ ︷︷ ︸

intra-cluster interference

+
M∑

m′=1,m′ ̸=m

Km′∑
l=1

√
P0Gm,kfm′,lsm′,l︸ ︷︷ ︸

inter-cluster interference

+ nk, (4.5)

where P0 is the transmit power of the MBS; fm,k ∈ CL×1 is the transmit beam-

forming vector of the MBS; sm,k is information transmitted by the MBS intended
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for the (m, k)-th UE, with |sm,k|2 ≤ 1; nk ∼ CN(0, σ2
k) is the additive white

Gaussian noise at the (m, k)-th UE.

To eliminate the interference in (4.5), we apply zero-forcing as follows. Define

Gm =
[
Gm,1, . . . ,Gm,Km

]
∈ CKm×L (m ∈ M) as the channel matrix of the link

from the MBS to the Km UEs within cluster m via the m-th UAV-RIS. Thus,

the channel matrix from the MBS to all the UEs via their respective UAV-RIS

can be represented by G = [G1,G2, . . . ,GM ] ∈ CK×L, with K << L and large

L. Accordingly, the square matrix GGGGGGH ∈ CK×K of much smaller size is very

well-conditioned, whose eigenvalue distribution becomes more deterministic as

L increases [102, 103]. Based on the favourable propagation property in massive

MIMO systems, we develop the beamforming vector fm,k by applying zero forcing

as follows.

Firstly, the precoding matrix is given by

F̄FF 0 =
[
f̄ff 1, ..., f̄ffM

]
= GGGH(GGGGGGH)−1, (4.6)

where f̄ffm =
[
f̄ffm,1, ..., f̄ffm,Km

]
∈ CL×Km , in which f̄ffm,k ∈ CL×1, m ∈ M, k ∈ Km.

We then normalise f̃ffm,k = f̄ffm,k/∥f̄ffm,k∥ and calculate fm,k in the class of

fm,k =
√
pm,kf̃ffm,k, m ∈ M, k ∈ Km, (4.7)

where pm,k is power control coefficient of the MBS with respect to the (m, k)-th

UE.
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Hence, (4.5) becomes

ym,k =
√
P0

√
pm,kGm,kf̃ffm,ksm,k︸ ︷︷ ︸
desired signal

+ nk, (4.8)

where the multiple user interference in (4.5) has been cancelled.

Let p0,m = [pm,k]
Km
k=1 denote the power control coefficients associated with the

Km UEs within cluster m and p0 = [p0,m]
M
m=1 denote those associated with all

the UEs within all the clusters. In addition, let ΦM = [Φm]
M
m=1 be the phase

shifts of the RISs. Then, the information throughput (in nats) of the (m, k)-th

UE can be expressed as

Rm,k

(
pm,k,Φm

)
= log2

1 +
P0pm,k

∣∣Gm,kf̃ffm,k

∣∣2
σ2
k

 . (4.9)

Hence, the total throughput of all the UEs in the network can be given by

Rtotal (p0,ΦM) =
M∑

m=1

Km∑
k=1

Rm,k

(
pm,k,Φm

)
. (4.10)

4.3 Problem statement and methodology

In this chapter, we aim to maximise the total network throughput in (4.10) by

jointly optimising the power control coefficients at the MBS (p0) and the phase

shifts of the M RISs (ΦM), subject to the power consumption constraints and
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the QoS requirements. Accordingly, the optimisation problem is formulated as

Problem I : max
p0,ΦM

Rtotal (p0,ΦM) (4.11a)

s.t.
M∑

m=1

Km∑
k=1

pm,k ≤ 1, P0 ≤ Pmax
0 ,m ∈ M, (4.11b)

Rm,k

(
pm,k,Φm

)
≥ r̄m,k, m ∈ M, k ∈ Km, (4.11c)

0 ≤ θnm ≤ 2π,∀n = 1, 2, ..., N, m ∈ M, (4.11d)

(m, k) ∈ Km, m ∈ M, k ∈ Km, (4.11e)

where the constraint (4.11b) represents the power requirements at the MBS with

Pmax
0 denoting the maximum transmit power of the MBS. The constraint (4.11c)

formulates the QoS requirement at the (m, k)-th UE, with r̄m,k being the mini-

mum data throughput required at the UE. The constraint (4.11d) sets the phase

shift range of the n-th reflecting elements of the m-th RIS carried by the m-th

UAV. The constraint (4.11e) corresponds to the deployment of the UAV-RISs at

the beginning.

It can be observed that problem (4.11) is non-convex due to the non-convexity

of (i) the objective function (4.11a) and constraint (4.11c) with respect to p0 and

ΦM , and (ii) the constraint (4.11e). In addition, when the number of UAVs (M)

and UEs (K) in the deployment area and the number of RIS reflecting elements

(N) increase in a large-scale scenario, this problem becomes very complex. In

the next two sections, the original problem (4.11) is decomposed into two sub-

problems: (i) the user association scheme with UAV clustering will be exploited

that will satisfy the constraint (4.11e) under the deployment of UAVs by the

constrained K-means clustering procedure, and (ii) the power control coefficients
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of the MBS and phase shifts of the RISs will be optimally assigned for maximising

the network throughput given QoS requirements.

4.4 Optimisation approach for UAV-RIS deploy-

ment

In this section, we will solve the optimisation problem of UAV-RIS deployment as

a user association scheme under the constraints of UAV deployment range. First

of all, let us introduce a binary variable um,k to represent whether a UAV-RIS m

serves a UE k:

um,k =

 1, UAV m serves user k

0, otherwise.
(4.12)

We further define a circular disc of radius Dcov as the coverage region of a

UAV-RIS. The relation between the altitude of a UAV-RIS m and its coverage is

then expressed as:

Hm = Dm,cov tan(ω), ∀m ∈ M, (4.13)

where ω is set to 42.44◦ [87]. Therefore, a UE can be served by a UAV-RIS in its

coverage area (m, k) ∈ Km if the Euclidean distance between the UAV-RIS and

the UE is less than the coverage distance Dm,cov, which is formulated as

dm,k ≤ Dmax
m,cov , k ∈ Km, (4.14)
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where Dmax
m,cov = Hmax

m / tan(ω).

Let qm = [xm, ym, H
max
m ]T denote the three-dimensional location of the m-th

UAV-RIS, λm denote a specific value corresponding to the maximum network

coverage area of the m-th UAV (i.e., λm > (Dmax
m,cov)

2), and (xmin, xmax) and

(ymin, ymax) denote the horizontal and vertical ranges of the UAVs, respectively.

The UAV deployment optimisation problem is formulated as

Problem II : max
qm,um,k

M∑
m=1

Km∑
k=1

um,k (4.15a)

s.t.d2m,k ≤ (Dmax
m,cov)

2 + λm(1− um,k), (4.15b)

qm ∈ [qmin
m , qmax

m ], (4.15c)

um,k ∈ {0, 1}, m ∈ M, k ∈ Km. (4.15d)

Note that problem (4.15) is a mixed-integer (binary) quadratic programming,

which is a non-convex problem. Here, adopting the similar approach of the work

in [104, 105], the deployment of UAV-RISs in (4.15) can be processed by a con-

strained K-means algorithm as follows. First of all, we calculate the distance

between all K UEs to M UAVs and then assign appropriate UEs into the clus-

ters of (m, k) that has the smallest distance. We then adjust the UAV’s altitude

to satisfy the QoS constraint of (4.11c). Finally, the position of the m-th UAV

is updated by averaging all locations of UEs which belong to the cluster (m, k).

The algorithm repeatedly executes the above steps until the cluster members do

not change or the procedure reaches the maximum value of iteration index.
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4.5 Maximising network throughput via joint

power allocation and phase shift optimisa-

tion

In this section, the network throughput maximisation problem is solved by search-

ing for the optimal resource allocation strategy of the MBS and phase shift of

the RIS reflecting elements, in the absence of UAV-RIS deployment constraint

(4.11e). To this end, we first propose solutions for optimising p0 and ΦM sepa-

rately, then design an iterative algorithm that jointly optimises the power control

coefficients and the phase shifts by involving the alternating update of the two

sub-problems until convergence.

4.5.1 Power control coefficients optimisation

For any given phase shift of the RIS reflecting elements (ΦM), problem (4.11)

can be rewritten as

Problem III− A : max
p0

Rtotal (p0) (4.16a)

s.t. (4.11b), (4.16b)

Rm,k

(
pm,k

)
≥ r̄m,k, m ∈ M, k ∈ Km. (4.16c)

The problem (4.16) is the maximisation of a concave function under convex con-

straints, yet it is still difficult to compute because of the logarithmic function

(4.16a). To solve (4.16), we apply an efficient approximation approach and sev-

eral logarithm inequalities in [93] (see Appendix B for detailed proof). Hence,

73



4.5 Maximising network throughput via joint power allocation and
phase shift optimisation

at the κth iteration, problem (4.16) is equivalent to the following problem to

generate feasible points:

max
p0

R̂
(κ)
total (p0) (4.17a)

s.t. (4.11b), (4.17b)

P0pm,k

∣∣Gm,kf̃ffm,k

∣∣2 ≥ (2r̄m,k − 1
)
σ2
k, m ∈ M, k ∈ Km, (4.17c)

where the form of R̂
(κ)
m,k (p0) and R̂

(κ)
total (p0) are defined in (B.5) and (B.6), respec-

tively. Based on [106], the computational complexity of (4.17) is

O(n̄2m̄2.5 + m̄2.5), (4.18)

where n̄ = MK is the number of decision variables and m̄ = M(K + 1) is the

number of constraints.

As a result, problem (4.17) can be efficiently solved by using optimisation

tools, e.g., CVX [107]. In Algorithm 2, we propose a power allocation procedure

for solving problem (4.17).
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Algorithm 2 Power allocation procedure for solving problem (4.17).

Input:

Set κ = 0, ΦM , and initial point p
(0)
0 .

Set tolerance ε = 10−3, maximum iterations Imax = 20 to stop the algorithm.

Repeat

Solve problem (4.17) for the feasible solution (p
(κ+1)
0 ).

Set κ = κ+ 1.

Until Convergence or κ > Imax.

