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Abstract

In the evolving landscape of wireless communications, spectrum sharing, integrated sensing and
communication (ISAC), and massive multiple-input multiple-output (mMIMO) technologies
emerge as pivotal enablers for the 5G and forthcoming 6G networks. This thesis delves into the
increasingly pertinent topic of frequency spectrum sharing between radar and communication
systems, with a specific focus on the coexistence of mMIMO systems and MIMO radar. The
research encompasses four comprehensive studies, each offering unique insights and innovative
solutions to this challenging domain.

The first study investigates the coexistence between a multiuser mMIMO downlink system
and MIMO radar. It reveals that increasing the number of antennas at the base station (BS)
enhances the mMIMO performance while maintaining the interference levels to the radar
system. A significant contribution of this study is the derivation of closed-form expressions
for the probability of detection of the radar system and the downlink spectral efficiency of the
mMIMO system. Furthermore, the study introduces an innovative power allocation scheme
that enables optimal transmit power selection in closed-form. This scheme maximizes the radar
detection probability without compromising the performance of the mMIMO system.

Building on the foundational insights established in the first study, the second chapter
expands the scope to include a nuanced analysis of linear precoding designs and their impact
under channel estimation errors. This chapter explores the coexistence of a downlink multiuser
mMIMO communication system and MIMO radar, with a focus on power control. The study
characterizes the performance of the mMIMO system and the probability of detection with
maximum ratio (MR), zero-forcing (ZF), and protective ZF (PZF) precoding designs. The
PZF precoding design is highlighted for its ability to protect radar operations by projecting
the communication signals onto the null space of the radar channel. The study derives closed-
form expressions for the detection probability under these precoding designs and explores the
detection probability in multiple target scenarios and correlated fading environments. A power
control problem is efficiently solved using a linear programming approach and the bisection
method, aiming to maximize the radar detection probability while satisfying the per-user SE
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requirements. The analysis shows that the PZF design achieves the highest radar detection
probability among all designs, with an intermediate SE performance that improves significantly
with optimized power control.

Transitioning from the detailed exploration in the second chapter, the third study extends
the discussion to the broader domain of cell-free massive MIMO (CF-mMIMO) systems within
the ISAC framework. It addresses the problem of access point (AP) operation mode selection,
where some APs are dedicated to downlink communication and others to sensing. The research
derives closed-form expressions for the individual SE and mainlobe-to-average-sidelobe ratio
(MASR), assessing communication and sensing performances. A max–min fairness problem
is formulated and solved, optimizing the minimum SE of users while adhering to per-AP
power constraints and sensing MASR requirements. The numerical results demonstrate that
the proposed AP operation mode selection with power control improves significantly the
communication performance while meeting the specified sensing requirements. This approach
not only enhances the overall network performance but also paves the way for future wireless
networks where integrated communication and precise sensing are paramount. The findings
and methodologies presented offer valuable insights for the development of advanced ISAC
systems. Building upon the sophisticated analysis presented in the third study, the fourth
chapter advances the discourse into the more intricate realm of CF-mMIMO systems within
the ISAC framework, with a special emphasis on the innovative concept of multi-zone sensing.
This chapter not only builds upon the foundational insights from the third study but also
explores the effectiveness of advanced precoding strategies—MR, ZF, and PZF—in downlink
communication for CF-mMIMO ISAC systems. It provides a comprehensive comparative
analysis of each strategy, evaluating their unique advantages and potential limitations to identify
the most beneficial approach. PZF is spotlighted as a transformative strategy that skillfully
integrates the strengths of both ZF and MR precoding. The strategic essence of PZF is its
refined interference management technique, which focuses on minimizing interference for
users with the highest channel gains, effectively prioritizing the network’s most robust users
while tolerating some interference for its weakest users. This approach marks a significant
leap in optimizing network efficiency and enhancing user experience. Moreover, the study
embarks on a thorough examination of system scalability and efficiency as the number of APs
designated for both sensing and communication approaches infinity, while each AP’s antenna
count remains fixed. The analysis of the dynamics when the antenna count per AP increases
to infinity, while the total number of APs remains constant. This detailed analysis is crucial
for comprehending the scalability and adaptability of CF-mMIMO ISAC systems in complex
wireless scenarios. Additionally, this chapter addresses the complex challenge of AP mode
selection optimization. It ambitiously seeks to refine the operation mode selection and power
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control coefficients, aiming to maximize the minimum per-user SE within the boundaries set by
specified MASR levels for target detection and transmit power constraints at the APs. Together,
these studies provide comprehensive theoretical and practical insights into the coexistence of
mMIMO communication systems and MIMO radar. They make significant contributions to the
field of ISAC, paving the way for more efficient spectrum sharing in the future.
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Chapter 1

Introduction

1.1 5G, 6G Innovations: Exploring Spectrum Sharing and
MIMO Technologies

Wireless communication technology, a fundamental pillar of our digital society, is experiencing
transformative shifts. The transition from the fourth generation (4G) long-term evolution (LTE)
to fifth-generation (5G) mobile systems marks a revolutionary change in digital interactions,
driven by the demand for increased data speeds, lower latency, improved energy efficiency, and
more reliable, widespread connectivity. Originating as a means for data transmission without
physical connectors, wireless communication has rapidly evolved, leading to a proliferation of
advanced applications and services.

However, the growth of wireless communication is not without challenges. Network
congestion, primarily fueled by the ever-increasing demands for additional bandwidth and data
services, poses a significant issue. This congestion often leads to reduced data speeds and
degraded service quality, adversely affecting the user experience. This problem, a consequence
of the exponential growth in the number of connected devices and services, remains a pressing
concern in the network infrastructure [1].

