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The global trend of increasing life expectancy introduces new challenges with far-reaching implications.
Among these, the risk of falls among older adults is particularly signi¯cant, a®ecting individual health and the
quality of life, and placing an additional burden on healthcare systems. Existing fall detection systems often
have limitations, including delays due to continuous server communication, high false-positive rates, low
adoption rates due to wearability and comfort issues, and high costs. In response to these challenges, this work
presents a reliable, wearable, and cost-e®ective fall detection system. The proposed system consists of a ¯t-for-
purpose device, with an embedded algorithm and an Inertial Measurement Unit (IMU), enabling real-time fall
detection. The algorithm combines a Threshold-Based Algorithm (TBA) and a neural network with low
number of parameters based on a Transformer architecture. This system demonstrates notable performance
with 95.29% accuracy, 93.68% speci¯city, and 96.66% sensitivity, while only using a 0.38% of the trainable
parameters used by the other approach.

Keywords: Fall detection; older adults; Inertial Measurement Unit; Threshold-Based Algorithm; Transformer
Neural Network; Self-Attention; deep learning.

1. Introduction

The global increase in life expectancy has brought

about new challenges with far-reaching implications.

One of these challenges is the risk of falls among

older adults, which signi¯cantly impacts health and

healthcare systems.1 The growing interest in fall

detection, as discussed in Ref. 2, is driven by the

high prevalence of falls in the aging population.
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For instance, about 28.5% of older adults, with an

average age of 75.4 years, experience falls annually,3

with subsequent falls being more likely after an ini-

tial incident.4

Falls among older adults frequently result in un-

intentional injuries, including fractured hips or

wrists and head injuries. As indicated by Robino-

vitch et al.,5 falls account for a staggering 90% of hip

and wrist fractures and 60% of head injuries in this

population group. The ¯nancial implications of fall-

related injuries are important, with the average cost

of a single hospitalization for such injuries among the

individuals aged 65 years and older in the US

reaching approximately $17,483 in 2004. Alarming

projections suggest that these costs are expected to

escalate further, with estimates forecasting a stag-

gering total cost of $240 billion by the year 2040.6

Unattended falls, in particular, can lead to pro-

longed periods of immobility and distress, increasing

the risk of complications. This can result in longer

hospital stays and increased healthcare costs.5 Fur-

thermore, the psychological impact of unattended

falls, including fear of future falls and loss of con¯-

dence, can lead to reduced physical activity and so-

cial engagement, further exacerbating health decline

and increasing the risk of future falls.7

An automated fall detection system, especially for

those living independently, is crucial for timely in-

tervention. While there are existing commercial

solutions, such as the Shimmer3 IMU Development

Kit8–10 and the iLife sensor by AlertOne4,11 their

e®ectiveness is often limited by issues like false

positives and reliance on threshold-based detec-

tion.12 The challenge lies in designing wearable

devices that balance power consumption, computa-

tional resources, and user comfort.6

Despite the availability of various solutions, there

remains a need for more research to overcome

existing limitations.2,13–15 This work focuses on de-

veloping a reliable and user-friendly fall detection

device, targeting the safety and well-being of at-risk

individuals. Recognizing the distinction between fall

detection and fall prediction systems, as highlighted

in studies like the one published in Ref. 16, our re-

search emphasizes the critical role of fall detection in

promptly managing the aftermath of falls. By

addressing challenges, optimizing performance, and

re¯ning the design, this research aims to contribute

to the development of innovative, real-time fall

detection solutions, which will detect the fall once it

has occurred to alert an emergency contact as soon

as possible and minimize the negative consequences

of a fall. The ultimate goal is to make a signi¯cant

impact on older individuals' lives by providing

enhanced fall detection technologies that promote

independence, well-being, and peace of mind, all at

an a®ordable cost.

The main contributions of this paper are as fol-

lows: (1) A fall detection system based on an inertial

wearable sensor able to detect and communicate falls

in real time with minimal interference and high

versatility. (2) A novel portable device that com-

prises both sensors and customizable AI processing

on the edge to detect falls in real time, while pre-

serving extended battery life. (3) A novel lightweight

Transformer architecture that provides state-of-

the-art performance on fall detection, while ¯tting in

the proposed device architecture due to its small

parameter size. This architecture achieves a 99.6%

reduction on parameter size while preserving the

detection accuracy. (4) A comprehensive system

evaluation using three datasets to validate the per-

formance of our proposed approach.

The paper is structured as follows. First, the

state-of-the-art for fall detection systems is presented

in Sec. 2 from the perspectives of both the hardware

and software solutions. Then, Sec. 3 describes the

proposed solution and Sec. 4 presents the di®erent

experiments carried out to validate the proposed

solution. Finally, Sec. 5 presents the main conclu-

sions drawn from the conducted study.

2. Related Works

2.1. Hardware approaches for fall detection

The state-of-the-art in fall detection and prevention

systems can be broadly categorized into three types

of hardware solutions: environmental-based sensors,

vision-based systems, and wearable-based sensors.17

Environmental-based sensors are typically sta-

tionary, located in speci¯c areas of a user's home.

These sensors can vary widely, from pressure and

vibration sensors to presence sensors. However, they

are easily a®ected by external environmental factors,

which can lead to false alarms. For instance, a non-

wearable ultra-wide-band (UWB) sensor installed in

J. Fernandez-Bermejo et al.
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the ceiling to monitor the activities underneath its

area of action was proposed in Ref. 18. Similarly, the

work in Ref. 19 explored the use of Doppler radar for

human fall detection. The study suggested that while

the number of false alarms may still be high for prac-

tical use, integrating the radar fall detection system

with other sensor modalities such as acoustics and

cameras could considerably reduce false alarms. The

work in Ref. 20 proposes a particle ¯lter and combines

the depth and thermal information based on the ve-

locity and position of the head to detect falls. In gen-

eral, despite the potential of such systems, their main

limitation is their susceptibility to environmental

in°uences, which lead to a high level of false alarms.

Furthermore, the detection is only limited to the area

covered by the environmental sensor.

Systems based on visual recognition utilize diverse

techniques in computer vision for identifying falls or

analyzingwalking patterns to assess an individual's fall

risk. Such systems can incorporate various camera

types, from a solitary RGB camera to setups involving

multiple cameras,21–24 and depth cameras,25 such as

the Kinect.26,27 Nonetheless, the primary challenge

encountered by these approaches is the compromise of

user privacy, coupled with the limitation that these

systems are only e®ective in areas within the camera's

¯eld of view.Nevertheless, there is a new lineof research

that puts the focus on privacy preservation based on

the use of thermal sensor arrays. In this sense, the work

in Ref. 28 proposes a novel human-in-the-loop fall de-

tection system employing a low-resolution thermal

sensor array, addressing privacy concerns in personal

environments. Their approach, based on motion se-

quence classi¯cation with a Recurrent Neural Network

(RNN), demonstrated a remarkable accuracy of 99.7%

in detecting human falls, showcasing the potential of

thermal sensors in maintaining privacy while ensuring

high detection accuracy. Furthermore, the eHomeSe-

niors dataset, presented in Ref. 29, o®ers a unique

resource for fall detection research using privacy-

friendly infrared thermal sensors. This dataset is

notable for including data from both young volunteers

and performing artists trained to emulate the fall con-

ditions of older adults, providing a more realistic and

varied set of data for algorithm development.