Output: Optimal power control coefficients (p∗
0)

4.5.2 RIS phase shift optimisation

For any given power control coefficients p0, problem (4.11) can be rewritten as

Problem III− B : max
ΦM

Rtotal (ΦM) (4.19a)

s.t. (4.11c), (4.11d). (4.19b)

For a given transmit beamforming vector (fm,k, ∀n = 1, 2, ..., N, m ∈ M), we

search for the feasible phase shifts of the RISs. Let νm = [ν1
m, ..., ν

N
m ]H in which

νn
m = ejθnm (∀n = 1, 2, ..., N). Then the constraint (4.11d) is equivalent to the

unit-modulus constraint, i.e., |νn
m|2 = 1 [27].

Furthermore, we apply the change of variables as follows.

Let χm,k = diag(HH
m,k)H0,mfm,k, then HH

m,kΦmH0,mfm,k = νH
mχm,k. Hence,
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problem (4.19) is equivalently rewritten as

max
νm, m∈M

M∑
m=1

Km∑
k=1

log2

(
1 + akν

H
mχm,kχ

H
m,kνm

)
(4.20a)

s.t. νH
mχm,kχ

H
m,kνm ≥

(
2r̄m,k − 1

)
/ak, m ∈ M, k ∈ Km, (4.20b)

|νn
m|2 = 1,∀n = 1, 2, ..., N, m ∈ M, (4.20c)

where ak = P0pm,k/σ
2
k. However, the problem (4.20) is a non-convex quadrat-

ically constrained quadratic programming (QCQP) problem. Therefore, we ex-

ploit the following transformation. Let Xm,k = χm,kχ
H
m,k and νH

mXm,kνm =

tr
(
Xm,kνmν

H
m

)
= tr

(
Xm,kVm

)
, where Vm = νmν

H
m must satisfy Vm ⪰ 0 and

rank(Vm)=1. Note that the rank-one constraint can be relaxed due to the non-

convex property of the unit-modulus constraint (4.20c) [27,108]. Hence, problem

(4.20) is transformed into the following problem:

max
νm, m∈M

M∑
m=1

Km∑
k=1

log2

(
1 + aktr

(
Xm,kVm

))
(4.21a)

s.t. tr
(
Xm,kVm

)
≥
(
2r̄m,k − 1

)
/ak, m ∈ M, k ∈ Km, (4.21b)

Vm(n,n) = 1, ∀n = 1, 2, ..., N, m ∈ M, (4.21c)

Vm ⪰ 0. (4.21d)

As observed, problem (4.21) is a convex semi-definite program (SDP) [27,28],

which can be efficiently solved by existing convex optimisation solvers e.g., CVX.

The computational complexity of (4.21) is based on (4.18) with n̄ = MK and

m̄ = M(N +K).

In Algorithm 3, we propose a BCD-based procedure for solving problem (4.21).
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Specifically, the procedure is implemented for each UAV-RIS so that the phase

shifts of N elements at the m-th UAV-RIS are identified. Then, the BCD proce-

dure terminates with the convergence of the optimal phase shifts of all the RIS

elements.

Algorithm 3 : BCD-based phase shift searching procedure for solving problem
(4.21).

Input:

Set κ = 0, p0, and initial point f
(0)
m,k.

Set tolerance ε = 10−3, maximum iterations Imax = 20 to stop the algorithm.

Repeat

for m = 1 to M do

Solve problem (4.21) for the feasible solution (Φ
(κ+1)
M ).

Update f
(κ+1)
m,k .

end for

Set κ = κ+ 1.

Until Convergence or κ > Imax.

Output: Optimal phase shift (Φ∗
M)

We note that the solution to problem (4.21) may not meet the rank-one con-

straint that has been relaxed. In this case, the Gaussian randomisation method

can be used to find the near-optimal solution [27,64].

4.5.3 Iterative optimisation algorithm

In Section 4.5.1 and 4.5.2, the original problem (4.11) has been transformed into

two independent convex sub-problems (4.16) and (4.19) (having solved the UAV-
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RISs deployment (constraint (4.11e)) in the previous section). Subsequently,

we propose an iterative optimisation algorithm, summarised as in Algorithm 4,

to jointly solve the MBS optimal power allocation and phase shifts of the RIS

reflecting elements. Accordingly, we solve problem (4.16) and (4.19) alternatively,

having the solution in each iteration as the initial point in the next iteration.

Algorithm 4 : Iterative optimisation algorithm for jointly solving problem
(4.11).

Input:

Set j = 0, initial p
(0)
0 and Φ

(0)
M .

Tolerance ε = 10−3, maximum iterations Imax = 20 to stop the algorithm.

Repeat

For Φ
(j)
M , run Algorithm 2 to solve the optimal power control coefficients

p
(j+1)
0 .

For p
(j+1)
0 , run Algorithm 3 to solve the optimal phase shifts of the RIS

reflecting elements Φ
(j+1)
M .

Set j = j + 1.

Until Convergence or j > Imax.

Output: (p∗
0,Φ

∗
M)

4.6 Simulation results

In this section, simulation results in Matlab are provided to demonstrate the

performance of the proposed algorithms.
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4.6.1 Simulation setting

The platform for simulation includes a PC with AMD Ryzen 7 2700X, CPU

3.7GHz and 32GB memory.

The system parameters for our simulations are set as follows. A circle with a

radius of 500 m with the MBS at its centre, is considered. The entire deployment

area is extended from the MBS coverage area with a radius of up to 2000 m.

The location of the MBS is assumed at (0, 0, 30), while the UEs are randomly

distributed in the deployment area. The number of UEs is K = {30, 50} and

the number of UAVs is M = {8, 12} [104]. The number of elements of each RIS

panel is set to N = {40, 80, 120, 160, 200} [27]. The altitude range of the UAVs

(Hmin, Hmax) is (50, 150) m [87]. The QoS thresholds are set to r̄m,k = 1 bps/Hz.

The white noise power spectral density is σ2 = −130 dBm/Hz. The parameters

of the channel model follow the simulation settings in [87,93].

4.6.2 Numerical results

In order to evaluate the proposed method OPW-OPH, which solves the problem

in (4.11), we perform simulations and compare the results based on OPW-OPH

against those of three other baseline methods. In particular, we investigate the

following cases:

• OPW-OPH: maximising the total network throughput considering optimal

transmit power of the MBS and optimal phase shifts of the RIS reflecting

elements.

• OPW-RANDPH: maximising the total network throughput considering op-

timal transmit power of the MBS and random phase shifts of the RIS re-
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flecting elements.

• EPW-OPH: maximising the total network throughput considering equal

transmit power of the MBS and optimal phase shifts of the RIS reflecting

elements while the total power of the MBS is equally allocated to the M

clusters.

• EPW-RANDPH: maximising the total network throughput considering equal

transmit power of the MBS and random phase shifts of the RIS reflecting

elements.

4.6.2.1 Convergence of the proposed algorithms

1 2 3 4 5 6

Iteration index

320

325

1st iteration of Algorithm 3

Algo-1

Algo-2

1 2 3 4 5 6

Iteration index

320

325

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
T

o
ta

l 
n
et

w
o
rk

 t
h
ro

u
g
h
p
u
t 

(b
p
s/

H
z)

2nd iteration of Algorithm 3

Algo-1

Algo-2

Figure 4.2: The convergence of the proposed algorithms for solving problem (4.11)
(OPW-OPH) at K = 30, M = 8, N = 80, P0 = 40 dBm.

Figure 4.2 illustrates the convergence of Algorithms 1− 3 for solving problem

(4.11) (OPW-OPH), with K = 30, M = 8, N = 100, P0 = 40 dBm. It is observed

that at the first iteration of Algorithm 3, the inner algorithms (Algorithms 1 and
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4.6 Simulation results

2) converge after a few iterations while only 2 iterations are needed according to

the second iteration of Algorithm 3 to reach the final convergence.

4.6.2.2 Optimal network throughput versus maximum transmit power

of the MBS

Figure 4.3 shows the total network throughput maximised with respect to the

MBS power allocation and RIS phase shifts, Rtotal

(
p∗
0,Φ

∗
M

)
, as a function of

maximum transmit power of the MBS for different numbers of UAVs (M) and

UEs (K). As observed from the figure, the higher the maximum transmit power

of the MBS, the better the total network throughput. This is due to the fact that

when zero forcing is used at the MBS, it has the tendency to allocate the entire

power budget to the UEs in order to maximise the throughput. More importantly,

as expected, the total network throughput based on OPW-OPH outperforms the

baseline methods, which indicates the efficiency of the joint power allocation and

RIS phase shifts optimisation provided by the proposed algorithms.

Specifically, our proposed method can obtain a throughput of up to 10.5

bps/Hz and 13.8 bps/Hz higher than that in the EPW-RANDPH method for

K = 30, M = 8 (Figure 4.3a) and K = 50, M = 12 (Figure 4.3b), respectively.

The gap widens with the number of UEs in the deployment area. Furthermore,

given a particular N , e.g., N = 80, and at a larger K and M (Figure 4.3b),

when only either power allocation optimisation or RIS phase shifts optimisation

is exploited, i.e., either OPW-RANDPH or EPW-OPH, the improvement over

EPW-RANDPH in terms of network throughput become less significant when

compared to that achieved in OPW-OPH.
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Figure 4.3: Total network throughput, Rtotal

(
p∗
0,Φ

∗
M

)
for different numbers of

UAVs (M) and UEs (K).
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4.6.2.3 Optimal network throughput versus the number of RIS re-

flecting elements
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Figure 4.4: Total network throughput, Rtotal

(
p∗
0,Φ

∗
M

)
, versus different numbers

of RIS reflecting elements (N), at K = 50, M = 12, P0 = 40 dBm.

Figure 4.4 plots the total network throughput against different numbers of

RIS reflecting elements at K = 50, M = 12, P0 = 40 dBm. The figure indicates

an increase of the total network throughput with the number of RIS reflecting

elements (N). It is interesting to see that the total network throughput obtained

with OPW-OPH is notably improved for large N . Moreover, for sufficiently large

N , the performance of EPW-OPH significantly outperforms that of the OPW-

RANDPH method. This confirms the advantages of the RIS phase shift optimi-

sation on network throughput. Table 4.2 shows the throughput improvement (in

bps/Hz) provided by OPW-OPH as compared to the conventional methods for

a range of N . The throughput could be improved by up to 15.41 bps/Hz, 9.88

bps/Hz, and 21.73 bps/Hz compared to OPOW-RANDPH, EPOW-OPH, and
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EPOW-RANDPH, respectively, at N = 200, and even much higher gain can be

attained when a larger number of RIS reflecting elements are used.