In response to network congestion, spectrum sharing emerges as a promising solution. By
enabling the shared use of spectrum among multiple networks or users, this approach optimizes
the utilization of this limited and expensive resource, thus alleviating congestion. Spectrum
sharing not only enhances the network efficiency but also underpins more innovative, adaptive
wireless communication systems, particularly in the beyond-5G era, where it facilitates the
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coexistence of communication and radar systems within the same frequency bands [2–4].
The radar bands, in particular, present an excellent opportunity for shared use with cellular
communication systems due to the extensive spectrum available for both commercial and
governmental uses. These bands encompass a wide frequency range, including airborne
navigation radars around 3.4 GHz, shipborne radars as well as vessel traffic service radars (VTS)
at 5.6 GHz [5, 6]. The broad availability and diverse applications of radar bands make them ideal
for integration into advanced wireless networks, leading to more efficient spectrum utilization
to significantly enhance the network capabilities and functionalities. Addressing the challenges
in network infrastructure, massive multiple-input multiple-output (mMIMO) technology has
emerged as a significant advancement, significantly enhancing the network capacity and energy
efficiency by employing a large number of antennas at the base stations (BSs). This technology
enables the simultaneous transmission and processing of multiple data streams, increasing
throughput and efficiency, and playing a pivotal role in the evolution of 5G and subsequent
wireless technologies [7]. It offers solutions for interference mitigation and enhances spectrum
sharing [8]. By leveraging recent advancements in mMIMO communications, this thesis
explores the benefits of using a large number of antennas in scenarios where mMIMO coexists
with MIMO radar, focusing on mitigating the mutual interference between communication and
radar operations to enhance the overall system performance and spectral efficiency (SE).

Building on the foundation of mMIMO, the concept of cell-free massive MIMO (CF-
mMIMO) extends these benefits further. CF-mMIMO decentralizes the antenna deployment,
leading to improved coverage and reduced latency. Characterized by numerous distributed
access points (APs), each linked to a central processing unit (CPU), CF-mMIMO serves a
relatively small number of users over the same time-frequency resources, thereby significantly
enhancing the network performance. This technology effectively addresses challenges, such as
increased SE, fairness, and reduced latency. The integration of CF-mMIMO with emerging
technologies for 5G and beyond ensures substantial enhancements in network performance,
particularly in urban and densely populated areas, by maintaining consistent service quality [9–
11]. The benefits of CF-mMIMO are particularly pronounced in the context of integrated
sensing and communication (ISAC) and spectrum sharing. The distributed nature of APs in CF-
mMIMO facilitates the detection of multiple targets, thereby expanding the range and accuracy
of sensing capabilities. This is crucial for applications like vehicular networks and remote
sensing, where detecting and communicating with multiple targets simultaneously is critical.
This distributed architecture, combined with advanced power control and pilot assignment
strategies, makes CF-mMIMO an ideal solution for next-generation wireless networks, where
uniform SE and comprehensive coverage are paramount [12]. As we advance into the era of



1.1 5G, 6G Innovations: Exploring Spectrum Sharing and MIMO Technologies 3

Fig. 1.1 A typical CF-mMIMO architecture.

ubiquitous wireless communication, the exploration of spectrum sharing and ISAC becomes
essential. This includes addressing the demands for efficient spectrum utilization in densely
populated wireless networks and delivering enhanced performance in both communication and
sensing. The development of innovative applications in fields like vehicular networks, remote
sensing, and the Internet of Things (IoT), is also anticipated.

This thesis is dedicated to delving into the intricacies of spectrum sharing, interference
management, and massive MIMO innovations. These elements are pivotal in shaping the
future of wireless communication. Through a comprehensive analysis and exploration, it aims
to identify potential strategies for overcoming challenges and leveraging the opportunities
presented by these groundbreaking technologies. As technology continues to evolve, the
boundaries between communication and sensing are increasingly relaxed, presenting a dynamic
and rapidly developing field of study.
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1.2 Challenges of Spectrum Sharing between Communica-
tion and Sensing

Spectrum sharing between communication and sensing systems is a critical aspect of contem-
porary wireless technology, presenting several complex challenges crucial for the effective
utilization of the wireless spectrum. These challenges pertain to harmonizing the operational
requirements of communication systems, such as mobile networks, with those of sensing
systems, like radar. Addressing these challenges effectively is important to fully leveraging the
potential of spectrum sharing. The primary challenges, presented concisely, include:

• Interference Management: The primary challenge in spectrum sharing lies in managing
mutual interference between the communication and sensing systems operating within
the same frequency bands. This interference risk can lead to reduced data rates and
higher error rates in communication systems, and will eventually compromise the data
accuracy in sensing systems. Developing advanced mitigation techniques, which include
the precise adjustment of transmission power, frequency selections, and modulation
schemes, is crucial.

• Dynamic Spectrum Allocation: The dynamic nature of spectrum demand calls for
intelligent and adaptive allocation strategies. These strategies must balance the efficient
and fair spectrum usage, accommodating the fluctuating requirements of various systems
across different temporal and spatial conditions.

• Hardware Requirements: Effective spectrum sharing requires advanced hardware
capable of supporting both communication and sensing functions. This encompasses
wideband operations, high linearity, and swift reconfigurability, potentially escalating
system complexity and cost.

• Quality of Service (QoS) and Quality of Experience (QoE): A major challenge is
maintaining a high-quality service for both communication and sensing systems. In terms
of communication, this means ensuring high data rates and low latency. For sensing
systems, accuracy and reliability are paramount. Additionally, the energy efficiency is
vital, particularly in scenarios involving battery-powered or remote devices, calling for
optimized hardware and algorithmic solutions.