Wearable sensors are based on devices placed on

the user's body which means that they are not lim-

ited to the area covered by a static monitoring

device. These are commonly the Inertial Measure-

ment Units (IMUs), consisting of accelerometers and

gyroscopes that measure the user's movements.

In this category of sensors, smartphones have

emerged as particularly signi¯cant due to their robust

processing capabilities, coupled with the integration

of accelerometers and gyroscopes. Additionally, there

are solutions that utilize bracelets or bands tailored

for the wrist, waist, or ankle, as well as those incor-

porating sensors into smart clothing, alongside

smartphone-based systems.30–35 However, a signi¯-

cant limitation of wearable sensor-based solutions is

that they often require the user to wear the device

in a speci¯c location, which can be inconvenient

or uncomfortable. The adoption of a wristband

for fall detection is highlighted for its discrete nature,

as noted in Ref. 36, while the pursuit of minimal

intrusiveness inspired the creation of a device inte-

grated into footwear, as described in Ref. 37. The

research in Ref. 38 introduces a smart clothing-based

approach, utilizing gravitational acceleration data

for fall detection via a hidden Markov model, as

explored in Ref. 39. Di®ering from this, the study in

Ref. 40 o®ers greater °exibility, eliminating the need

for sensor placement in a ¯xed position. Instead, the

suggested IMU sensor is adaptable for placement on

any body part. Although the obtained accuracy for

fall detection is promising, the system is not yet

ready to work in real time. The primary drawback of

mobile phone-based methods, as noted in Refs. 41

and 42, is their reduced practicality indoors. While

carrying a phone outdoors is convenient, it is less

common for individuals to keep their phones in their

pockets when inside. In this sense, the work in

Ref. 42 demonstrates the feasibility of a real-time,

deep-learning-based fall detection system directly

on a smartwatch, using a collaborative edge-cloud

framework. This approach addresses the practical

limitations of smartphone dependency by leveraging

the smartwatch's capabilities for both data sensing

and processing, thereby ensuring continuous moni-

toring and immediate response in the event of a

fall, even when the user is not in close proximity

to their phone.

Building upon these existing approaches, the

work proposed here introduces a novel dimension in

wearable-based fall detection. This sensor is equip-

ped with a custom-designed, energy-e±cient neural

Edge Computing Transformers for Fall Detection in Older Adults
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network architecture that operates in real time, di-

rectly on the wearable device. This architecture not

only ensures immediate fall detection and alerting

but also signi¯cantly reduces the dependency on

continuous smartphone connectivity, addressing a

key limitation highlighted in previous studies such as

Ref. 42. Furthermore, our system uniquely integrates

advanced machine learning (ML) algorithms, includ-

ing a Transformer-based model, which signi¯cantly

enhances detection accuracy while maintaining a

small footprint suitable for edge computing. This

approach represents a signi¯cant advancement in

the ¯eld, combining the bene¯ts of high accuracy,

real-time processing, user convenience, and reduced

power consumption, thereby making it a highly

e®ective solution for continuous fall monitoring in

various settings.

2.2. Algorithmic and architectural approa-
ches in fall detection

The ¯eld of fall detection systems has witnessed a

growing interest in leveraging neural networks and

deep learning techniques. However, the revision of the

state-of-the-art brings into light that some of these

studies lack su±cient information to con¯rm real-time

detection capabilities, particularly when integrating

in embedded and edge devices. Furthermore, a ma-

jority of these works have yet to undergo extensive

testing in real-world or in-the-wild scenarios.

The main challenge faced when embedding a fall

detection algorithm into a wearable device lies in

adapting typically large models to devices with lim-

ited resources. In this context, the advancements in

Transformer Neural Networks and deep learning

have enabled a step change. In this sense, the deep

Transformer model presented in Ref. 43 and the

Graph Transformer Network in Ref. 44 demonstrate

the potential of these architectures in handling

complex, sequential data e±ciently, which is crucial

for real-time fall detection. Similarly, the work in

Ref. 45 for patient-independent seizure detection

employs Convolutional Neural Network (CNN)–
Transformer models and provides insights into

handling diverse datasets e®ectively. Moreover, the

deep learning approaches in medical imaging and

diagnosis, as explored in Refs. 46 and 47, show how

pretrained Deep Convolutional Neural Networks can

be optimized for speci¯c tasks, o®ering a blueprint

for adapting such models to wearable devices. These

studies collectively underscore the evolving land-

scape of neural network applications, where the

challenge extends beyond model accuracy to ¯tting

advanced algorithms into compact, wearable for-

mats. This body of work provides a foundation for

our approach to implementing a deep-learning-based

fall detection system that is both e±cient and e®ec-

tive, even within the constraints of a wearable

device.

In this sense, the work in Ref. 41 proposes a deep

learning approach based on the information provided

by thermal sensors. The architecture is comprised of

convolutional, max pooling, and Recurrent Neural

Network layers, speci¯cally Long Short-Term Mem-

ory (LSTM), Gated Recurrent Unit (GRU), or

Bi-LSTM. The system achieved the accuracy, sensi-

tivity, and speci¯city of 93% using Bi-LSTM.

Nonetheless, the tool was not validated in real time

in home setups. The work in Ref. 48 proposes a

vision-based fall detection system based on curvelet

transforms for feature extraction and Support Vec-

tor Machine and HMM for posture classi¯cation and

activity recognition. The system achieved an accu-

racy of 96.88% and an F-measure of 0.96 using

the HMM–Support Vector Machine algorithm. In

Ref. 49, a specialized Convolutional Neural Network

(FD-CNN) was used for fall detection. The system

was designed for low-power sensing, making it suit-

able for real-time applications and devices with

limited computational resources, indicating the po-

tential for edge computing. The work in Ref. 50

proposes a real-time patient monitoring framework

for fall detection that uses an LSTM model for ma-

chine learning and an edge computing framework for

real-time fall detection. Moreover, a series of studies

are also observable where Recurrent Neural Net-

works are employed for fall detection, treating iner-

tial measurements as a sequence, much like the

approach undertaken in this work.51–53

Despite these advancements, there are several

limitations to consider. For instance, the system in

Ref. 41 has a number of false positives due to the

increase of temperature in objects, indicating po-

tential issues with objects having temperatures

higher than room temperature. The system perfor-

mance of Ref. 48 could be a®ected by shadows or

partial occlusion of body parts. In Ref. 49, user

J. Fernandez-Bermejo et al.
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acceptance tests were not conducted, and the use of

the proposed technology was limited to an adapted

vest. In Refs. 51–53, Recurrent Neural Networks do

not provide signi¯cant advantages over other avail-

able architectures. They typically occupy more

memory space, rendering them impractical for exe-

cution at the edge.