Table 4.1: Improvement of total network throughput (in bps/Hz) with OPW-
OPH when compared to the other methods for different N with K = 50, M = 12,
P0 = 40 dBm.

OPW-OPH versus
N

40 80 120 160 200
OPOW-RANDPH 2.20 6.18 6.23 8.44 15.41
EPOW-OPH 7.01 7.23 7.53 8.16 9.88
EPOW-RANDPH 8.55 12.55 12.61 14.75 21.73

Table 4.2: Improvement of total network throughput (in %) with OPW-OPH
when compared to the other methods for different N with K = 50, M = 12,
P0 = 40 dBm.

OPW-OPH versus
N

40 80 120 160 200
OPOW-RANDPH 0.5 1.25 1.19 1.55 2.75
EPOW-OPH 1.61 1.47 1.25 0.98 1.74
EPOW-RANDPH 1.98 2.58 2.44 2.74 3.92

4.6.2.4 Worst-case user equipment’s throughput

In addition to evaluating the total network throughput, we also consider the

worst-case UE throughput where the worst-case UE is defined as the UE that

obtains the lowest throughput amongst theK UEs in the deployment area. Figure

4.5 depicts the worst-case UE throughput according to optimised power allocation

and RIS phase shifts versus a range of RIS elements. As noticed from the figure,

the worst-case UE throughput also benefits from the increase of RIS elements.

Hence, the proposed method (OPW-OPH) also provides the worst-case UE with

a considerably better throughput than the conventional methods.
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Figure 4.5: Worst-case UE throughput according to optimised power allocation
and RIS phase shifts versus different numbers of RIS elements (N), at K = 50,
M = 12, P0 = 44 dBm.
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Figure 4.6: Worst-case UE throughput gain (%) obtained based on OPW-OPH
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As depicted in Figure 4.6, the gain in the worst-case UE throughput based
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on OPW-OPH could be more than 10% when compared to EPOW-OPH and

EPOW-RANDPH, but is smaller when compared to OPOW-RANDPH, for the

considered range of N . This indicates the positive impact of optimal power

allocation on the worst-case UE throughput.

4.7 Conclusion

We have proposed an optimisation approach of low complexity for extending

network coverage in a massive MIMO communication network. By integrating

RISs and UAVs, our method takes advantages of both the UAVs’ flexibility and

RIS’s configurability. The numerical results demonstrated that the use of RISs

and UAVs could offer better total network throughput and simultaneously provide

users who suffer worst-case throughput with an improvement of more than 10%.

The proposed scheme is suitable for urban areas or in events where blockages or

obstructions prevent users from having a LoS connection.

Some challenging issues remain open and deserve future investigation such

as the impact of RIS channel estimation and UAV jitter, i.e., the fast variation

of UAV communication channels caused by either the unintended high-frequency

change of UAV altitude or the high-frequency vibration from the UAV rotors [99],

on the system performance.
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Chapter 5

Real-time optimised clustering

and caching for 6G

satellite-UAV-terrestrial

networks

In this chapter,7 we consider an Internet-of-Things network supported by several

satellites and multiple cache-assisted UAVs. Due to the long-distance transmis-

sion and detrimental effects from the transmission environment, the latency can

be very high, especially in the presence of backhaul congestion. Therefore, we

formulate an optimisation problem with the aim of minimising the total network

latency. To reduce the complexity of the original problem, it is divided into three

sub-problems, namely, the sub-problem of clustering the ground users associated

with the UAVs, cache placement in the UAVs (to support the network in avoiding

7This chapter is published as [J1] and based on [C1] in the Author’s publication list.
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backhaul congestion), and power allocation for the satellites and UAVs. We pro-

pose a distributed optimisation method consisting of: a non-cooperative game,

designed to obtain the solution to the clustering problem; a genetic algorithm,

which is powerful in the scenario of many variables, employed to obtain the op-

timal solution to the high-complexity caching problem; and a quick estimation

technique, used for power allocation. Additionally, a centralised optimisation

method is presented as a benchmark. Simulation results show that although the

distributed method leads to network latency of approximately 30% higher than

the centralised method, it takes significantly less time to execute and is suit-

able for systems requiring strict real-time computing constraints. Furthermore,

the numerical results prove the efficiency of our methods compared with other

conventional ones.

5.1 Introduction

In this chapter, optimisation techniques are proposed to solve the latency-related

problem in satellite-UAV-terrestrial networks (SUTNs). This mix-integer pro-

gramming problem with many variables poses challenges in obtaining the solu-

tion in real-time scenarios. To tackle this issue, depending on the characteristics

of variables in the aggregated problem, we divide the initial problem into three

sub-problems of lower complexity, namely clustering, cache placements and power

allocation (PA). Game theory (GT) is used for solving the clustering problem to

guarantee fairness between the users. A genetic algorithm (GA), which is inspired

by genetics mechanisms to tackle problems having extraordinarily complex func-

tions, is used for obtaining the solution to the cache placement. In terms of power
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allocation, we quickly estimate the transmit power of the satellites and UAVs,

taking into consideration the channel gain and the number of requests, instead

of operating computing-intensive optimisation algorithms.

The key contributions of this chapter are summarised as follows:

• A model of SUTNs where several satellites and multiple cache-assisted

UAVs cooperate to serve numerous ground users (GUs) is designed. The

UAVs are able to exchange their pre-stored data in order to quickly serve

the GUs if the required files already exist at the clusters of UAVs. This

takes advantage of the high-quality channels and short transmission dis-

tance between the UAVs, with the aim to reduce latency.

• An optimisation problem is formulated with the objective of minimising

the total latency for all the GUs. In order to reduce its complexity, this

problem is decomposed into three sub-problems: clustering, cache place-

ment, and PA for the satellites and UAVs. Instead of solving the extremely

high-complexity initial problem, three sub-problems of low complexity are

treated as independent problems and solved efficiently.

• In particular, a distributed method is proposed. A non-cooperative game is

designed to find the equilibrium as a solution to the clustering sub-problem,

while cache placement with a huge number of variables is solved by an

evolutionary algorithm, i.e., GA. The PA sub-problem is solved by using

a quick estimation technique. The overall optimisation of minimising the

total network latency is then readily solved in a distributed manner by

combining these three algorithms.
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• To evaluate the efficiency of the distributed method, we propose a cen-

tralised optimisation method as one of the benchmark schemes. The cen-

tralised method also adopts the non-cooperative game and evolution algo-

rithm to solve the two respective sub-problems. The difference from the

distributed method is that the PA sub-problem is solved centrally in the

centralised method.

• The simulation results show that the proposed distributed method outper-

forms the other methods in minimising the network latency. It only yields

higher network latency than the centralised optimisation by an acceptable

amount, yet its processing time is much lower, making it capable of support-

ing SUTNs in large-scale scenarios with real-time requirements. Moreover,

inter-UAV communication is also proven to contribute to reducing the net-

work latency.

5.2 System model and transmission scheme

5.2.1 System model

In this work, we consider the downlink transmission of a SUTN consisting of

several LEO satellites, a large number of UAVs, and a massive number of GUs,

as presented in Fig. 5.1. Each of the S satellites is equipped with N -radiation

elements to generate at most NB spot beams to the UAVs (NB < N), and

the set of satellites is denoted by S = {1, ..., S}. The set of U cache-enabled

UAVs, which are integrated with a memory to store common files (i.e, popular

contents), is represented by U = {1, ..., U}. After user association, these UAVs
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UAV-to-UAV link

GUSatellite

Satellite-to-UAV beams
UAV-to-GU link

UAV

Figure 5.1: A typical SUTN.

form S clusters where they can exchange the pre-stored contents. Additionally,

one GU is connected to one UAV only, while one UAV can serve multiple GUs.

As shown in Fig. 5.1, each satellite serves a cluster of UAVs, and each UAV serves

a cluster of GUs. Each single-antenna UAV is used as a flying relay station to

serve its GUs in three cases as follows:

• If the required file is available in the cache of this UAV, the file will be

directly transmitted to the target GU.

• If the required file is not available in the cache of this UAV but in the cache

of another UAV within the same cluster instead, the file will be transmitted

to the primary UAV and forwarded to the target GU.

• If no UAV in the same UAV cluster as this UAV has the required file in

store, then one of the satellites will transmit the file to this UAV, which
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then forwards it to the target GU.

A UAV u which connects directly to the GU k is defined as the primary UAV to

this user. The other UAVs within the same UAV cluster as UAV u are referred

to as the secondary UAVs to GU k. The decode-and-forward relaying technique

is used at the UAVs in this chapter. The set of K GUs, each of which has one

omni-directional antenna, is denoted by K = {1, ..., K}.

A three-dimensional coordinate system with the base at the centre of the

considered area on the ground is used for determining the locations of the satellites

qs = [xs, ys, zs], UAVs qu = [xu, yu, zu], and GUs qk = [xk, yk, 0].

5.2.2 Channel model

5.2.2.1 Satellite-to-UAV channel

The shadowed-Rician fading (SRF) model is appropriate to describe the channels

between the LEO satellites and UAVs [81], [109]. Therefore, the channel vector

from the s-th satellite to the u-th UAV is expressed as

hs,u = [hi]
T
i , i = 1 : N, (5.1)

where hi =
√

gid−α(1)

s,u is the channel gain from the antenna i of the s-th satel-

lite to the antenna of the u-th UAV, ds,u is the distance between the satellite

and the UAV, α(1) is the path loss exponent from the satellite to the UAV,

g
(su)
i ∼ SR(ωi, δi, εi) is the SRF component with the average power of direct

signal ωi, the half average power of the scatter portion δi, and the Nakagami-m

fading component εi for the NLoS part of the signals.
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5.2.2.2 UAV-to-UAV channel

Because of the rare appearance of obstacles, the line-of-sight (LoS) components

outweigh the non-line-of-sight (NLoS) ones in UAV communications. Therefore,

the free-space path loss model is used for modelling the UAV-to-UAV channels

[109]. The channel gain from a secondary UAV u′ to a primary UAV u is defined

as

hu′,u = gu′,u

√
h0d

−α(2)

u′,u , (5.2)

where h0 denotes the power gain at the reference distance d0, du′,u is the distance

between the two UAVs, while α(2) is the free-space path loss exponent, and gu′,u

represents the small-scale fading component with zero-mean and unit variance.