This thesis delves into these challenges in depth, exploring a range of strategies and
solutions for managing and potentially resolving them. The focus will be on developing an in-



1.3 Motivation 5

depth understanding of the complexities involved in spectrum sharing between communication
and sensing systems. This encompasses a thorough examination of interference management
techniques, principles of dynamic spectrum allocation, specifications for sophisticated hardware
requirements, and strategies to deliver high quality of service (QoS) and quality of experience
(QoE).

Through this exploration, the thesis aims to offer valuable insights and propose novel
solutions that can substantially enhance the efficiency and effectiveness of spectrum sharing in
modern wireless communication systems. The ultimate objective is to navigate these challenges
and present practical methods applicable in real-world settings. This thesis not only seeks to
advance the field of wireless communication but also to pave the way for future technological
innovations in this rapidly evolving domain.

1.3 Motivation

The motivation for this thesis is deeply rooted in the technological advancement and pressing
needs of modern wireless communication. As we transition into the 6G incubation era, a
significant leap from previous generations, there is a compelling need to understand and
harness these advanced technologies, especially given their profound implications for global
connectivity. A central aspect of this exploration is addressing the spectrum congestion
problem, an increasingly critical issue as the number of connected devices and demand for
wireless services surge. Spectrum sharing emerges as a promising solution to this challenge,
warranting an in-depth study and analysis. Additionally, the reliance of 5G networks on
mMIMO technology for improved efficiency and performance further fuels the motivation for
this research. Understanding the capabilities, challenges, and future potential of mMIMO is
crucial for advancing the field. It aims to provide both theoretical and practical contributions to
the field, enhancing academic understanding while proposing realistic applications. Moreover,
the broader societal and economic impacts of 5G technology, from enabling new services to
driving economic growth, present a compelling area of study. This thesis, therefore, seeks to
address these multifaceted challenges and opportunities, aiming to contribute significantly to
the advancement of wireless communication technology in the 5G era and beyond.
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1.4 Thesis Contributions

This thesis represents a comprehensive exploration into the intricate realm of coexistence
strategies between mMIMO systems and radar communications. Encompassing four research
papers, the thesis navigates through the challenges and solutions pertinent to this coexistence,
particularly in the context of performance analysis, precoding design, power control, and oper-
ational mode selection in CF-mMIMO systems. Each chapter, corresponding to a published
paper, delves into unique aspects of this coexistence, offering theoretical analyses, algorithmic
solutions, and practical insights that contribute significantly to the field of ISAC. The contribu-
tions, segregated by the chapters they appear in, are as follows:

Chapter 3 sets the foundation by analyzing the system performance in the asymptotic
regime and exploring the impact of increasing BS antennas on both mMIMO and radar systems.

• Asymptotic Performance Analysis

Explores the system performance in the asymptotic regime with an infinite number of BS
antennas (M). Demonstrates that increasing M enhances the mMIMO performance while
maintaining the radar system interference to tolerable levels.

• Spectral Efficiency and Detection Probability Analysis

Derives closed-form expressions for the radar system’s average probability of detection
and the mMIMO system’s downlink SE using the use-and-then-forget technique. These
findings are validated through numerical results, offering insights into the coexistence of
mMIMO communications and radar operations.

• Optimal Power Allocation Scheme

Introduces a power allocation scheme to optimize the transmit powers for maximizing the
MIMO radar’s detection probability within the communication systems’ QoS constraints.
This leads to significant improvements in detection probability.

• Impact of Antenna Numbers

Shows how increasing the number of antennas at both the BS and radar enhances the target
detection performance and SE, especially in low signal-to-noise ratio (SNR) conditions.
The chapter also discusses the trade-off between the radar and communication system
performance.
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Building upon the insights gained in Chapter 3, and by looking into the interplay between
mMIMO and radar systems, Chapter 4 delves deeper into the practical aspects of this coexis-
tence, particularly focusing on the challenges of imperfect CSI, precoding design and power
control to enhance the coexistence efficiency. Moreover, this chapter extends the analysis to
include multiple target scenarios and correlated fading environments, offering a more compre-
hensive understanding of the dynamics in varied and realistic operational conditions.

• Performance Characterization with Imperfect CSI

This paper characterizes the performance of mMIMO and MIMO radar systems under
the influence of imperfect channel state information (CSI). It provides analytical results
for different beamforming techniques at the BS, including MR and ZF. Importantly,
it introduces a protective ZF (PZF) precoding approach at the BS to manage the inter-
system interference, ensuring minimal impact on radar functionality.

• Power Allocation Strategy.

A power allocation problem is formulated and solved, focusing on maximizing the
detection probability for MIMO radar while adhering to power budget constraints at the
radar and minimum spectral efficiency requirements at the cellular users. This strategy is
shown to significantly enhance the detection probabilities for all considered precoding
designs.

• Influence of Antenna Numbers and Power Control

The paper provides insights into how increasing the number of BS antennas affects
the performance of different precoding schemes. Additionally, it highlights that power
control at both the BS and radar can significantly improve detection probabilities.

These contributions in Chapter 4 not only advance the theoretical understanding of mMIMO
and MIMO radar system coexistence but also provide practical solutions for optimizing their
performance in real-world scenarios with imperfect CSI. Following the advanced analyses in
Chapter 4, Chapter 5 is focused on the intricacies of CF-mMIMO systems within the ISAC
framework. This chapter not only builds upon the earlier discussions but also introduces novel
methodologies for optimizing the functionality of CF-mMIMO networks. Key contributions in
Chapter 5 include:
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• Performance Evaluation

By leveraging the use-and-then-forget strategy, closed-form expressions for the downlink
SE and mainlobe-to-average-sidelobe ratio (MASR) are derived to assess the communi-
cation and sensing performances.