The work proposed here presents several novel

elements that signi¯cantly advance the ¯eld of fall

detection. First, the proposed neural network ar-

chitecture is speci¯cally tailored for e±cient opera-

tion on wearable devices with limited computational

resources. This architecture, unlike the general-

purpose networks used in previous studies, is opti-

mized for the speci¯c task of fall detection, ensuring

high accuracy with minimal memory and power

requirements. This makes it particularly suitable for

real-time applications and continuous monitoring

in-the-wild, addressing a critical gap in existing re-

search. Second, the proposed approach goes beyond

traditional deep learning techniques by incorporat-

ing a Transformer-based model that not only is

more compact than typical Recurrent Neural Net-

works but also o®ers higher performance in terms of

accuracy and speed, making it ideal for deployment

in edge computing scenarios. This is a signi¯cant

improvement over the LSTM and GRU models used

in studies like Refs. 41 and 50, which, while e®ec-

tive, are often too resource-intensive for wearable

devices.

3. The Proposed System for Real-Time
Fall Detection

This work proposes a fall detection system with a

strong emphasis on versatility. A prevalent issue in

many existing systems, as detailed in the literature,

is their limited adaptability in various settings,

particularly when transitioning between indoor and

outdoor environments. For example, systems based

on environmental sensors are restricted to the spe-

ci¯c area of sensor deployment, making them inef-

fective when the user moves outside this zone. This

constraint is also inherent in camera-based systems,

which additionally impacts user privacy therefore

resulting in low user acceptance.

Wearable sensors, while promising, are not with-

out their challenges. Some systems rely on Fog

processing via a gateway, which inherently restricts

the operational range based on the maximum dis-

tance for data transmission between the sensor and

the gateway. Typically, these systems use a static

BLE (Bluetooth Low Energy) gateway, speci¯cally

Class 2 Bluetooth, which provides a communication

range of approximately 20m. This con¯nes the fall

detection service to a static 20-m radius, making the

system nonfunctional if the user moves beyond this

distance, or if the system is utilized outdoors. Al-

ternatively, some wearables utilize smartphones with

Internet access to transmit IMU data for cloud pro-

cessing, thereby overcoming the static limitation.

However, these systems need that the user carries the

phone in a speci¯c location, which if not adhered

to, can lead to incorrect system inferences. While

these systems perform well outdoors, their

reliability diminishes in indoor settings, such as

homes or nursing homes, as they require users to

constantly carry the phone, which is an unrealistic

expectation.

To mitigate these challenges, we propose a system

that integrates a wearable device with a smartphone

or tablet. The wearable sensor is designed to capture

inertial data from the user's body, speci¯cally fo-

cusing on acceleration and angular velocity. The

sensor's ¯rmware incorporates a neural network that

processes this data to determine whether the recor-

ded measurements correspond to a fall or an Activity

of Daily Living (ADL). Upon detecting a fall, the

sensor communicates with the mobile device (either

a smartphone or tablet) via BLE, prompting the

device to automatically place a call to a designated

emergency contact to report the detected fall. This

proposed system, despite utilizing BLE, ensures

versatility in both outdoor and indoor environments

having a movable gateway. Outdoors, the user

can freely carry the sensor and smartphone without

any speci¯c placement requirements for the

phone. Indoors, the user is not required to constantly

carry the smartphone, as the Bluetooth coverage is

typically su±cient to encompass almost the entire

house.

The following subsections will provide a detailed

description of the system, covering the hardware

platform used, the neural network architecture, the

software architecture for inference and communica-

tion, and the user application.

Edge Computing Transformers for Fall Detection in Older Adults
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3.1. The hardware for real-time fall detection

In the ¯eld of fall detection, the MetaMotionRa and

Puck.jsb sensors have been highlighted in previous

studies as promising devices due to their unique ca-

pabilities.54 However, upon closer examination, we

identi¯ed certain constraints. For instance, the

MetaMotionR sensor is designed for developer-

friendly use and is equipped with a feature-rich

¯rmware. This ¯rmware includes a variety of func-

tionalities such as logging capabilities, the ability to

stream data to other devices, substantial data stor-

age, and a software stack designed to work in tandem

with the sensor. However, a signi¯cant limitation of

this sensor is the inability to modify or reprogram its

¯rmware, which poses a considerable challenge for

developers aiming to create °exible applications that

operate in real time. The application must continu-

ously stream data to a gateway for user monitoring,

which is impractical due to range limitations and

potential connection losses.

On the other hand, the Puck.js sensor aims to

o®er more °exibility by allowing partial ¯rmware

reprogramming. Speci¯cally, this device's ¯rmware

includes a Javascript interpreter, enabling mod-

i¯cations to certain device behaviors. For instance, it

allows customization of the information the sensor

sends via Bluetooth and provides the option to select

the data to send, eliminating the need for continuous

streaming as with the MetaMotionR sensor. While

this o®ers a degree of freedom, it is still restrictive, as

many aspects remain unmodi¯able. Additionally, the

integrated interpreter inherently consumes a signi¯-

cant portion of the device's memory.

To address these challenges and achieve greater

°exibility, this study opted to develop a ¯t-for-

purpose wearable device with fully modi¯able ¯rm-

ware. The wearable device was built using the Nicla

Sense MEc device, part of Arduino's new PRO range

aimed at bridging their products to the industry.

Notably, the sensor features an nRF52832 chip,

providing Bluetooth connectivity and housing the

primary ARM Cortex M4 microcontroller. To mon-

itor user movements, the device incorporates a state-

of-the-art IMU sensor by Bosch, the BHI260AP.

This sensor integrates an accelerometer with a range

of �16G and a gyroscope with a range of �2000�/s,
the reason for using these ranges is their prevalence

in the majority of relevant datasets, such as the

SisFall55 dataset. It also includes a 32-bit Fuse2 mi-

crocontroller with software functionalities to facili-

tate various Arti¯cial Intelligence tasks. The two

main components of the Nicla sensor, the nRF52832

chip and the BHI260AP IMU, communicate with

each other through an SPI (Serial Peripheral Inter-

face) interface, which facilitates access to the services

o®ered by the BHI260AP chip. The Nicla Sense ME

device provides substantial °exibility due to the fully

programmable ¯rmware of the nRF52832 chip. This

allows for direct reading of IMU data and the selec-

tion of the appropriate data processing method. The

primary application of this feature is to integrate all

processing within the wearable device's ¯rmware,

enabling edge inference and minimizing data trans-

mission to only instances when a fall is detected.

In order to enhance the user-friendliness of the

device, several modi¯cations were implemented.

Initially, a battery was connected to provide power

to the wearable device when it is worn by the user. A

3.7-V LiPo (Lithium Polymer) battery with a ca-

pacity of 400mAh was selected for this purpose, and

it was directly soldered to the appropriate power pins

on the board. Following this, a compact enclosure

was designed to comfortably accommodate both the

battery and the wearable device when positioned on

the user's waist. The ¯nal design of the wearable

device is illustrated in Fig. 1, while Fig. 2 provides a

depiction of its internal structure. The dimensions of

the sensor are a width of 31.55mm, a height of

42.75mm, and a depth of 17.7mm.