5.2.2.3 UAV-to-ground user channel

According to the air-to-ground channel models in [84], [110], the channel gain

hu,k between UAV u and GU k is defined as

hu,k = gu,k

(
4πfcdu,k

c

)−
α(3)

2 10
−
ηLoSP LoS

u,k + ηNLoSPNLoS
u,k

20 , (5.3)

where fc is the carrier frequency, du,k is the distance between the UAV and the

GU, c is the speed of light, α(3) is the path loss exponent from the UAV to the

GU, g
(uk)
u,k is the small-scale fading component of the channel of the link between

the UAV and the GU, ηLoS and ηNLoS are respectively the weighted constant

parameter of LoS and NLoS components. PNLoS
u,k = 1− P LoS

u,k is the probability of

NLoS, in which P LoS
u,k is the probability of LoS component.
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5.2.3 Caching scheme

We assume that all the GUs request at most in total F files with the same size

of Q bits, and the set of files is denoted by F = {1, ..., F} [19]. The satellites

can access all the files from the cloud and forward them to the UAVs. It is clear

that each UAV cannot pre-store all the contents, and only carries at most M files

(M ≪ F ).

Let βu = {β(u)
f ,∀f ∈ F} be the vector of cache placement, where the binary

indicator of cache placement for file f is defined as β
(u)
f ∈ {0, 1}. Due to the

limitation of the UAVs’ storage, we have the constraint of cache storage at UAV

u as
∑

f∈F β
(u)
f ≤ M [19].

In this chapter, the popularity of the contents changes quickly over time,

resulting in the need to frequently update the cached files at the UAVs. For in-

stance, the data about sports events, news, and promotion requires to be updated

quickly. Additionally, we assume that the popularity features of all the files are

the same, in other words, the probability of any file f in the set of files F being

requested by GU k is equal to those of the others.

5.2.4 Transmission scheme

Multiple-antenna technology can support SUTNs in easing the effect of long-

distance transmission. In this chapter, we assume that massive multiple-input

multiple-output (mMIMO) technology is used at the satellites.

Let vs,u ∈ CN×1 be the precoding vector at satellite s serving UAV u. The

signal received at UAV u from satellite s is affected by a few types of interference:

interference from the links of satellite s serving its cluster of UAVs Us (cross-talk),
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interference from other satellites, and interference from UAV-to-UAV communi-

cation. In this chapter, we assume that the frequency used for UAV-to-UAV

communications is distinct, and thus, there is no interference from the communi-

cation between the UAVs to the satellite-UAV links. As such, the data rate from

satellite s to UAV u can be calculated as:

Rs,u = B log2

(
1 +

|hT
s,uvs,u|2ps,u

Icross-talks,u + Iotherss,u + σ2
u

)
, (5.4)

where ps,u is the transmit power of satellite s for serving UAV u, Icross-talks,u =∑
u′∈Us\u |h

T
s,uvs,u′|2ps,u′ is the cross-talk interference from satellite s serving the

other UAVs within the same cluster, and Us is the set of the UAVs served by

satellite s. In addition, Iotherss,u =
∑

s′∈S\s
∑

u′∈Us′
|hT

s′,uvs′,u′|2ps′,u′ is the interfer-

ence from the other satellites that is imposed on UAV u, and σ2
u represents the

noise power received at UAV u.

To guarantee the unit length of the beamformer, we use maximal ratio trans-

mission beamformer vs,u = h∗
s,u/||hs,u||, which is the division of the complex

conjugate of the channel gain vector from satellite s to UAV u and the L2 norm

of this vector [110]. With the massive number of antennas at the satellites, the

beams toward the target UAV are narrow, with the major energy focusing on these

UAVs. In other words, the energy of the beams toward the non-target UAVs is

much lower, thus we can neglect inter-satellite interference (i.e. Iotherss,u = 0) in

(5.4).

The data rate from a secondary UAV u′ to a primary UAV u is expressed as

Ru′,u = B log2

(
1 +

|hu′,u|2pu′,u∑
u′′∈U\u′ |hu′′,u|2pu′′,u + σ2

u

)
. (5.5)
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Because of the distinct frequency used in UAV-to-UAV communication, the

signal received at the primary UAV from the secondary UAV is only affected by

the interference from communication between other UAVs. Therefore, we only

take this interference into account in (5.5).

Considering the signal from UAV u to GU k, it is subjected to interference

from satellite communication, UAV-to-UAV communication (inter-UAV commu-

nication), and communication from UAV u to other GUs within the same user

cluster (intra-UAV interference). The first two types of interference can be ig-

nored for the following reasons. First of all, to be able to receive directly signals

from a satellite, users would need to be equipped with high-gain receivers, which

leads to extremely high energy consumption. However, in this chapter, we aim to

design networks to serve IoT devices that have a very low receiver gain and energy

capacity. Thus, the interference from the satellites to the GUs can be ignored.

Secondly, the inter-UAV interference is neglected in (5.6) since the UAV-to-UAV

communication, having distinct frequency, does not impact UAV-GU links. Fur-

thermore, the distances from the UAVs, except for UAV u, to GU k are usually

long. As such, along with lower transmit power, the power of inter-UAV interfer-

ence can drop, even lower than the figure for noise.

The data rate from UAV u to GU k is thus expressed as

Ru,k = B log2

(
1 +

|hu,k|2pu,k∑
k′∈Ku\k |hu,k|2pu,k′ + σ2

k

)
, (5.6)

where Ku is the set of GUs served by UAV u, and σ2
k represents the power

of noise received at GU k. For dealing with intra-UAV interference, we apply

NOMA technology at the links between the UAVs and GUs.
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5.3 Problem formulation

In this section, we formulate an optimisation problem for latency minimisation.

In future networks, 6G for example, latency plays an ever-important role since

many real-time and interactive applications require strict deadlines. Despite long-

distance transmission, the high latency of satellite communication can be eased

with the aid of UAVs. This leads to SUTNs’ potential to be employed widely,

especially when serving users who request real-time transmission.

With the aim of latency minimisation, the association between UAVs and GUs

is essential. If a user’s requested file is available at its primary UAV, this UAV

can directly transmit the file to the GU, leading to much lower latency compared

to the other cases. Let A = {au,k,∀u ∈ U, ∀k ∈ K} be the matrix of association

between the UAVs and GUs, with each element being defined as

au,k =

 1, if the u-th UAV is the primary UAV of GU k,

0, otherwise.

We assume that files arriving from the satellite/secondary UAVs to the pri-

mary UAV are directly sent to the GUs without incurring in any queuing delays.

In terms of cache placement, depending on whether the requested file f is pre-

stored at the UAVs, three cases of the latency for GU k associated with UAV u

for the journey from requesting to completely receiving file f are as follows:

• Case 1: File f is available at the primary UAV u of GU k. The latency for

GU k is the sum of requesting time, responding time from the UAV, and
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transmission time, and can be formulated as

t
(pri)
k,f,u =

2du,k
c

+
Q

Ru,k

. (5.7)

• Case 2: File f is available at a secondary UAV u′ of GU k that is in the same

UAV cluster Us as UAV u. The latency for GU k is the sum of requesting

time and responding time from GU k to the primary UAV u and from the

primary UAV u to the secondary UAV u′, and transmission times. This

latency can be expressed as

t
(sec)
k,f,u′ =

2(du′,u + du,k)

c
+

Nu′,uQ

Ru′,u
+

Q

Ru,k

, (5.8)

where Nu′,u is the number of files requested concurrently by UAV u to the

secondary UAV u′. When Nu′,u > 1, i.e., more than one GUs served by

UAV u requires files that are not in UAV u’s cache, the data rate must be

divided by Nu′,u to indicate the transfer of only one file required by GU k.

• Case 3: File f is not saved at any UAV in the UAV cluster Us. The latency

for GU k is the sum of requesting time and responding time from GU k

to primary UAV u, from primary UAV u to satellite s, and transmission

times. In this case, the latency can be formulated as

t
(sat)
k,f,s =

2(ds,u + du,k)

c
+

Ns,uQ

Rs,u

+
Q

Ru,k

, (5.9)

where Ns,u represents the number of files simultaneously requested by UAV

u to satellite s.

98



5.3 Problem formulation

In all three cases, we assume that the size of the management frames or packets

to request information is very small and negligible in comparison with the Q bits

size of a file, and all the files are transmitted without any bit error. The latency

for completely receiving file f requested by GU k which is served by the UAVs

connecting to satellite s is defined as

tk(A,β,P ) =
∑

u∈Us

au,k

(
β
(u)
f t

(pri)
k,f,u

+
(
1− β

(u)
f

)
min

u′∈Us&β
(u′)
f =1

{
β
(u′)
f t

(sec)
k,f,u′

}
+
(
1− β

(u)
f

)(
1− max

u′∈Us

β
(u′)
f

)
t
(sat)
k,f,s

)
, (5.10)

where β = {βu,∀u ∈ U} is the set of all vectors of cache placement, and P =

{P (SAT ),P (UAV )} is the set of all powers allocated to the satellites and UAVs.