• Dynamic AP Operation Mode Selection

Presents a novel approach for dynamic operation mode selection in CF-mMIMO ISAC
networks, focusing on maximizing the downlink users’ SE while meeting the sensing
requirements.

• Algorithmic Solutions for AP Mode Selection

Proposes a greedy algorithm for AP operation mode selection and an alternating optimiza-
tion (AO) algorithm for power control coefficient design. This combination addresses the
complex interaction between the communication APs (C-APs) and radar APs (R-APs),
ensuring efficient operation.

• Numerical Results and Comparison

Numerical results show that the proposed greedy AP operation mode selection with
optimal power control (GAP-OPC) significantly improves the SE performance of down-
link users for a given MASR, compared to the greedy/random operation mode selection
scheme without power control (GAP/RAP-NPC).

Building upon the sophisticated analysis presented in Chapter 5, Chapter 6 advances the
discourse into the more intricate realm of CF-mMIMO systems within the ISAC framework,
with a special emphasis on the innovative concept of multi-zone sensing. This chapter not only
builds upon the foundational insights from Chapter 5 but also explores the effectiveness of
advanced precoding strategie PZF in downlink communication for CF-mMIMO ISAC systems.
It provides a comprehensive comparative analysis of each strategy, evaluating their unique
advantages and potential limitations to identify the most beneficial approach. PZF is spotlighted
as a transformative strategy that skillfully integrates the strengths of both ZF and MR precoding.
The strategic essence of PZF is its refined interference management technique, which focuses
on minimizing the interference for users with the highest channel gains, effectively prioritizing
the network’s most robust users while tolerating some interference for its weakest users. This
approach marks a significant leap in optimizing the network efficiency and enhancing the user
experience. The examination of the system’s behavior as the number of APs designated for
both sensing and communication approaches infinity, with each AP’s antenna count remaining
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fixed. The analysis of the dynamics when the antenna count per AP increases to infinity, while
the total number of APs remains constant. This detailed analysis is crucial for comprehending
the scalability and adaptability of CF-mMIMO ISAC systems in complex wireless scenarios.
Moreover, Chapter 6 delves into the asymptotic analysis underscores the potential for transmit
power reduction at both Communication and Sensing APs. Additionally, this chapter addresses
the complex challenge of AP mode selection optimization. It ambitiously seeks to refine the
operation mode selection and power control coefficients, aiming to maximize the minimum per-
user SE within the boundaries set by specified MASR levels for target detection and transmit
power constraints at the APs.

In summary, Chapter 6 makes a significant contribution towards enhancing the theoretical
and practical frameworks for CF-mMIMO ISAC systems. It paves the way for improved
communication performance and robust sensing capabilities across multi-zone environments,
marking a noteworthy advancement in the field of wireless communication technologies.

1.5 Thesis Organization

This thesis is organized into several chapters, each dedicated to exploring different aspects of
wireless communication technologies, with a particular focus on mMIMO, radar communica-
tions, and ISAC. The structure is outlined as follows:

1. Chapter 1: Introduction This chapter sets the foundational context for the thesis,
introducing key concepts in wireless communication, the evolution of technologies
such as mMIMO, and the challenges associated with spectrum sharing. It establishes
the base for understanding the complexities and advancements in modern wireless
communications systems.

2. Chapter 2: Literature Review The second chapter offers a thorough review of existing
literature. It discusses the development and current state of wireless communication
technologies, mMIMO and ISAC. This review critically evaluates previous research and
identifies gaps.

3. Chapter 3: Published Paper - "Coexistence Between Massive MIMO and Radar
Communications: Performance Analysis" (Special Issue on ISAC) In this chapter,
the focus is on the published paper "Coexistence Between Massive MIMO and Radar
Communications: Performance Analysis," featured in one of the first Special Issues on
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ISAC. It examines the performance and coexistence strategies for mMIMO systems in
radar communications.

4. Chapter 4: Published Paper - "Protecting Massive MIMO-Radar Coexistence: Pre-
coding Design and Power Control" Chapter 4 presents the published paper "Protecting
Massive MIMO-Radar Coexistence: Precoding Design and Power Control." This paper
delves into the design of precoding strategies and power control to safeguard the coex-
istence of mMIMO and radar systems, which are both critical components of modern
wireless communication.

5. Chapter 5: Published Paper - "Cell-Free Massive MIMO for ISAC: Access Point
Operation Mode Selection and Power Control" The fifth chapter explores the paper
"Cell-Free Massive MIMO for ISAC: Access Point Operation Mode Selection and Power
Control." It discusses CF-mMIMO in the context of ISAC, focusing on the selection of
operation modes for APs and power control strategies.

6. Chapter 6: (Paper under review) "Multiple-Target Detection in Cell-Free Massive
MIMO-Assisted ISAC" Chapter 6 marks a pivotal extension of the study initiated in
Chapter 5, advancing the exploration of CF-mMIMO systems within ISAC frameworks.
This segment notably shifts the spotlight to multi-zone sensing areas, providing a nuanced
understanding of the complex landscape that CF-mMIMO ISAC systems navigate across.

1.6 Thesis Publications

During the thesis, the author has produced the following publications:

• M. Elfiatoure, H. Q. Ngo, and M. Matthaiou, "Coexistence between massive MIMO
and radar communications: Performance analysis,” Journal of Communications and

Information Networks, vol. 8, no. 1, pp. 37-47, March 2023.

• M. Elfiatoure, M. Mohammadi, H. Q. Ngo, P. J. Smith, and M. Matthaiou, "Protecting
massive MIMO-radar coexistence: Precoding design and power control systems," IEEE

Open Journal of the Communications Society, vol. 5, no. 1, pp. 276-293, January 2024.