There is much debate about the optimal location

for fall detection. Devices on the wrist are often more

comfortable for the user but tend to yield poorer

results. Waist-worn devices, despite potentially

being somewhat less comfortable, can be su±ciently

ergonomic and provide better results in fall classi¯-

cation if they are small enough. In a study,56 it is

con¯rmed that, among all possible locations, the

wrist yields the worst results, while the waist is the

most e®ective. This position may pose a challenge for

some users, for instance, if the user is wearing a

ahttps://mbientlab.com/store/metamotionr/.
bhttps://www.puck-js.com/.
chttps://store.arduino.cc/products/nicla-sense-me.

J. Fernandez-Bermejo et al.
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speci¯c type of garment that would require an ex-

ternal element to secure the sensor to the body. Al-

though the system can be used in outdoor

environments, it is designed for indoor use where no

extra elements would be required. However, the use

of straps to attach the sensor is an option for such

situations.

3.2. The software system for fall detection

To enable fall detection, the wearable device needs to

be equipped with the capability to identify falls ac-

curately. To achieve this, the optimal location to

place the IMU device has to be determined. The

literature o®ers various options for fall detection

placement, including the foot, calf, thigh, wrist, hip,

and chest. After careful consideration, the hip was

selected as the most suitable position for e®ectively

di®erentiating falls based on inertial measurements,

as demonstrated in a previous study.57

The classi¯cation algorithm comprises two pri-

mary components: a Threshold-Based Algorithm

(TBA) responsible for screening potential fall

movements, and a neural network-based model. The

neural network receives the movements ¯ltered by

the TBA and performs inference to classify each

movement as either a fall or an Activity of Daily

Living.

We emphasize that both algorithms presented

here, i.e. both the TBA and the neural network,

operate entirely and exclusively on the device that

users will carry. Thus, this sensor has the capability

to collect inertial measurements from the user, per-

form preprocessing, use the TBA to detect potential

falls, extract a time window representing a move-

ment, and once a fall is detected, process this window

in the neural network and communicate the occur-

rence of a fall through a noti¯cation via BLE.

3.2.1. Threshold-based algorithm

TBA is one of the most popular algorithms for fall

detection in devices with computational constraints.

Being much simpler than the ML-based algorithms,

as they only compare the sensor's measurements

with a reference value, TBAs are ideal for such

devices. They are less computationally demanding

and consume less energy, making them suitable for

edge processing. However, this advantage comes

with a trade-o®, as TBA algorithms are less precise

and more prone to false positives compared to the

ML-based approaches.

However, due to the higher energy consumption

of ML algorithms for continuous monitoring, TBAs

are well suited to serve as a preliminary ¯lter, con-

serving computation by discarding movements not

deemed potential falls. In this study, the TBA is used

to identify movements susceptible to being falls.

Subsequently, the identi¯ed movements are sent to

the neural network for classi¯cation into either an

ADL or a fall.

Given the use of inertial measurements, our TBA

utilizes the Signal Vector Magnitude (SVM) of ac-

celeration, a feature previously employed in the lit-

erature.58,59 The SVM of acceleration is computed as

follows:

SVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Acc 2X þAcc 2Y þAcc 2Z

q
; ð1Þ

where Accaxis is the acceleration in each of the three

coordinates axis 2 ½X;Y ;Z�.
The reference threshold used for comparison is

set at approximately Th ¼ 3G. This value is con-

sidered appropriate based on previous studies60 as it

Fig. 1. Fall detection wearable device.

Fig. 2. Inside view of the fall detection wearable device.

Edge Computing Transformers for Fall Detection in Older Adults
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e®ectively ¯lters movements resembling potential

falls. A lower threshold would result in sending a

considerable amount of data to the neural network,

consuming excessive energy and resources, while a

higher threshold increases the chances of false nega-

tives, potentially discarding mild falls.

Once the threshold is exceeded, i.e. SVM � Th,

indicating a potential fall, the system identi¯es and

forwards the detected movement to the neural net-

work for further classi¯cation. To ensure a reliable

process, it is necessary to have a precise de¯nition of

what quali¯es as a \movement" in this context.

In the subsequent part of our algorithm involving the

neural network, a \movement" is de¯ned as a se-

quence of inertial measurements. These measure-

ments encompass both acceleration and angular

velocity data in the three axis coordinates, captured

by both the accelerometer and gyroscope, respec-

tively. Each sequence is con¯ned within a 1-s time

window.

The choice of the 1-s-duration windows is based

on the average fall duration of approximately

1.77 s.61 By using a slightly shorter window, we ex-

clude the \°ight phase" of the fall. The \°ight

phase" occurs when the user is still airborne before

hitting the ground. The emphasis on this phase is

secondary, as the system's primary goal is not fall

prevention but rather the detection and assistance of

falls after they have occurred. This particular phase

is not accounted for in the analysis window, as the

triggering threshold is expected to activate when the

subject makes contact with the ground. On the

contrary, taking into account that the \°ight phase"

constitutes half of the fall time, the remaining fall

duration is about 0.88 s, which the 1-s window

e®ectively captures. Moreover, limiting the window's

size optimizes memory e±ciency, a critical aspect

when deploying machine learning algorithms on edge

devices. Minimizing resource consumption allows for

better overall performance. Expanding the window

would increase memory usage and the neural net-

work's input dimensions, which we aim to avoid.

Instead, we prioritize obtaining the most relevant

information with minimal data.

To achieve this goal, we will develop a state ma-

chine inspired by a previous study.62 This state

machine will encompass di®erent states, including

Sampling Data, Post-Peak, Post-Fall, and Check-

Fall, to e®ectively capture the pertinent data within

the de¯ned 1-s window.

This state machine can be observed in Fig. 3,

where each state represents the following: (1) Sam-

pling: The system is capturing data at a frequency of

50Hz. (2) Post-Peak: A signi¯cant acceleration,

greater than 3G, is detected. Subsequently, acceler-

ation and angular velocity data are saved in a win-

dow. (3) Post-Fall: Following the detection of a peak

acceleration, all the data representing a movement

within a 1-s window is captured. The state machine

then enters a waiting period of 1.5 s. During this

time, if another acceleration greater than 3G is

detected, the system cleans the window and transi-

tions back to the Post-Peak state. Otherwise, the

system proceeds to the Check-Fall state. (4) Check-

Fall: In this state, the window's data is sent to the

machine learning model for inference. If the inference

yields false, indicating the detection of an ADL, the

system returns to the Sampling state. Conversely, if

Fig. 3. State machine for the TBA.

J. Fernandez-Bermejo et al.

2450026-8

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

24
.3

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

17
.4

2.
21

4.
83

 o
n 

05
/0

1/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



the inference yields true, indicating a fall event, the

system noti¯es a third party, i.e. a mobile phone,

tablet, etc., of the occurrence.