The optimisation problem of minimising the latency for all the GUs is ex-

pressed as

min
A,β,P

∑K

k=1
tk(A,β,P ) (5.11a)

s.t
∑

u∈Us

Ps,u ≤ P (max)
s ,∀s ∈ S, (5.11b)

Ps,u ≥ 0,∀s, u, (5.11c)∑
k∈Ku

Pu,k +
∑

u′∈Us\u
Pu,u′ ≤ P (max)

u ,∀u ∈ U, (5.11d)

Pu,k ≥ 0, Pu,u′ ≥ 0,∀u, k, u′, (5.11e)

β
(u)
f ∈ {0, 1}, ∀u, f, (5.11f)∑

f∈F
β
(u)
f ≤ M,∀u ∈ U, (5.11g)

au,k ∈ {0, 1},∀u, k, (5.11h)
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∑
u∈U

au,k = 1,∀k ∈ K, (5.11i)∑
k∈K

au,k ≤ NU ,∀u ∈ U, (5.11j)

where P
(max)
s and P

(max)
u denote the maximum transmit power of each satellite and

each UAV, respectively. NU is the maximum number of GUs that one UAV can

serve. Constraints (5.11b) and (5.11c) show the limitation in the transmit power

of each satellite. Similarly, (5.11d) and (5.11e) indicate that each UAV can serve

its GUs and the other UAVs in its clusters with the power in the range from 0 to

P
(max)
u . (5.11f) describes the possible values of cache placement variables while

the limitation in cache storage is given in (5.11g). Moreover, (5.11h) describes

the possible values of GU clustering variables, and (5.11i) indicates that each GU

connects to one UAV only. Finally, (5.11j) sets a limit on the number of GUs

served by one UAV in order to avoid overloading. Overall, the problem (5.11) is a

mixed-integer programming with the objective function being the combination of

fractions of monomial functions and logarithms, maximisation and minimisation

functions. Therefore, solving directly this problem is highly complex, especially

in large-scale systems.

5.4 Distributed optimisation method

In this section, we propose the combination of three algorithms to cooperatively

solve the problem (5.11). To reduce the complexity of the initial problem, we

decompose it into three sub-problems according to three variable blocks, namely,

clustering, cache placement, and PA. First, a non-cooperative game is designed

to represent the clustering problem, and an iterative algorithm is proposed to
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find the equilibrium of the game. Then, the GA which is a global search algo-

rithm is used to choose the optimal cache placement. Finally, depending on the

characteristic of IoT networks, the quick PA method is used to quickly estimate

the transmit power for satellites and UAVs.

5.4.1 Ground users clustering based on game theory

The proposed SUTN is a large-scale model with many GUs playing the same im-

portant role. Therefore, to cluster the GUs in real time, using a non-cooperative

game in this case is justified and essential. Firstly, given the others’ actions,

each player in the non-cooperative game chooses their best action, resulting in

an improvement of their reward (objective) independently. Secondly, the non-

cooperative game is a distributed tool where the best responses of players can

be solved simultaneously in multiple processors. Additionally, the players’ choice

of actions in the non-cooperative game can perfectly model the users’ choice of

clusters in the clustering problem. In terms of flexibility, GT can be used in a

range of problems, e.g. multi-player problems, with the utility functions modified

easily depending on the objectives to be optimised.

To begin with, we assume that the values of the cache placement variables

in matrix β, and the valued of the allocated power in matrix P are fixed. The

optimisation problem in (5.11) can be rewritten as

min
A

∑K

k=1
tk(A) (5.12)

s.t. (5.11h), (5.11i), (5.11j). (5.13)
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To solve optimisation problem (5.12), we design a non-cooperative game as

Gclustering =
〈
K,A, utk(ak,A−k)

〉
, (5.14)

where K is the set of players (i.e., the set of GUs), and A denotes the action of

players and is expressed as the matrix of association between the UAVs and GUs.

The utility function for each GU k is represented by utk(ak,A−k), in which ak is

the k-th column of A and denotes the action of GU k, and A−k is the matrix A

without the k-th column and represents the actions of the other GUs except GU

k. To transform the optimisation problem (5.12) into a non-cooperative game,

Gclustering has to consider all the constraints of (5.12), and thus the utility function

is defined as

utk(ak,A−k) =

 ∞, if the constraints of (5.12) are broken,

tk(ak,A−k), otherwise.

With any given matrix A−k, the set of GU k’s best responses, denoted by

BR(A−k), consists of vectors a
∗
k such that

utk(a
∗
k,A−k) ≤ utk(ak,A−k),∀ak. (5.15)

The best response of GU k is the vector a∗
k which gets the lowest latency ac-

cording to (5.15). The solving method is described in Algorithm 5. The solution

of this non-cooperative game is where all the rational players (GUs) reach the

stable convergence which is usually referred to as the Nash equilibrium. In this

equilibrium, no GU has an incentive to choose another cluster since the current
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one is where they can obtain the lowest value of utility function with the given

clusters of the other GUs.

Algorithm 5 GT-based clustering for solving problem (5.12)

1: Input: β,P , and create a feasible matrix A(0), i = 0

2: Repeat Set i = i+ 1

3: for k ∈ K

4: Find the best response a∗
k with fixed values a−k

5: Update A(i) by replacing column k with a∗
k

6: Stop A(i) = A(i−1)

7: Output: A(optimal)

5.4.2 Cache placement using genetic algorithm

By fixing the solutions for the stages of clustering and PA, the optimisation

problem (5.11) becomes

min
β

T (β) =
∑K

k=1
tk(β) (5.16)

s.t. (5.11f), (5.11g). (5.17)

Problem (5.16) is a combinatorial optimisation problem. If traditional meth-

ods are used, the number of feasible solutions can be equal to U
∑M

m=0

(
FCm

)
,

where FCm = F !/(m!(F − m)!) is the number of m-combinations of a set con-

sisting of F elements. When the number of possible files is huge in a large-scale

integrated satellite and terrestrial network with the presence of many UAVs,

searching for the optimal solution of cache placement is extremely complex, or
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even impossible in real time.
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Figure 5.2: The proposed genetic algorithm.

Genetic algorithms, which are a class of evolutionary algorithms in artificial

intelligence, are widely used and proven efficient in solving difficult problems, es-

pecially combinatorial problems with numerous variables. Additionally, a GA can

be applied to solve problems without the demand for calculating the derivative of

functions. This is an outstanding benefit since in many optimisation problems,

the objective functions and constraints are extraordinarily complex, or even inde-

terminable. In the optimisation problem (5.16), the objective function includes

linear functions, both minimisation and maximisation problems. In addition, the

GA is a global search algorithm with evaluation and evolution that can be op-
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erated concurrently, resulting in faster convergence. Due to the aforementioned

positives, we propose the use of a GA for solving the cache placement problem

(5.16).

Since there is no inter-UAV interference, optimising the cache placement for

each cluster of UAVs served by each satellite can be done by parallel threads.

The proposed algorithm is given as the diagram shown in Fig. 5.2. First of all,

we initialise a feasible population, the first generation, of NP chromosomes with

each chromosome being equivalent to a matrix β of cache placement at all the

UAVs. Then, in each iteration of the GA, there are four operations to get a better

population which always consists of at least one chromosome being better than

the best one of the previous population.

• Evaluation: The algorithm evaluates the values of T (β(n)), n = 1 : N for

all chromosomes. The matrix consisting of all these values is called fitness

matrix and denoted by T .

• Selection: In this step, we select the chromosomes to be parents in the

next step. First, the chromosomes that do not meet constraints (5.11f) and

(5.11g) are eliminated from the population. After that, we build a roulette

wheel where all the remaining chromosomes are placed, each chromosome

will occupy a sector that corresponds to its probability of being selected.

The probability that a parent (chromosome) n is selected depends on its

fitness value, and is calculated as

Psn =
max(T )− T (β(n))∑Np

n=1

(
max(T )− T (β(n))

) . (5.18)

The chromosomes having higher fitness value will be selected more times
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into the next step.

• Crossover: With the probability Pc that crossover happens at each parent,

one cut point in the chromosome of a UAV is chosen randomly and those of

the others have the same location. From these points, the remaining part of

the chromosomes of two parents in each UAV will be exchanged with each

other, and new chromosomes are their offspring.

• Mutation: The probability that one chromosome has a mutation is Pm. The

number of flipping bits if the mutation happens is equal to U × M × Pm.

The locations of these bits are randomly chosen, and the value of a bit is

flipped if it is chosen.

In the GA, the best chromosome in a generation is always retained in the next

generation by copying precisely this chromosome of a parent to a child. In this

way, the algorithm guarantees that the next generation always has at least one

better chromosome than all those in the previous population, resulting in the

monotonicity of the best value throughout the whole evolutionary process. The

GA is presented in Algorithm 6.

With a high number of chromosomes, the GA will have a higher chance to

find the optimal solution, but the complexity of evaluating will be higher as a

result. There is a trade-off between the two parameters Pc (crossover) and Pm

(mutation). If Pc is low and Pm is high, the GA can get the current local optimal

solution more quickly. In contrast, if Pc is high and Pm is low, the GA can have

more chance to get another better optimal solution, but in the worst case, it may

get stuck in the local optima. Therefore, selecting these parameters appropriately

is important and depends on the problem.
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Algorithm 6 The proposed genetic algorithm

1: Input: A,P , and create a feasible population Po(0) = {β(n), n = 1, Np},

i = 0

2: Evaluate population Po(0)

3: Repeat Set i = i+ 1

4: Select parents from population Po(i−1)

5: Crossover parents with the probability of Pc to create population Po(i)

6: Mutate offsprings with the probability of Pm

7: Evaluate population Po(i)

8: Stop |max(T (Po(i)))−max(T (Po(i−1)))| < εGA

9: Output: β(optimal)

5.4.3 Quick power allocation for satellites and UAVs

In terms of IoT devices that transmit and receive signals at very low power, it

is not desirable to operate optimisation methods of high accuracy but with high

computing requirement. Indeed, saving a small amount of transmission energy

while requiring high computing capacity would be inefficient. In this sub-section,

we use an acceptable approach to quickly estimate the transmit power of the

satellites and UAVs.

The power of satellite s allocated to serve UAV u ∈ Us is defined as

ps,u =
P

(max)
s∑

u′∈Us
Ns,u′/|hT

s,u′vs,u′ |2
Ns,u

|hT
s,uvs,u|2

. (5.19)

In (5.19), the dot product of the transpose of the channel and precoding vector

describes the quality of the channel. Therefore, these values are used for power
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division with the total power of P
(max)
s . If a channel is good, the power distributed

to this channel will be lower in order to increase the data rate of the others.

Additionally, more power is allocated to the UAV requesting a higher number of

files. Thus, for fairness in PA, we add the number of files concurrently requested

from UAV u to satellite s, Ns,u, as the weighted parameter, together with the

quality of the channel.