• M. Elfiatoure, M. Mohammadi, H. Q. Ngo, and M. Matthaiou, "Cell-free massive MIMO
for ISAC: Access point operation mode selection and power control," in Proc. IEEE

GLOBECOM, December 2023.
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• M. Elfiatoure, M. Mohammadi, H. Q. Ngo, and M. Matthaiou, “Multiple-target detection
in cell-free massive MIMO-assisted ISAC,” submitted to IEEE Transactions on Wireless

Communications, April 2024.



Chapter 2

Literature Review and Background

In this chapter, we first present a literature review focusing on mMIMO and CF-mMIMO
technologies, followed by an exploration of spectrum sharing between communication and
sensing systems. This review sets the stage for understanding the evolution and integration of
these advanced technologies in modern wireless communication networks.

2.1 The Evolution from Massive to Cell-Free MIMO

A pivotal multi-user MIMO technology, is at the forefront of the 5G era. Defined by its
capability to provide consistently high-quality service in high-mobility environments, mMIMO
equips BSs with a significantly large number of antennas. This setup allows for simultaneous
service to users in the same time-frequency resource, making it a revolutionary wireless access
technology in both sub-6 GHz and mmWave bands, as established in [13]. Marzetta’s work in
[13] also reveals that the impact of fast fading diminishes with the deployment of large antenna
arrays at the BS, enhancing the user service. These attributes underscore massive MIMO’s
potential in 5G wireless communication systems [14]. However, this increase in the number of
antennas introduces new technical challenges in comparison to conventional MIMO topologies
[15].

Massive MIMO, also known as large-scale antenna systems or hyper MIMO, marks a
significant departure from current practices by utilizing an abundance of service antennas over
active terminals, coupled with time-division duplex operation (TDD). This technology focuses
energy into smaller spatial regions, thereby significantly boosting the throughput and energy
efficiency. Additional benefits of massive MIMO include the use of cost-effective low-power
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components, reduced latency, MAC layer simplification, and resilience against intentional
jamming [14, 16].

To meet the rising demands of wireless data traffic, 5G networks integrating massive MIMO
systems are envisioned to support the capacity demands with increased SE. These systems
utilize spatial multiplexing with high-resolution degrees of freedom (DoF) in both elevation
and azimuth angles [17]. Additionally, massive MIMO systems can direct more energy towards
user equipments (UEs), enhancing the energy efficiency and reducing interference. Note that
the deployment of 5G networks is expected to be dense, especially in urban environments,
ensuring UEs are within the range of multiple BSs [18, 19].

One notable advantage of mMIMO is its potential for improved energy efficiency compared
to single-antenna systems. As shown by Ngo et al. [20], in a mMIMO setup, single-antenna
users can significantly reduce their transmit power in proportion to the number of BS antennas
with perfect CSI, or to the square root of the antenna count with imperfect CSI. This reduction
in power is crucial for future wireless networks, where managing high energy consumption
is a growing concern [21]. Additionally, with adequate transmit power, massive MIMO can
surpass the operational range of single antenna systems, although these findings do not take
into account the power consumption of the radio front-ends [20].

Beyond energy efficiency, mMIMO excels in interference management. Linear combining
and precoding schemes within mMIMO are capable of completely nullifying interference as the
number of antennas increases, even in scenarios with imperfect channel knowledge. This core
property represents a significant shift in the modeling, operation, theory, and implementation
of MIMO systems, paving the way for novel research opportunities, such as applications in
radar systems [22].

The evolution of wireless networks, particularly with 5G and beyond, has been significantly
marked by the introduction of CF-mMIMO systems. As Ngo et al. [9] proposed, this technol-
ogy utilizes numerous distributed APs linked to a CPU, enhancing the network capabilities
by outperforming traditional MIMO and small-cell systems in terms of efficiency and reliabil-
ity [10]. Additionally, CF mMIMO’s adaptability with emerging technologies offers substantial
improvements in network performance. Its deployment strategy, involving APs spread across a
large area connected to a CPU, addresses challenges like SE and latency variations in dense
urban settings [11].

In the 6G era, CF-mMIMO stands out as a vital solution, merging distributed communication
with mMIMO to overcome challenges like inter-cell interference in ultra-dense networks. Its
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unique architecture of multiple APs connected to central units boosts macro-diversity and
reduces inter-user interference, adding a new dimension to network performance [12, 23].
Furthermore, the integration of CF-mMIMO with emerging technologies, especially in the
context of ISAC systems, represents a significant development in next-generation wireless
networks. This integration allows distributed APs to perform dual roles: communication
and target sensing. Techniques, such as power control [24], beamforming design [25], or a
combination of both [26] are utilized to optimize these functions, similar to how in network-
assisted full-duplex (NAFD) CF-mMIMO networks [27], specific APs are designated for
sensing tasks, while others focus on communication, thereby enhancing the overall network
functionality [12].

In conclusion, the shift from mMIMO to CF marks a significant milestone in the evolution
of wireless networks. This transition not only addresses the limitations of previous generations
but also lays the groundwork for future advancements in the field of wireless communications.

2.2 Radar

Radar, an acronym for RAdio Detection And Ranging, is a system that uses electromagnetic
signals to detect and measure characteristics, such as position and velocity of reflective objec-
tives, known as "targets" [28]. The fundamental mechanism involves a radar station emitting
electromagnetic waves and collecting the echoes returned from targets. This process is pivotal
in differentiating between actual targets and noise, which is heavily influenced by the SNR. The
standard radar setup, known as monostatic radar, involves co-located transmitters and receivers.
This differs from bistatic or multistatic systems, where these components are significantly
separated or involve multiple radars [29, 30]. Technological advancements in radar have led
to the development of specialized functions like radar imaging, enabling high-resolution map-
ping in two or three dimensions [31]. The application dictates the configuration of antennas,
transmitters, and receivers in radar systems, whether for air traffic control, maritime navigation,
weather forecasting, military surveillance, space exploration, or automotive safety. Based on
the type of probing signals, radar systems are mainly divided into continuous waveform radars
and pulse radars, with the latter being more prevalent in modern applications [31].
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Fig. 2.1 Radar systems.