This state machine is a modi¯cation of the one

present in Abbate, removing the Activity Test state

to reduce the computational resource usage.

An important aspect to address when capturing

the window is the data recording frequency. Again,

due to the device's limitations, an appropriate fre-

quency must be chosen to avoid excessive data and

prevent information loss. Following the work of

Ref. 63, a frequency of 50Hz has been selected since

human body movements possess components with

frequencies up to 15Hz. Thus, capturing data with

at least 30 samples per second should be enough.

In order to analyze the accelerations captured by

the window, a 3D representation was conducted

where the captured points from two distinct move-

ments, a free fall and an ADL, can be observed along

each of the X-, Y-, and Z-axes (Fig. 4). Contrary to

the intuition, signi¯cant accelerations do not neces-

sarily always occur along the Z-axis, thus justifying

the use of SVM for this magnitude. Additionally, a

clear separation is observed in Fig. 4 between accel-

erations associated with an ADL (dots in orange)

and a fall (triangles in blue).

Considering the explanations above, the TBA

¯lters movements susceptible to being falls, captur-

ing a window of 50 measurements, comprising ac-

celeration measurements in all three axes and

angular velocity measurements in all three axes.

Therefore, each measurement consists of six

dimensions or channels, resulting in a total of 300

data points for each movement. This sequence

comprising 300 data points represents the movement

and will be inputted to the neural network for in-

ference to determine if a fall has been detected or not.

3.2.2. Lightweight transformer neural network

After the TBA identi¯es a movement as potentially

indicating a fall, the next step in the fall detection

algorithm involves verifying whether it is indeed a

fall or an ADL. To accomplish this, machine learning

techniques are employed. In the literature, various

approaches have been explored, ranging from tradi-

tional algorithms like Support Vector Machines and

Decision Trees to neural network-based solutions.

However, the trend has shifted toward using neural

networks more frequently, primarily due to their

ability to autonomously learn essential data features

during training. In contrast, traditional models re-

quire developers to manually select features, which

can introduce errors due to human intervention.

There is a wide variety of neural network archi-

tectures used in diverse ¯elds, including Convolu-

tional Neural Networks extensively employed for

image processing, Recurrent Neural Networks

designed for sequence or time-series data, and the

more recent Transformer models, as seen in GPT-4.

For this study, the fall is considered as a time se-

quence, where each measurement represents the

body state of a person at a speci¯c time instant.

Therefore, Recurrent Neural Networks, speci¯cally

the LSTM or GRU models, were considered due to

their ability to mitigate information loss over se-

quential data, which is often observed in the tradi-

tional RNNs. However, the challenge lies in

developing a lightweight neural network that can be

executed on the edge, considering the memory and

computational constraints it entails. TensorFlow

Lite, a widely used framework for deploying neural

networks on microcontrollers, was selected for de-

velopment. Nevertheless, this framework has limita-

tions in terms of available layers for edge devices,

and as of now, Recurrent Neural Network layers are

not fully implemented in TensorFlow Lite, primarily

due to their high memory cost.

Given this limitation, an alternative approach

was pursued, developing a novel lightweight archi-

tecture inspired by the Transformer architecture,64
Fig. 4. Representation of the accelerations of a free fall
and an ADL in a 3D space.

Edge Computing Transformers for Fall Detection in Older Adults
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with a focus on Self-Attention. Since there is no need

to reconstruct the original input from the data, only

the encoder part of the Transformer is required. This

part needs to be reduced in size, as an excessively

large neural network would not be feasible for the

Nicla Sense ME, where it will be deployed.

Given the challenge of developing a lightweight

neural network for edge execution, a critical aspect of

our design process was the selection of hyperpara-

meters, particularly the number of neurons in each

layer. This selectionwas achieved through an iterative

process of trial and error, focusing on minimizing the

network size while maintaining high accuracy. Our

approach was guided by the constraints of the edge

computing environment and the need for e±cient

processing.

To systematically explore the hyperparameter

space, we employed tools like Keras Tuner. This

allowed us to de¯ne ranges for hyperparameters

based on the limitations of our computational

resources and the requirements of the fall detection

task. Through this process, we conducted a search

within these ranges, and the resulting combination of

hyperparameters was the one that yielded the best

results in terms of accuracy and model e±ciency.

This method ensured that our model was not only

e®ective but also optimized for the speci¯c con-

straints of the Nicla Sense ME device.

The input to the neural network is a set of 50

measurements, with each measurement consisting of

six dimensions representing the x-, y-, and z-compo-

nents of acceleration and angular velocity.This results

in an input vectorwith a dimension of 50� 6 elements.

Before these measurements are fed into the neural

network, a preprocessing step is conducted. To ensure

that no speci¯c element dominates the model, each

data feature is normalized using a standard scaler.

This normalization is crucial because neural networks

are sensitive to the magnitude of input values during

training. Without this preprocessing step, the larger

values of angular velocities could disproportionately

impact the results, potentially overshadowing the

signi¯cance of other features.

After normalizing the data, a technique called

positional encoding is applied to represent the posi-

tion of each data point in the sequence. This posi-

tional encoding method is inspired by the

Transformer architecture introduced in the paper by

Vaswani et al.64 In this approach, we treat each of

the 50 samples in the sequence as if it were a \word"

in the context of natural language processing. In

natural language processing, a \word" is a funda-

mental unit of language that conveys meaning and

context. It is typically represented as a dense vector,

known as \word embedding", in a continuous vector

space. Word embeddings capture semantic relation-

ships between words, allowing algorithms to under-

stand the context and meaning of individual words

based on their vector representations. In our context,

each sample in the sequence of 50 elements, con-

taining six inertial data elements, is treated as a

\word". The six inertial data elements act as the

\input embeddings" of the \word".

By using positional encoding and this \word" and

\input embeddings" analogy, our neural network

gains the ability to understand the temporal rela-

tionships and dependencies between the measure-

ments in the sequence. This comprehensive

understanding allows the network to make accurate

predictions based on both acceleration and angular

velocity components, optimizing its ability to dis-

tinguish falls from other activities. In essence, this

method enables the neural network to consider the

sequential nature of the data and capture the im-

portant patterns that contribute to fall detection.

The input to the neural network is a 50� 6 vec-

tor, where each element corresponds to a speci¯c

data point (a \word") in the sequence. To facilitate

processing, this 50� 6 vector is then °attened into a

single 300-element input tensor.

The neural network's architecture is designed

once the input data is established. To address

memory constraints of the device, the initial step

involves signi¯cantly reducing the input vector's di-

mensionality. This compression is achieved through

an encoder layer utilizing a sigmoid activation

function, inspired by Ref. 65. The encoder layer

condenses the input from 300 to 10 °oat elements.

While this is a substantial reduction for a single

layer, adding more encoder layers would be imprac-

tical given the device's limitations.