Similarly, the power for the UAVs is allocated with two distinct parts, θP
(max)
u

for inter-UAV communications and (1 − θ)P
(max)
u for UAV-GU communications

where θ = 0, 1. More specifically, the power values of UAV u which are allocated

to communicate with UAV u′ and GU k are respectively expressed as follows

pu,u′ =
θP

(max)
u∑

u′∈Us
Nu,u′/|hu,u′ |2

Nu,u′

|hu,u′ |2
, (5.20)

pu,k =
(1− θ)P

(max)
u∑

k′∈Ku
Nu,k′/|hu,k′ |2

Nu,k

|hu,k|2
, (5.21)

where Ku is the set of GUs served by UAV u, and Nu,k is the number of files

concurently requested by GU k to UAV u.

The PA algorithm for satellites and UAVs is shown in Algorithm 7. When the

values of A and β change, i.e., some GU is served by a new UAV and the caching

placement is changed, we have to reallocate power for these changed connections

to avoid dividing by zero in (5.10). Consequently, Algorithm 7 is used in line 4

of Algorithm 5, line 2 and line 7 of Algorithm 6, where there are changes in the

values of user association A and cache placement β. In the remainder of this

chapter, GT and GA in the distributed method are denoted by GTD and GAD,

respectively.
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Algorithm 7 Quick power allocation

1: Input: A,β, and create feasible matrices of power allocated for satellites

P (SAT ) and UAVs P (UAV )

2: Use (5.19) to update all elements in P (SAT )

3: Use (5.20) and (5.21) to update all elements in P (UAV )

4: Output: P (SAT ) and P (UAV )

5.5 Centralised optimisation method

In this section, a partially centralised optimisation method as a benchmark for

solving problem (5.11) is proposed. Similarly as in the distributed method, the

initial optimisation problem (5.11) is also divided into three sub-problems: clus-

tering, cache placement, and PA. The non-cooperative game (GT) is used for

assigning handover between the UAVs and GUs, and the GA is used for deter-

mining caching files at the UAVs. However, for the remaining PA sub-problem,

the centralised approach converts it into a convex optimisation problem of low

complexity to be solved centrally, as opposed to the quick estimation technique

in the distributed method.

According to [111], for all x > 0, y > 0, and x̄, ȳ respectively in the feasible

sets of x and y, using first-order condition, it is clear that:

log2(1 + x/y) ≥ ā− b̄/x− c̄y, (5.22)

where ā = log2(1 + x̄/ȳ) + 2x̄/
(
ln(2)(x̄+ ȳ)

)
> 0,

b̄ = x̄2/
(
ln(2)(x̄+ ȳ)

)
> 0, c̄ = x̄/

(
ln(2)(x̄+ ȳ)ȳ

)
> 0.
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Let xs,u = |hT
s,uvs,u|2ps,u, ys,u = Icross-talks,u + σ2

u,

x̄s,u = |hT
s,uvs,u|2p(κ)s,u, ȳs,u = Icross-talks,u (P (κ)) + σ2

u,

xu′,u = |hu′,u|2pu′,u, yu′,u =
∑

u′′∈U\u′ |hu′′,u|2pu′′,u + σ2
u,

x̄u′,u = |hu′,u|2p(κ)u′,u, ȳu′,u =
∑

u′′∈U\u′ |hu′′,u|2p(κ)u′′,u + σ2
u,

xu,k = |hu,k|2pu,k, yu,k =
∑

k′∈Ku\k |hu,k|2pu,k′ + σ2
k,

x̄u,k = |hu,k|2p(κ)u,k, ȳu,k =
∑

k′∈Ku\k |hu,k|2p(κ)u,k′ + σ2
k.

By substituting these values for x, y, x̄, ȳ in (5.22), we obtain three inequalities

as follows

Rs,u ≥ R̃(κ)
s,u ≜ B(ās,u − b̄s,u/xs,u − c̄s,uys,u), (5.23)

Ru′,u ≥ R̃
(κ)
u′,u ≜ B(āu′,u − b̄u′,u/xu′,u − c̄u′,uyu′,u), (5.24)

Ru,k ≥ R̃
(κ)
u,k ≜ B(āu,k − b̄u,k/xu,k − c̄u,kyu,k). (5.25)

Then, by substituting R̃
(κ)
s,u, R̃

(κ)
u′,u, and R̃

(κ)
u,k for Rs,u, Ru′,u, and Ru,k in (5.10)

respectively, the upper-bound function t̃k(P ,P (κ)) of the latency for GU k is

expressed as

t̃k(P ,P (κ)) =
∑
u∈Us

au,k

(
β
(u)
f t̃

(pri)
k,f,u +

(
1− β

(u)
f

)
β
(u′)
f t̃

(sec)
k,f,u′

+
(
1− β

(u)
f

)(
1− max

u′∈Us

β
(u′)
f

)
t̃
(sat)
k,f,s

)
, (5.26)

where t̃
(pri)
k,f,u = 2du,k/c+Q/R̃

(κ)
u,k,

t̃
(sec)
k,f,u′ = 2(du,u′ + du,k)/c+Nu′,uQ/R̃

(κ)
u′,u +Q/R̃

(κ)
u,k,

t̃
(sat)
k,f,s = 2(ds,u + du,k)/c+Ns,uQ/R̃

(κ)
s,u +Q/R̃

(κ)
u,k,

To reduce the complexity of the optimisation problem, we set

u′ = argmax
u′∈Us&β

(u′)
f =1

hu′,u.
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Additionally, this inequality holds true tk(P ) ≤ t̃k(P ,P (κ)). With the upper

bound of the objective function (5.11a), at the loop κ, the optimisation problem

(5.11) for PA can be rewritten as

min
P

Ttotal(P ,P (κ)) =
∑K

k=1
t̃k(P ,P (κ)) (5.27a)

s.t.(5.11b), (5.11c), (5.11d), (5.11e) (5.27b)

It can be seen that optimisation problem (5.27) is a convex problem, so it can be

solved efficiently by CVXPY [88].

The centralised optimisation method for solving problem (5.11) is described

in Algorithm 8. At the iteration κ, the solution of (5.27) is denoted by P (κ).

Therefore, at the iteration κ+1, we have Ttotal(P
(κ+1),P (κ)) ≤ Ttotal(P

(κ),P (κ)),

where P (κ+1) is the solution of (5.27) with the objective function Ttotal(P ,P (κ)).

In other words, the convergence of centralised PA is guaranteed thanks to the

decreasing monotonic value of the objective function.

In Algorithm 5 and Algorithm 6, to find the best response or to evaluate

different populations, we have to re-allocate power to satellites and UAVs which

have changes in serving GUs. In this centralised optimisation method, the GT and

GA in Algorithm 8 uses optimisation problem (5.27) for computing the value of

the utility function of each GU and cache placement of each UAV. To distinguish

from the distributed method, in what follows, we use GTC and GAC for the ones

in the centralised method.

111



5.6 Simulation results

Algorithm 8 Centralised method for solving optimisation problem (5.11)

1: Initialise: Create A(0),β(0), i = 0

2: Repeat Set i = i+ 1

3: Execute Algorithm 5 using optimal PA

4: A(i) = A(optimal)

5: Execute Algorithm 6 using optimal PA

6: β(i) = β(optimal)

7: Initialise P (0), P (−1) = P (0), κ = 0, T old
total = +Inf

8: While |Ttotal(P
(κ),P (κ−1))− T old

total| ≤ ϵ

9: T old
total = Ttotal(P

(κ),P (κ−1))

10: P (κ+1) = P ∗ where P ∗ is the solution of (5.27)

11: κ = κ+ 1

12: P (i) = P (κ)

13: Stop Convergence or i = imax

5.6 Simulation results

5.6.1 Simulation setting

In this section, simulation results are provided to evaluate the performance of the

proposed methods in a SUTN. The considered area of 10× 10 km is divided into

4 equal distinct areas, each with a satellite at its centre, i.e. q1 = (2.5, 2.5, z1),

q2 = (7.5, 2.5, z2), q3 = (7.5, 7.5, z3), and q4 = (2.5, 7.5, z4). The UAVs and GUs

are randomly located in these areas according to the uniform distribution. The

parameters used to build the channels as well as simulation scenarios are given
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in Table 5.1. We used Python to generate simulation results with a PC having

the processor Intel Core i5-10400, CPU @2.9 GHz and 8 GB RAM memory.

Table 5.1: Simulation parameters

Parameter Numerical value
Carrier frequency, fc 20 GHz
Bandwidth, B 100 MHz
Satellites’ altitude, zs 780 km
Radiation feeds and beams, (N , NB) (100, 25)
Maximum transmit power per SAT,
P

(max)
m

50 dBm

SRF model, (ωi, δi, εi) (0.0005, 0.063, 2) [81]
UAVs’ altitude, zu 500 m
Maximum transmit power per UAV,
P

(max)
u

37 dBm (5W)

Parameters of LoS and NLoS,
(ηLoS, ηNLoS)

(1, 20) dBm [109]

Constants in UAV-to-GU channel,
(a, b)

(9.61, 0.16) [109]

Path loss exponents, α(1)=α(2)=α(3) 2
Noise power, σ2

u = σ2
k −174 + 10 logB dBm

Number of possible files, F 30 files
UAV’s cache size, M 5 files
One file size, Q 1 kilobit

5.6.2 Numerical results

5.6.2.1 Convergence speed of the genetic algorithm for cache place-

ment

To begin with, we evaluate the convergence speed of the GA in a SUTN consisting

of 4 satellites, 16 UAVs and 160 GUs. Six combinations of NP , Pc and Pm

are used as scenarios for comparison, where NP = {20, 40}, Pc = {0.7, 0.8, 0.9}

corresponding to Pm = 1− Pc = {0.3, 0.2, 0.1}. Fig. 5.3 describes the differences
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Figure 5.3: Convergence speed of the GA at different (NP , Pc, Pm).

in the convergence speed of the GA employed in a cluster of UAVs with several

combinations of (NP , Pc, Pm). Overall, the GA converges after 11 iterations in

most scenarios. Specially, in the case of (20, 0.8, 0.2), it takes only 7 iterations to

converge while 11 iterations are required in the case of (40, 0.8, 0.2).

Compared with the scenarios using NP = 20, the ones with NP = 40 yield

lower latency at their convergence points regardless of the values of Pc and Pm.