2.3 MIMO Radar

Over the past decade, the MIMO technology, initially prominent in wireless communications,
has become a key area of research in radar signal processing. MIMO radar is characterized by
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its use of multiple antennas to transmit diverse orthogonal waveforms and receive the echoes
reflected by targets [32–35]. This approach has garnered increasing attention from commercial
and military sectors for its enhanced capabilities in target detection, tracking, and localization
[30, 36–39]. The diverse waveform emission from multiple antennas in MIMO radar systems is
a key feature that enhances its operational capabilities. Unlike traditional phased-array systems,
MIMO radars can transmit correlated or uncorrelated probing signals, facilitating more adaptive
techniques in localization and detection [30, 40]. The design of MIMO radar systems has
focused on leveraging waveform diversity and spatial separation, leading to significant improve-
ments in target detection and parameter estimation. However, they also introduce challenges,
such as increased signal dimensionality and receiver complexity [6, 22]. MIMO radar systems
are generally classified into two categories: co-located MIMO radar and MIMO radar with
extensively separated antennas. Co-located MIMO radar, akin to phased array systems, uses
closely positioned antennas to transmit independent signals, maximizing waveform diversity.
In contrast, MIMO radar with separated antennas aims to achieve spatial diversity by capturing
targets from various spatial angles, which is especially beneficial in applications requiring
precise location data [41]. While the co-located type can offer within-aperture diversity, the
separated antenna type provides spatial diversity by observing targets from different angles.
Both types offer improvements over conventional radar systems, especially in precision and
accuracy in challenging environments [42–44]. MIMO radar technology has seen significant
advancements, particularly in the areas of signal processing and antenna design. One notable
advancement is the development of adaptive beamforming techniques, which allow MIMO
radars to dynamically adjust the directionality of their beams for optimized target detection
and interference suppression. Furthermore, the integration of advanced signal processing
algorithms has enabled these systems to handle complex environments with high clutter and
interference [45]. Despite these advancements, MIMO radar systems face several challenges.
One of the primary challenges is the increased signal dimensionality, which results from using
multiple transmit and receive antennas. This increase in dimensionality can exacerbate the
computational complexity and requires more sophisticated signal processing techniques [22].
Another challenge is the design and implementation of the antenna arrays themselves. The
need for multiple antennas to be integrated into a single system can lead to practical difficulties
in terms of size, weight, and power consumption. Additionally, ensuring that the transmitted
waveforms are orthogonal and do not interfere with each other is a complex task, particularly
in dynamic environments [6]. Looking forward, there are several exciting areas of research
in MIMO radar technology. One area is the development of cognitive radar systems, which
can adapt their operating parameters in real-time based on the environment and target behavior.
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This could involve dynamically changing waveform characteristics, beam patterns, or even the
radar’s operating frequency to optimize the system performance [46]. Another promising area is
the integration of machine learning and artificial intelligence (AI) techniques into MIMO radar
systems. AI could be used to improve target classification, automate complex signal processing
tasks, and enhance decision-making processes in real-time [47]. Lastly, the exploration of
new materials and technologies for antenna design could lead to more compact, efficient, and
powerful MIMO radar systems [22].

To summarize, MIMO radar technology, with its roots in wireless communications, has
revolutionized the radar capabilities, offering significant improvements in target detection and
tracking. However, it also entails new challenges, primarily in signal processing and antenna
design. The future of MIMO radar is likely to see further integration of advanced computational
techniques and materials, driving its evolution and expanding its application scope.