Next in the architecture is the attention layer. It

is responsible for calculating the key, query, and

value vectors, which are used to generate the atten-

tion vector. This vector is then further processed

through a linear dense layer, reducing its dimension

J. Fernandez-Bermejo et al.

2450026-10

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

24
.3

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

17
.4

2.
21

4.
83

 o
n 

05
/0

1/
24

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



to just three elements. The data is then passed

through a sigmoid layer, which produces an output

value between 0 and 1. If the output value is less

than 0.5, it indicates that the data represents an

ADL, while a value greater than 0.5 signi¯es a fall

event. A graphical depiction of the neural network

can be found in Fig. 5.

3.3. Network training

Once the neural network is constructed, it is essential

to train it with data to accurately classify falls and

ADLs. For this purpose, it will be necessary to ma-

nipulate the data through a series of phases.

The data ¯rst undergoes a preprocessing stage to

ensure optimal neural network training. Initially,

irrelevant data from the dataset, such as time-

stamps, are discarded. Subsequently, if the data has

not been captured at a frequency of 50Hz, a resam-

pling must be performed for each data point. After

resampling, each movement is represented by a 50�

6 data array. It is crucial to scale the data to ensure

no single feature disproportionately in°uences the

training. This scaling is particularly important since

angular velocities are much larger measurements

than accelerations and would thus have a more sig-

ni¯cant impact on the outcome. As previously

mentioned, Self-Attention is employed, necessitating

the addition of position encoding to the data.

Drawing inspiration from the study by Vaswani

et al.,64 speci¯c inertial measurements are treated as

words, with the x-, y-, and z-components of acceler-

ation and angular velocity acting as word embed-

dings. The formulas used to add position encoding to

each of the 300 data points in a sample are given by

Eqs. (2) and (3),

PEðpos;2iÞ ¼ sinðpos=100002i=dÞ; ð2Þ
PEðpos;2iþ1Þ ¼ cosðpos=100002i=dÞ: ð3Þ

In these formulas, pos denotes the components of

acceleration and angular velocity captured at a spe-

ci¯c instant in time. The variable i represents the

order of each of the six measurements, while d

represents the total number of sample components,

in our case six, the x-, y-, and z-components of ac-

celeration and angular velocity. Given that our

sample consists of the x-, y-, and z-components of

acceleration and angular velocity, this number d will

be 6. Thus, within a speci¯c inertial measurement, if

the component occupies an even position, Eq. (2) is

used, and if it occupies an odd position, Eq. (3) is

applied.

The selection of an appropriate threshold in this

six-dimensional space is a critical aspect of the pro-

posed methodology. It is not a straightforward pro-

cess of choosing a single value but rather involves

a multi-dimensional analysis. The threshold deter-

mination is based on a combination of empirical

analysis and optimization techniques. An analysis

of the dataset is empirically conducted to under-

stand the typical ranges and patterns of the six

measurements during various activities, including

falls and nonfall movements. This analysis enables

the identi¯cation of preliminary threshold values

that can distinguish between fall and nonfall

events. Following the empirical analysis, optimi-

zation techniques are employed to re¯ne these

thresholds. This involves iteratively testing di®er-

ent threshold values and assessing their impact onFig. 5. Neural network proposed.

Edge Computing Transformers for Fall Detection in Older Adults
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the system's ability to accurately detect falls. The

optimization criteria include maximizing the detec-

tion accuracy (true positives) while minimizing false

alarms (false positives). The selected thresholds are

then integrated into our fall detection algorithm.

This algorithm uses the thresholds to analyze the

incoming six-dimensional data in real time, deter-

mining whether a fall has occurred.

Finally, position encoding is integrated into our

fall detection algorithm alongside the optimized

thresholds. This combination allows us to e®ectively

analyze the six-dimensional data in real time while

considering the temporal context provided by posi-

tion encoding. The proposed approach employs po-

sition encoding to enhance the e®ectiveness of the

neural network, particularly in the context of ana-

lyzing time-series data from accelerometers and

gyroscopes. The primary purpose of incorporating

position encoding is to provide the neural network

with contextual information about the sequence and

timing of the data points. This leads to improved

accuracy and reliability in the model's predictions.

To conclude the preprocessing, the input vector is

°attened to be introduced into a neural network with

an input tensor of 300 elements, transforming our

array from a 50� 6 shape to a 300� 1 shape.

Next, we move to the training process, where the

model is ¯tted with the data selected for training. To

assess the model, various training sessions have been

conducted using diverse datasets. In the experiments

section, one can observe the di®erent models that

have been trained.

The ¯nal phase of training involves model quan-

tization, a critical step in addressing the memory

constraints associated with edge processing. Given

that the proposed system is designed to operate on

resource-constrained devices, such as the Nicla Sense

ME sensor, which must also manage libraries for

tasks like reading the inertial measurements and

BLE communication, optimizing the model's size

turns into an essential requirement. To start, the

TensorFlow Lite model converter will be employed

to create a smaller model that is well suited for exe-

cution on microcontrollers. The conversion process

retains the model's essential functionality while sig-

ni¯cantly reducing its size. Following the model con-

version, the quantization tasks proceed. This involves

modifying the network to use 8-bit integers for

representing inputs, weights, and outputs. By doing

so, the memory footprint of the neural network is

dramatically reduced. This step aligns with industry

best practices for optimizing models for edge devices.

Once the model is quantized, a hexadecimal dump

of the model is generated. This dump contains the

quantized model's information and structure. This

format is suitable for loading the model onto the Nicla

Sense ME sensor, ensuring that it can e±ciently carry

out fall detection tasks while operating within its

memory constraints.

To minimize the size of the neural network, once

the model is trained, a conversion process will be

carried out. During this process, a lightweight model

will be generated from the initially created model. In

addition to this conversion, all elements of the net-

work, including input and output elements, as well as

neuron weights, will undergo a quantization process.

The goal is to ensure that each of these elements

occupies only 8 bits. First, this process involves using

the TensorFlow Lite model converter to obtain a

smaller model suitable for execution on a microcon-

troller. Following that, the quantization tasks are

performed, modifying the network so that inputs,

weights, and outputs are represented using 8-bit

integers, thus reducing our network's size. Once the

model is quanti¯ed, a hexadecimal dump of the

model is created to load it onto the device.

3.4. System architecture

An essential feature of this system, as noted earlier, is

its versatility across a wide range of environments,

encompassing domestic settings, nursing home facili-

ties, and even outdoor areas. To cater to these diverse

scenarios, we propose an adaptable architecture that

can °exibly adjust to di®erent scenarios.

The main component of the system is the wear-

able device with the proposed neural network

implemented within it. This component alone is ca-

pable of detecting falls, but once a fall is detected, it

is necessary to notify a third party who can assist the

user. To this end, an Android application has been

developed that will make a call using the Telegram

network when a fall is detected by the wearable de-

vice. The decision to develop an Android application

was based on the fact that most portable systems

today (mobiles and tablets) use Android as their

operating system.