However, the latter take considerably more time to evaluate the chromosomes

than those of NP = 20 while the latency improves by just a small amount, i.e.,

5.42% in the case of Pc = 0.8, Pm = 0.2. On the other hand, the scenarios with

Pc = 0.8, Pm = 0.2 lead to the lowest latency for all users at the convergence

points. Consequently, the combination of NP = 20, Pc = 0.8, Pm = 0.2 works

best in the six considered cases and thus are used in the following simulations.
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5.6.2.2 Convergence speed of the game theory-based clustering method
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(a) Convergence speed of the GT using quick power allocation (GTD).
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(b) Convergence speed of the GT using optimal power allocation (GTC).

Figure 5.4: Convergence of the GT using different power allocation methods.

To evaluate the convergence of the GT-based method, a typical SUTN which

consists of 4 satellites, 16 UAVs, and 80 GUs is used in this simulation. The

results in Fig. 5.4 show the convergence speed of two GT algorithms using quick

or optimal PA, i.e. GTD and GTC in 10 iterations. Each iteration is completed if

all the players (GUs) update their best responses. In both cases, the algorithms

converge at the lowest points after three iterations. With GTD, the value at
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the convergence point is equal to 98.83% of the value after one loop, while this

number with GTC is 99.08%. This means that the GT-based method nearly

converges after only one iteration.

5.6.2.3 Power allocation between inter-UAV communications and UAV-

ground user communications
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Figure 5.5: Network latency against the amount of power allocated to inter-UAV
communications and UAV-GU communications.

In this sub-section, the value θ for dividing the maximum power of the UAVs

between the two kinds of communications (i.e. inter-UAV and UAV-GU) is anal-

ysed. The considered SUTN consists of 4 satellites and 16 UAVs with the different

numbers of GUs ranging from 80 to 160. In Fig. 5.5, the result shows that when

θ = 0.1, the latency is lowest among the five cases with 0.247 s at K = 80

and 0.931 s at K = 160. In other words, serving GUs is fastest if 10% of the

116



5.6 Simulation results

maximum power of a UAV is allocated to inter-UAV communications and the re-

maining amount is used for UAV-GU communications. Therefore, we use θ = 0.1

in the remaining simulations. Clearly, in the case that the channels between the

UAVs are affected by harmful environmental factors, the value of θ can be in-

creased to tackle this issue to guarantee the balance between the two kinds of

communications.

5.6.2.4 Comparison in latency

The acronyms of amalgamations of algorithms are given in Table 5.2. There are

three important methods:

1. GTGA is the distributed optimisation method (our proposed method).

2. GTGAPA denotes the centralised optimisation method.

3. GTGA-NoU represents the distributed optimisation method without inter-

UAV communications.

Additionally, random clustering means that the GUs in the area of one satellite

connect randomly to the UAVs served by that satellite; nearest clustering is the

method where each GU is served by its nearest UAV; and random cache placement

refers to when the files are pre-stored randomly.
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Table 5.2: ID of strategies for comparison.

ID Clustering Cache placement Power allocation
GTGA GTD GAD Quick PA
GTRP GTA Random Quick PA

GTGAPA GTC GAC Optimal PA
GTGA-NoU GTD GAD Quick PA without

inter-UAV
communication

RCGA Random
clustering

GAD Quick PA

RCRP Random
clustering

Random Quick PA

NCGA Nearest
clustering

GAD Quick PA

NCRP Nearest
clustering

Random Quick PA
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Figure 5.6: The latency of our method GTGA and other traditional ones with
the different numbers of GUs.
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The comparison in the total latency of our method against those of other tra-

ditional methods is shown in Fig. 5.6 when the number of GUs increases from 80

to 160 and the numbers of satellites and UAVs are fixed at 4 and 16, respectively.

In terms of latency, the performance of GTGA, GTRP, GTGAPA, and GTGA-

NoU outperform the others. Therefore, GT helps to improve considerably the

latency for SUTNs compared to random clustering and nearest clustering. The

latency of the centralised method GTGAPA is lower than that of the distributed

method GTGA by approximately 30% on average. On the other hand, the la-

tency of GTGA-NoU is much higher by the range from 0.37 s to 1.02 s than the

one of GTGA. This shows that using inter-UAV communications for exchanging

the files significantly reduces the latency compared to the transmission without

this type of connection.

5.6.2.5 Execution time

The execution time of GT-based clustering algorithms, GA-based cache place-

ment algorithms and optimal PA are given in Table 5.3 with different sizes of

networks, (U,K) = {(8, 40), (16, 80), (24, 120), (32, 160), (40, 200)}. It is clear

that the execution time of GTC and GAC using optimal PA are much higher

than those of their counterparts GTD and GAD. The reason is that optimal PA,

which requires high computing time from 1.8 s to 9.35 s, is operated many times in

GTC and GAC to find the best responses and evaluate populations. Meanwhile,

even when the number of UAVs equals 40 and the number of GUs is 200, the

execution time of the two algorithms GTD and GAD is still lower than 760 ms

because of the insignificant execution time of quick PA. Therefore, the GTD and

GAD algorithms have the ability to be applied efficiently in large-scale systems
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which require real-time computing, especially in IoT networks with a massive

number of users.

Table 5.3: Average execution time of GT and GA with different numbers of UAVs
and GUs

Number of UAVs 8 16 24 32 40
Number of GUs 40 80 120 160 200

GTD (s) 0.003 0.023 0.073 0.164 0.318
GAD (s) 0.029 0.112 0.291 0.466 0.759
GTC (s) 51.6 333 1016 2177.6 3548.4
GAC (s) 133.2 273.4 339.7 398.9 444.2

Optimal PA (s) 1.8 3.19 4.79 7.77 9.35

To summarise the results, Table 5.4 provides the evaluation of the proposed

methods in terms of “real-time” processing and “latency” for all the users. There

are three levels of priority: ⋆, ⋆⋆ and ⋆ ⋆ ⋆ denote low priority, average priority,

and high priority, respectively. Moreover, “applicability” describes how effectively

each method can be used in real systems. The methods that have low priority

in any criterion should not be used in practice. In Table 5.4, it can be seen that

the proposed method GTGA has the best performance when considering the two

criteria of transmission latency and execution time simultaneously.

Table 5.4: Evaluation of the efficiency of methods

Method Latency Real-time Applicability
GTGA ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
GTRP ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

GTGAPA ⋆ ⋆ ⋆ ⋆ ⋆
GTGA-NoU ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

RCGA ⋆ ⋆ ⋆ ⋆ ⋆
RCRP ⋆ ⋆ ⋆ ⋆ ⋆
NCGA ⋆ ⋆ ⋆ ⋆ ⋆
NCRP ⋆ ⋆ ⋆ ⋆ ⋆
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5.7 Conclusions

This chapter has investigated SUTNs and the problem of latency minimisation

consisting of three sub-problems: clustering, cache placement, and PA. In the

scenario of highly dense satellite-UAV-user IoT networks, by employing GT and

GA respectively for clustering and cache placement, the initial combinatorial

optimisation problem is solved efficiently, resulting in the proposed distributed

approach outperforming many other benchmarks. Additionally, the study in this

chapter has shown the importance of inter-UAV communications in the system

model through the much lower latency of the proposed method GTGA compared

to the case of no connection between the UAVs. On the other hand, the latency

of the distributed method GTGA is higher by around 30% than that of the cen-

tralised method GTGAPA. However, in terms of execution time, the distributed

method can be applied efficiently in large-scale scenarios which require real-time

computing, while the centralised manner is inapplicable due to extremely long

processing time.

121



Chapter 6

Conclusions and future work

6.1 Summary of the thesis

While research on UAVs covers a broad range of topics such as control, power

transfer, or security, this thesis has looked at UAV-assisted networks from the

communication perspective, giving special consideration to the resource allocation

under dynamic environment and stringent constraints.

This thesis has considered UAV-assisted communication in the presence of

technologies such as RISs and satellites, and designed resource allocation schemes

to maximise network throughput or to minimise latency. The methods employed

are based on optimisation, ML and game theory, and have been proven to effi-

ciently provide solutions to complex optimisation problems, and/or to accelerate

running time where real-time requirements are involved.

6.1.1 Summary of Chapter 3

Chapter 3 investigated power allocation in a spectrum sharing UAV-assisted CRN

to tackle the lack of network coverage in the aftermath of a disaster. The UAVs

connected to a BS would form a secondary network that gave access to users
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in the disaster area. Optimal resource allocation algorithms were proposed to

maximise the throughput of the primary/secondary network, subject to the QoS

requirement, power budget at the BS and UAVs, and UAV deployment. Optimi-

sation and ML methods were combined to design a DNN that reduced running

time in deployment strategies. The worst-case PU throughput and worst-case

UAV throughput were also examined. The simulation results showed that the

proposed method is suitable for real-time deployment in mission-critical services

thanks to its low-complexity and quick solving time. Some implications of the

chapter are:

• The number of UAVs used in the secondary networks should be optimised.

This is because the average total throughput of the whole network increases

with the power of UAVs, yet only to a certain threshold of UAV’s power.

After this threshold, due to the effect of interference from the UAVs, the

total throughput does not increase any more. The threshold becomes lower

with a larger number of UAVs.

• In a disaster scenario, it is reasonable to maximise the throughput of the sec-

ondary network (MaxSEC) or of the UAV with worst throughput (MaxMin-

SEC), while guaranteeing the QoS of the primary network and the max-

imum tolerable interference imposed on the PUs. Again, large power of

the UAVs can cause significant interference, limiting the worst-case UAV

thoughput.
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6.1.2 Summary of Chapter 4

In Chapter 4, many UAVs carrying passive RISs were used to extend network

coverage from a massive MIMO base station. The resource allocation problem was

formulated as maximising the total network throughput by finding the optimal

power control coefficients at the base station and the phase shifts of the multiple

RISs used in the system, subject to the power budgets, UAV-RIS deployment, and

QoS required at the users. It was shown that the proposed scheme outperformed

benchmark schemes in terms of total network throughput. The results in this

chapter have some implications:

• The joint optimisation of RIS phase shifts and UAVs is beneficial to the

network throughput, especially when the number of UEs is large.