2.4 Communication and Radar Spectrum Sharing

In the rapidly evolving landscape of wireless communications, the pressing challenge of limited
spectrum availability stands as a formidable barrier against the burgeoning demands for en-
hanced capacity and QoS. This scarcity not only hampers the operators’ ability to meet the user
expectations but also exacerbates the capital and operating expenditures, invariably reflected
in the service prices charged to customers. Amidst this backdrop, the surge in connected
devices and services further intensifies the strain, propelling the industry towards a critical
point of spectrum congestion. In this fast-evolving arena, the aforementioned surge has led to
considerable spectrum congestion, impacting the auction prices of available frequency spectrum
significantly [6]. In the UK, mobile network operators have been facing substantial annual
fees since 2015 for the 900 MHz and 1800 MHz bands, a scenario echoed in Germany, where
Bundesnetzagentur’s auction of frequency bands garnered over C5 billion, reflecting the high
market value of these spectral resources [48]. Similarly, in the US, the FCC’s 5G auction for 28
GHz spectrum licenses raised $702 million, indicating the strong demand for advanced commu-
nication technologies [49]. This economic perspective underscores the tangible implications of
spectrum scarcity, further compounding the urgency for innovative solutions. To address these
challenges, network providers are increasingly venturing into the innovative realm of spectrum
sharing, particularly eyeing the spectra currently earmarked for radar systems. This strategy
stems from the broad bandwidths radar technologies occupy, coupled with their pivotal global
applications ranging from air traffic control to weather monitoring and security. Such systems,
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especially within the 1 to 10 GHz range, present lucrative opportunities for coexistence with
emerging communication technologies, like 5G New Radio (5G NR), LTE, and Wi-Fi, thereby
heralding a new era of synergy between radar and communication systems [6, 50]. The adapt-
ability of many radar systems for spectrum sharing with communication technologies further
underscores the potential for innovative coexistence approaches [51–54]. However, the path
to spectrum optimization is fraught with hurdles. The advent of advanced radar technologies
demanding higher frequency bands, alongside the exponential rise in civilian digital activities,
particularly on social media, exerts unprecedented pressure on bandwidth allocation. This
scenario underscores the critical need for identifying suitable frequency bands that can sustain
the enhanced performance of integrated radar and communication systems, a task that is be-
coming increasingly complex as the International Telecommunication Union (ITU) and World
Radio Communication Conference (WRC) regularly review frequency spectrum allocations [5].
Studies indicating overlaps between the global system for mobile communications (GSM) in
the L band with ultra-high frequency (UHF) radars, and LTE and WiMax with air traffic control
(ATC) radars in the S band, highlight the urgency of this endeavor [55–57]. Compounding
the issue is the pervasive problem of network congestion, primarily driven by the insatiable
demand for bandwidth and data services. This congestion not only diminishes the data speeds
but also degrades the service quality, adversely affecting the user experience. In response, the
concept of spectrum sharing has emerged as a beacon of hope. By promoting the shared use of
spectrum among multiple networks or users, we could optimize the scarce resource’s utilization,
mitigate congestion, and pave the way for more adaptive and innovative wireless communi-
cation systems. This approach is particularly promising in beyond-5G systems, facilitating
the coexistence of communication and radar systems within the same frequency bands [2–4].
The broad availability and diverse applications of radar bands, including airborne navigation
radars around 3.4 GHz and shipborne radars as well as vessel traffic service radars (VTS) at
5.6 GHz, make them ideal for integration into advanced wireless networks, leading to more
efficient spectrum utilization and significantly enhancing the network capabilities [5, 6]. The
study of spectrum sharing between communication and radar applications can be delineated
into two main categories:

• Radar-Communication Coexistence (RCC).

• Dual Functional Radar-Communication (DFRC) system design.

Regarding RCC, the primary goal is to ensure that both the radar and communication
systems operate concurrently with minimal interference to each other. This objective is pursued
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by devising effective strategies to handle and minimize the interference between the systems.
Conversely, the focus of DFRC system design lies in the development of integrated systems
capable of performing both communication and remote sensing simultaneously. The benefit of
such systems is their dual functionality, which not only alleviates congestion in the RF spectrum
but also provides a singular hardware solution that supports both sensing and communication
capabilities [6]. Advancing beyond DFRC, the ISAC paradigm marks a significant leap towards
a cohesive fusion of radar and communication operations. Distinct from RCC and DFRC,
which prioritize mutual operation and dual-functionality, ISAC proposes a holistic model where
sensing and communication processes are not merely adjunct but intricately unified, sharing
both the spectral and computational resources. This profound integration facilitates a more
strategic utilization of the spectrum, boosts the system efficacy, and heralds novel opportunities
for applications necessitating both precise sensing and dependable communication [58–61].
With the escalating demand for spectrum resources, ISAC emerges as an innovative strategy to
maximize the shared spectrum’s capacity, promising to accommodate the complex requirements
of future wireless infrastructures [62–64]. This advanced integration not only seeks to mitigate
interference and optimize spectrum usage but also enhances the capabilities of both systems
by leveraging their mutual benefits. To sum up, the pivotal role of ISAC in the development
of future wireless systems underscores its importance in ensuring efficient spectrum use and
enhanced functionalities, meeting the complex demands of modern wireless applications.