J. Fernandez-Bermejo et al.
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Under this system, the Nicla Sense ME sensor is

tasked with continuously monitoring the user's in-

ertial measurements. Upon TBA detecting a move-

ment that could potentially indicate a fall, it

captures a 1-s data window and forwards this to the

neural network. The neural network processes this

data and determines whether the movement signi¯es

a fall. In the event of a fall, the wearable device uses

BLE to broadcast a fall detection alert, e®ectively

acting as a beacon. This alert is picked up by an

Android device with the installed application. Upon

recognizing the alert, the application initiates a call

via Telegram to the designated emergency contact.

A diagram of the system is presented in Fig. 6. One

can watch a video demonstration at the link

provided.d

4. System Validation

4.1. System assessment

The e®ectiveness of the lightweight model proposed

here will be assessed through various experiments in

which the e®ectivity of the neural network will be

evaluated, including comparisons with other models

from the state-of-the-art. To conduct both the

evaluation and the comparisons, three di®erent

metrics are proposed: accuracy, speci¯city, and sen-

sitivity. Accuracy will calculate the percentage of

correct classi¯cations over all movements that have

triggered the TBA. Sensitivity will indicate the

proportion of falls correctly identi¯ed by the model

as actual falls. Conversely, speci¯city will denote the

percentage of ADLs correctly recognized as such by

the system. All the data used to evaluate the model is

Fig. 6. System diagram.

dhttps://www.youtube.com/watch?v=cwGLdhaAN6U.
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the one that is considered as a possible fall for the

TBA.

The ¯rst experiment consists in comparing our

model with the study in Ref. 54, wherein the pro-

posed model will be trained and tested using the

identical datasets employed in that research. The

dataset employed for this study presents a compre-

hensive collection of user movements, encompassing

activities of daily living and various fall scenarios.

Gathered within a controlled laboratory environ-

ment, the dataset consists of contributions from 17

individuals, comprising both male and female parti-

cipants with an average age of 30� 8:02 years, an

average height of 174.18�7.85 cm, and an average

weight of 74:35� 9:71 kg. During data collection,

users engaged in ¯ve distinct ADLs, including hitting

the sensor, jumping, running and stopping, sitting on

a chair, and pulling the sensor. Additionally, four

di®erent types of falls were meticulously simulated,

encompassing forward falls, backward falls, falls

on the right-hand side, and falls on the left-hand

side. A trained model was employed to di®erentiate

between fall events and ADLs, achieving this di®er-

entiation based on user movement features.

This approach facilitates a direct comparison of

the proposed neural network with a Support Vector

Machine algorithm.Accordingly, the training employs

the dataset introduced in Ref. 62, where 17 volunteers

executed 25 ADLs and 20 falls in a controlled setting,

accumulating a total of 765 labeled movements docu-

mented with the MetaMotionR sensor. Conversely,

the testing phase employed the dataset captured with

the Puck.js sensor in Ref. 54, encompassing data from

11 volunteers who performed eight falls and six ADLs,

with a total of 154 movements. Both datasets can be

found elsewhere.e By training and testing in di®erent

datasets, we also evaluate the generality of themodels

under comparison across sensors. The ¯ndings of this

study, alongside the results from Ref. 54, are delin-

eated in Table 1. The analysis of the outcomes yields

that the solution outlined in this work outperforms

the one presented in Ref. 54, achieving an accuracy

of 95.75%, a speci¯city of 99.38%, and a sensitivity

of 93.07%.

The second experiment undertaken for the eval-

uation of the system resorts to the SisFall dataset,55

a dataset commonly referenced in current state-of-

the-art studies. Despite the existence of a large

number of datasets designed for collecting

information to di®erentiate between ADLs and falls,

virtually none of them gather speci¯c data about the

target users, i.e. the elderly. Some of the most rele-

vant datasets in recent years include SisFall, UniMiB

SHAR, UMAFall, Graz, and Gravity Project. In all

these datasets, the majority of participants are in the

age range of 20–29 years. The only dataset that

includes older users is SisFall, making it one of the

most widely used datasets in various studies and

models related to fall detection.66 This dataset

compiles falls and ADLs executed by 38 di®erent

individuals, segmented into two groups: young

adults and older adults, thereby o®ering a substan-

tial sample across varied age groups. It should be

noted that, with the exception of one individual from

the older adult group, all fall simulations were car-

ried out by the young adult participants. To facili-

tate the training of the model presented in this study

with the SisFall dataset, and taking advantage of its

extensive data pool, a 10-fold cross-validation ap-

proach was adopted. This strategy involved dividing

the dataset into 10 segments, and training the model

10 times, each time excluding a di®erent segment

from the training phase and using it for testing in-

stead. The average results from this cross-validation

can be viewed in Table 2, alongside the results from

other studies that employed the same dataset. In

that table the model used is the full version.

The data indicates that the full model presented

in this study demonstrates a performance compara-

ble or superior to other deep learning models

ehttps://www.kaggle.com/jesusfruiz/datasets/fall-dataset.

Table 1. Comparison of models trained on Ref. 62 and tested on Ref. 54 datasets.

Work Accuracy Speci¯city Sensitivity Location Algorithm

Our full approach 95.75% 99.38% 93.07% Waist Self-Attention
Ref. 54 93.51% 95.45% 92.04% Waist Support Vector Machine

J. Fernandez-Bermejo et al.
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referenced in academic literature. Despite the similar

performance metrics, the proposed model holds a

distinctive advantage due to its considerably lower

number of parameters — only 0.38% of the param-

eter size of the closest approach — resulting in a less

complex model that retains e±ciency, making it

suitable for deployment at the edge.

The last experiment consists in conducting a

comprehensive assessment using all three datasets

employed in the previous evaluations. This experi-

ment is intended to evaluate the model's adaptabil-

ity to heterogeneous data, given that the three

datasets were acquired through various devices.

To facilitate this evaluation, initially, 201 samples

from the SisFall dataset and another 198 from

the datasets referenced in Refs. 62 and 54 (167 and

31 measures, respectively) were isolated, thereby

comprising 399 samples for testing (each sample

representing a 1-s window of the user's inertial

measurements). The remaining data were employed

to train the model.

The outcomes, corresponding to both the full and

lightweight models, are presented in Table 3. These

results are slightly inferior to those achieved with the

SisFall dataset alone, potentially indicating the

model's di±culty in accommodating the heteroge-

neity present across all the data. Yet, the results are

still substantial, achieving an accuracy of 95.29%, a

speci¯city of 93.68%, and a sensitivity of 96.66%. A

closer inspection of these ¯gures reveals that the

model's primary challenge lies in accurately classi-

fying certain ADLs, as evidenced by the resulting

speci¯city score. The lowest percentage in speci¯city

highlights an issue, as it implies that the system has

some false negatives. These occurrences can lead to

serious problems since they represent instances of

falls that go undetected and, consequently, may go

unattended. Currently, the system tests are con-

ducted in a controlled environment, with caregivers

closely monitoring users. For the future and for a

system intended for more independent use, this as-

pect needs improvement. While the lightweight

model exhibits a marginally reduced performance, it

maintains a close approximation to the full model,

demonstrating an accuracy of 93.94%, a speci¯city of

89.99%, and a sensitivity of 97.29%. We consider this

slight reduction worthy since it gives the model the

ability to be hosted and run on the edge, rather than

on the cloud or on a bigger device that will require

communication.