• The worst-case UE throughput in the joint optimisation scheme is higher

than in other schemes. The gap widens with a larger number of RIS ele-

ments.

6.1.3 Summary of Chapter 5

In Chapter 5, the resource allocation problem involved user clustering, UAV cache

placement and satellite/UAV power allocation. A satellite-UAV-terrestrial net-

work with several satellites, multiple cache-assisted UAVs, and numerous ground

users (GUs), was investigated. The UAVs were able to pre-store popular files in

their cache in order to quickly serve the GUs when requested. An optimisation

problem was formulated to minimise the total latency for all the GUs, with respect

to UAV-GU association, caching placement at the UAVs, and power allocation at

the satellites and UAVs. The initial problem of extremely high complexity was
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decomposed into three sub-problems of low complexity and solved efficiently. We

used game theory, a genetic algorithm and a quick power allocation technique to

solve these sub-problems. The proposed method has been proven to outperform

other schemes in terms of minimising the total latency. The chapter has a few

implications:

• The proposed scheme based on distributed method leads to significantly

lower latency compared to the other methods, and only yields higher la-

tency than the centralised method. However, the proposed scheme solves

optimisation problems notably faster. Therefore, the proposed method can

be applied efficiently and in large-scale systems, especially in networks with

a massive number of users.

• Inter-UAV communication is proven to efficiently reduce network latency

compared with the case where the UAVs do not communicate to exchange

files in their caches, hence the practicality of having a network/cluster of

UAVs. Dividing a UAV’s power between inter-UAV communication and

UAV-GU communication is important so that the latency for users is as low

as possible while ensuring secure communication between the UAVs. When

the channels between the UAVs are subjected to noise or interference, extra

power can be allocated to inter-UAV communication to compensate.

6.2 Future work

Looking ahead, coming next in the horizon is the sixth generation (6G) of wire-

less communication technology. 6G communication networks are expected to be

able to serve a significantly greater number of users at higher network capacity
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and data rate (a target of 1 Terabit/s), with ultra-low latency (less than 1 ms),

providing wider coverage and very high reliability (99.99999 %) [112].

This thesis has so far investigated resource allocation for UAV-assisted com-

munication in the presence of enabling technologies that are also relevant to 6G

(RIS in Chapter 4), or considered UAV use cases in 6G: when the UAVs are part

of non-terrestrial networks to complement terrestrial networks (UAVs extending

network coverage in Chapter 3 and UAVs as a layer in between satellites and

terrestrial networks in Chapter 5). There are many research problems to be ex-

amined that either are developed directly based on this thesis, or relate to aspects

of the future 6G communication technologies.

UAV-aided mobile edge servers

New applications are likely to generate multiple computation-intensive tasks while

UEs are limited in size, battery, and computing capacity. To tackle this issue,

integrating mobile edge computing servers on UAVs offers a suitable approach.

When computation tasks are partially offloaded to the UAVs, the UEs can save

energy and extend their operation time.

Moreover, due to the massive number of UEs and their diverse requirements

with respect to, e.g., data rate, seamless connectivity, and real-time data trans-

mission, the need for ultra-reliable low-latency communication (URLLC)-aided

mobile edge servers arises. UAVs as URLLC-aided mobile edge servers will be

able to support computing-intensive applications such as autonomous driving,

and face or speed recognition. However, offloading in UAV-assisted wireless com-

munication is a mixed-integer non-convex optimisation problem, which is not

only complex but also large-scale with numerous users. In this case, a novel mo-

bile edge server technology needs to be developed for modelling the computing
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capacity of network elements and, depending on the current status from real-

time updating of edge servers and users, to provide optimal offloading decisions.

New offloading schemes that can avoid data and computing overhead at the edge

servers with poor connections and many requests in queue should be investigated.

Real-time optimisation for resource allocation

The challenges to resource allocation in future networks are characterised by the

massive number of devices (up to 100 billion connected devices by 2025, 40% of

which are smart devices [113]) generating a massive amount of data, and diverse

requirements from a myriad of applications. Optimisation problems in these

situations are highly-complex, large-scale in nature and time-consuming, while it

is important to obtain the optimal solution in real-time. Real-time optimisation

is essential in the sense that it significantly accelerates the processing time while

guaranteeing the decisions are optimal.

There will be a massive number of ground users, base stations, and UAVs

in the networks. In addition, the ground users may change their positions very

quickly. Hence, real-time optimal user clustering schemes are necessary to reduce

interference. The problems of user clustering/association are often mixed-integer

non-convex problems, now with an even higher numbers of variables and the

stringent constraints of a real-time deadline. Newly emerging ML methods in the

interplay with optimisation will continue to be very useful in solving such opti-

misation problems of resource allocation. Federated learning [114] (a distributed

ML method that enables local training and thus reducing complexity in the train-

ing phase) and meta learning [115] (a method allowing the agents to incorporate

their past experience into determining hyper-parameters of a model for a new

task) are two examples of the learning algorithms in the upcoming ultra dense
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networks.

Other distributed methods will also be employed more in solving resource

allocation problems. A multi-game approach [10] is promising in the sense that

there are multiple groups of players in the network (users, UAVs, BSs), each

group with their own game and reward to optimise.

Quantum machine learning (QML) for resource allocation:

With the aforementioned challenges in UAV-assisted future communication, soon

enough the current (classical) computers will be unable to solve optimisation

problems within real-time deadlines. Meanwhile, research in quantum computing

have undergone some breakthroughs during the recent years. Quantum com-

puting uses quantum bits, which exist in many states at the same time, as the

basic unit of information, to compute in parallel - this makes solving optimisa-

tion problems using quantum machine learning (QML) exponentially faster than

current ML algorithms [116]. QML depends on the properties of superposition

and entanglement in quantum mechanics to solve ML problems. There have been

studies on QML for wireless communication, for instance, an optimisation algo-

rithm based on quantum neural network to solve the transmitter-user assignment

problem in [117], and a quantum-inspired reinforcement learning method to solve

the UAVs’ trajectory planning [118]. Hence, the potential of QML could ulti-

mately be harnessed for solving optimisation problems of resource allocation in

UAV-assisted future networks.
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Appendix A

Proof of results in Chapter 3

Approximation approaches and inequalities used

to solve the optimisation problems (3.22) and (3.23)

To solve problems (3.22) and (3.23), we exploit the logarithmic inequality of

[93,119], which follows from the convexity of the function f(x, y) = ln
(
1+1/xy

)
,

yielding

f(x, y) = ln(1 +
1

xy
) ≥ f̂(x, y), (A.1)

where we have

f̂(x, y) = ln
(
1 +

1

x̄ȳ

)
+

2

(x̄ȳ + 1)

− x

x̄(x̄ȳ + 1)
− y

ȳ(x̄ȳ + 1)
,

(A.2)

∀x > 0, x̄ > 0, y > 0, ȳ > 0.

Let i denote the ith iteration and exploit

x1 =
1

P0p0,k|ρ0,k,k|2
, y1 = Iintrak (p0) + σ2

k,
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x̄1 = x
(i)
1 =

1

P0p
(i)
0,k|ρ0,k,k|2

, ȳ1 = y
(i)
1 = Iintrak (p

(i)
0 ) + σ2

k,

for the approximation of the kth PU’s throughput in (3.10) as

R0,k(p0,pM) ≥ R̂
(i)
0,k(p0,pM),∀k ∈ KP (A.3)

where

R̂
(i)
0,k(p0,pM) = ln

(
1 +

1

x̄1ȳ1

)
+

2

(x̄1ȳ1 + 1)

− x1

x̄1(x̄1ȳ1 + 1)
− y1

ȳ1(x̄1ȳ1 + 1)
.

(A.4)

Similarly, we can invoke

x2 =
1

Pm|ρm,0,m|2
, y2 = IMBS

m (pM) + σ2
0,

x̄2 = x
(i)
2 =

1

P
(i)
m |ρm,0,m|2

, ȳ2 = y
(i)
2 = IBSm (p

(i)
M ) + σ2

0,

for the approximation of BS’s throughput function in (3.14) as

Rm,0(pM) ≥ R̂
(i)
m,0(pM),m ∈ M (A.5)

where

R̂
(i)
m,0(pM) = ln

(
1 +

1

x̄2ȳ2

)
+

2

(x̄2ȳ2 + 1)

− x2

x̄2(x̄2ȳ2 + 1)
− y2

ȳ2(x̄2ȳ2 + 1)
.

(A.6)
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Proof of results in Chapter 4

Approximation approaches and inequalities used

to solve the optimisation problem in (4.16)

To solve problem (4.16), we follow the approach in [93, 119]. In particular, we

consider the function f(z) = log2(1 + 1
z
) in z > 0, whose convexity can be

proven via its Hessian. The following logarithmic inequality thus holds true

∀z > 0, z̄ > 0 [93]:

f(z) = log2(1 +
1

z
) ≥ f̂(z), (B.1)

where we have

f̂(z) = log2(1 +
1

z̄
) +

(
∂f(z̄)

∂z

)
(z − z̄)

= log2

(
1 +

1

z̄

)
+

1

1 + z̄
− z

(1 + z̄)z̄
, (B.2)

∀z > 0, z̄ > 0.

Hence, at the κ-th iteration, we can invoke
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z =
σ2
k

P0pm,k

∣∣Gm,kf̃ffm,k

∣∣2 ,
z̄ = z(κ) =

σ2
k

P0p
(κ)
m,k

∣∣Gm,kf̃ffm,k

∣∣2 ,
for the approximation of the (m, k)-th UE’s throughput in (4.9) and the total

throughput of all the UEs in (4.10) as follows:

Rm,k

(
pm,k

)
≥ R̂

(κ)
m,k

(
pm,k

)
, ∀m ∈ M, ∀k ∈ Km, (B.3)

Rtotal (p0) ≥ R̂
(κ)
total (p0) , ∀m ∈ M, ∀k ∈ Km, (B.4)

where

R̂
(κ)
m,k

(
pm,k

)
= log2

(
1 +

1

z̄

)
+

1

1 + z̄
− z

(1 + z̄)z̄
, (B.5)

R̂
(κ)
total (p0) =

M∑
m=1

Km∑
k=1

R̂
(κ)
m,k

(
pm,k

)
. (B.6)
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