Finally, for a comprehensive evaluation of the

model concerning computational resources and in-

ference times, a comparative analysis was conducted

against models that provided such metrics in their

respective studies. Our lightweight model, as out-

lined in Table 4, demonstrates superior results in

terms of inference time, closely resembling the per-

formance of models presented in Refs. 67 and 68.

Notably, our model exhibits signi¯cantly reduced

memory usage compared to those studies reporting

such metrics. In terms of overall performance

metrics, our system consistently outperforms others.

Turning attention speci¯cally to the presented

model, it shows slightly lower accuracy compared to

the models presented here, with di®erences typically

not exceeding 3%.

Table 2. Comparison of di®erent models using SisFall dataset.55

Work Accuracy Speci¯city Sensitivity Location Algorithm Parameters

Our full approach 98.67% 98.08% 98.58% Waist Self-Attention 3347
Ref. 69 97.46% 96.91% 98.04% Waist CNN 244,1702
Ref. 6 98.33% 97.93% 98.73% Waist LSTM 5,606,400
Ref. 49 98.61% 99.80% 98.62% Waist CNN 875,456

Table 3. Results of our model trained and tested on a combination of SisFall55 as well as Refs. 62 and 54.

Work Accuracy Speci¯city Sensitivity Location Algorithm

Our full approach 95.29% 93.68% 96.66% Waist Self-Attention
Our lite approach 93.94% 89.99% 97.29% Waist Self-Attention

Edge Computing Transformers for Fall Detection in Older Adults
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4.2. Energy consumption

It was aforementioned that the ambition of this

work is to deliver a solution that is both versatile

and user-friendly. In pursuit of this goal, a system

was designed capable of operating in diverse set-

tings without the need for signi¯cant modi¯cations.

Ensuring this adaptability, especially considering

the majority of the software operate at the edge,

relies signi¯cantly on the battery autonomy of the

sensor hosting the neural network. Insu±cient

sensor autonomy could undermine the system's

reliability, unable to assure extended continuous

user monitoring, and might even fail to detect a

fall. Furthermore, the frequent charging require-

ment could pose an inconvenience for the user,

potentially cultivating a negative perception of the

solution and encouraging its abandonment. It is

therefore essential to examine the device's con-

sumption at the edge to understand its viability

for daily use.

The device is equipped with a battery boasting a

capacity of 400mAh. Throughout the predominant

sampling phase of the sensor's operation, it averages

a consumption rate of about 16mA when no infer-

ence is being executed. Based on these ¯gures, it can

be projected that the device can operate continu-

ously for around 25 h.

Given the aforementioned results, the device has

yet to achieve the autonomy necessary to provide

users with extended service. It is therefore necessary

to further investigate on the aspects of the ¯rmware

contribution to this constant consumption.

Furthermore, a more thorough examination of the

device is suggested to explore the feasibility of

implementing the sensor's TBA in a sleep mode,

wherein most of its functionalities are turned o®.

This would ensure minimal power usage when no

inference execution is required, thereby promoting

energy e±ciency.

5. Conclusions and Future Work

In this study, a fully functional fall detection system

has been introduced, designed for everyday use by

individuals and adaptable to any setting, from un-

constrained indoor environments like homes to out-

door areas, facilitated by the communication

between the sensor and the Android device. The

sensor's compact size allows for easy placement on

the user's waist, making it comfortable and unob-

trusive. In addition to its usability °exibility, a

lightweight Transformer model on the edge has been

developed with an accuracy of 95.29%, a speci¯city

of 93.68%, and a sensitivity of 96.66%, matching the

outcomes of more complex models found in current

research but with a very small number of para-

meters. Consequently, a highly reliable fall detection

system has been established, user-friendly in design,

and o®ering signi¯cant versatility in its application.

It is important to note the balance achieved be-

tween the reduction in parameter size and the pres-

ervation of detection accuracy in our novel

lightweight Transformer architecture. While the

proposed system has successfully achieved a signi¯-

cant reduction in parameter size by 99.6%, leading to

enhanced computational e±ciency and a smaller

memory footprint, it is necessary to acknowledge a

minor compromise in detection accuracy. This slight

decrease in accuracy, however, is counterbalanced by

the substantial gains in computational e±ciency and

the architecture's suitability for edge computing

devices. It is believed this trade-o® is a worthwhile

consideration, particularly for the intended applica-

tion of our system in resource-constrained environ-

ments. The revised architecture thus represents a

strategic balance, optimizing for e±ciency and

practicality while maintaining a high level of accu-

racy, making it an e®ective solution for real-time fall

detection in wearable devices.

Table 4. Comparison of various models based on inference time and memory usage.

Model Inference time (ms) Memory (kB) Accuracy Speci¯city Sensitivity

Our lite approach 15 6313 93.94% 89.99% 97.29%
Ref. 70 37 61,084 95.55% 94.86% 95.1%
Ref. 71 99 — 94.4% 95.7% 93%
Ref. 67 18 200,000 91.1% — —
Ref. 68 20 — 97% — —

J. Fernandez-Bermejo et al.
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In future work, there is an expectation to enhance

and expand the system, not only for fall detection

but also for fall prevention. This involves utilizing

data from the \°ight phase" to create a more com-

prehensive system that could be employed in the

development of automatic airbags, thereby mini-

mizing the consequences of a fall. Furthermore, in

line with established methodologies in fall detection

research, this work employs a three-dimensional

SVM approach, incorporating the x-, y-, and z-axes.

This multi-dimensional analysis is useful for captur-

ing the varied nature of falls, which often involve

complex movements beyond simple vertical descent.

Nonetheless, further research is needed to determine

the potential bene¯ts of optimizing this approach by

understanding the predominance of vertical move-

ments in fall incidents, especially within the

employed datasets. This exploration may lead to a

more focused analysis on the vertical axis, poten-

tially enhancing the e±ciency and accuracy of our

fall detection algorithm.

The system exhibits certain issues concerning

consumption. For instance, the estimated battery life

of the Nicla Sense ME sensor varies around 20 h,

leading to a signi¯cant reduction in autonomy.

Sensor consumption can be mitigated by optimizing

¯rmware programming. A multitude of external li-

braries designed for Arduino, present in the ¯rm-

ware's code, unnecessarily consume resources and

contribute to increased energy usage. This adoption

of external libraries not only results in higher con-

sumption but also in°ates the ¯rmware's size. This

size reduction could be achieved by employing only

the essential code, which could then be allocated to

enhancing the completeness of the neural network.

Further optimization on the use of TensorFlow Lite

could be also explored. The aforementioned points

will be addressed in future work.
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