2.4.1 Radar and Communications System Coexistence

Delving into the first category of spectrum sharing between communication and the radar
applications, RCC emerges as a critical area of focus. The primary objective in RCC is to
ensure that both radar and communication systems can operate concurrently with minimal
interference, a goal that is vital for the efficient functioning of both systems. This pursuit
involves the development of various strategies aimed at effectively managing and minimizing
the cross-interference between these systems. Historically, research in RCC has primarily
concentrated on scenarios involving a limited number of antennas at both the BS and the
radar such as [40, 65–71]. The main challenge in these studies has been the interference from
the BS to the receiving radar. From the cellular system’s perspective, these investigations
involved the BS estimating the radar-cellular interference by assessing whether the radar was
in search or tracking mode. This process was often complemented by CSI estimation at the BS
to obtain precise channel parameters [72–74]. The study in [66] delved into a sophisticated
technique aimed at mitigating the interference between the radar and telecommunication
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systems by utilizing a projection method for radar waveforms. This method involves projecting
the radar signals onto the null space of the channel matrix that exists between the radar and
communication systems. As the field progressed, the coexistence of MIMO communication
systems and MIMO radar came to the forefront. This new phase of research focused on the
development of mutual interference management techniques to enable a harmonious operation
of both systems without compromising their individual performances. Key developments
in this area included the integration of orthogonal frequency division multiplexing (OFDM)
communications with MIMO radar, and the adoption of transmit beamforming as a method to
reduce interference between radar and communications [40]. Additionally, cognitive MIMO
radar prototypes, using technologies such as software-defined radio (SDR) and Universal
Software Radio Peripheral (USRP), have been explored for compatibility with LTE links [75].
Further advancements in RCC have seen the introduction of various techniques like null space
projection, optimum beamforming design, and waveform design to effectively manage the
interference between MIMO radar systems and MIMO cellular networks. These methods
are aimed at reducing interference and optimizing the detection capabilities of MIMO radar
systems while meeting specific operational constraints [40, 76–79]. Recent studies have
further diversified RCC research, particularly in the context of complex environments and joint
system designs. For instance, [80] emphasized the operational dynamics in cluttered scenarios,
focusing on signal management without stringent synchronization between systems. This
approach contrasts with [72] which adopted a holistic methodology. The latter paper delved
into the intricate balance of optimizing waveforms and filters for both radar and communication
systems, reflecting a comprehensive approach to spectrum sharing. These studies exemplify the
evolving nature of RCC research, moving towards more integrated and environmentally adaptive
solutions. The introduction of reconfigurable intelligent surfaces (RISs) has further opened up
new possibilities for enhancing the coexistence and reducing mutual interference between these
systems [81, 82]. The integration of mMIMO technologies into RCC is a recent development
that has begun to receive attention in the literature. Studies like [8, 83–86] started to explore
the implications of incorporating massive MIMO into coexisting communication and radar
systems. These studies have characterized important metrics, such as the rate region of joint
radar and communication systems and derived expressions for the radar detection probability
and downlink SE in the presence of mMIMO. However, this area of research is still burgeoning,
and many aspects, particularly those related to joint precoding design and power allocation
in the coexistence of mMIMO communications and radar systems, remain to be thoroughly
investigated. In radar and communication system coexistence, precoder configuration can be
established on either the radar or the communication side. This setup mirrors the ZF precoding
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utilized in conventional MIMO communication systems. A fundamental approach in this regard
is null-space projection (NSP) [67], predicated on the radar’s access to the interference channel
state information (ICSI). The NSP method involves the radar first determining the right singular
vectors of the interference channel matrix through a singular value decomposition (SVD).
Subsequently, it constructs an NSP precoder based on these vectors, which correspond to the
channel’s null space. This approach ensures that the radar signal, when precoded, is projected
onto the channel’s null space, effectively canceling interference at the BS. Nonetheless, this
strategy may result in considerable degradation of the MIMO radar performance, such as
reducing the spatial orthogonality of its search waveforms. To address this, a modified NSP
approach was proposed in [87], involving a meticulously set threshold for the channel matrix’s
singular values. This threshold-based NSP precoder utilizes right singular vectors associated
with values below this threshold, enhancing the radar performance while slightly increasing the
interference at the BS. Despite these advancements, NSP methods have inherent drawbacks. For
instance, they do not allow for precise control over the interference power, which is correlated
with the singular values of the stochastic channel. Moreover, there is a risk that the radar might
miss the target’s response if it aligns with the row space of the communication channel matrix,
due to its suppression by the NSP precoder [6]. These challenges, however, can be addressed
through convex optimization techniques [70, 88], which aim to optimize the performance of
both systems within manageable constraints.

In [89], an innovative precoding design methodology was introduced, aiming at optimizing
the DoF within environments where communication and radar systems coexist. This design
is pivotal in navigating the complex interference that arises in such scenarios. Concurrently,
the research outlined in [90] tackled the intricacies of enhancing the SINR for radar systems,
particularly in circumstances characterized by non-uniform interference, and highlights the
strategic importance of spectral coexistence management through novel approaches. Addition-
ally, [91] unveiled a cutting-edge optimization method that employs the Alternating Direction
Method of Multipliers (ADMM) for the resolution of non-convex problems, primarily aimed at
minimizing the Cramér-Rao Bound (CRB) for the precise estimation of radar targets amidst
the disturbances from a MU-MIMO communication setup. Extending this framework, [79]
proposed a beamforming design, that capitalizes on constructive interference by utilizing the
well-understood downlink (DL) multi-user interference (MUI) to amplify the signal strength in
mixed-use scenarios.

In conclusion, while significant strides have been made in RCC, the journey is far from
complete. The ongoing advancements in massive MIMO technologies present both new
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Fig. 2.2 Dual functional radar-communication (DFRC).

opportunities and challenges, indicating a need for continued research to fully reap the potential
of these advanced systems in the landscape of RCC.

2.4.2 Dual Functional Radar-Communication (DFRC) system design

The evolution of DFRC systems marks a significant stride in Cooperative Radar and Spectrum
Sharing (CRSS). At the heart of DFRC is the innovative integration of radar and communication
functions into a unified hardware system at the transmitter, epitomizing spectral, energy, and
hardware efficiency, leading to substantial cost reductions [6, 92–95]. This integration, as
illustrated in Fig. 2.2, depicts the seamless amalgamation of sensing and communication
operations within a single system.

A primary challenge in DFRC lies in crafting a waveform that adaptively handles both target
detection and data transmission. This design process typically falls into three categories: radar-
centric, communication-centric, and joint design approaches [6, 61, 96]. Radar-centric designs
originate from radar probing signals, dating back to initial studies [97], where communication
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data is integrated onto the radar pulses through pulse interval modulation (PIM). Examples of
this approach include amalgamating amplitude shift keying (ASK), phase shift keying (PSK)
and frequency shift keying (FSK) with linear frequency modulation (LFM) signals [6, 98, 99],
and combining spread spectrum sequences for communication with binary- and poly-phase
codes for radar [100].

Communication-centric designs, on the other hand, are based on pre-existing communica-
tion waveforms and protocols. A pioneering example [101] demonstrated the use of OFDM for
target detection. In OFDM, the radar target processing for Doppler and delay is separated and
performed using Fast Fourier Transform (FFT) techniques. Any unintended communication
data effects on the radar echo can be mitigated by dividing the echo and reference OFDM signal
matrices on an element-wise basis. Enhancements in sensing are achievable by substituting the
sinusoidal carrier in OFDM with a linear frequency modulated (LFM) signal, which benefits
from the efficiencies of the fractional Fourier transform (FrFT) [102]. The IEEE 802.11ad
protocol, a WLAN standard in the millimeter-wave (mmWave) band, has also been adapted for
simultaneous radar sensing and communication in vehicular networks [103]. Additionally, the
waveform used for communication must be precisely designed to meet certain requirements for
sensing, such as a low peak-to-average power ratio (PAPR), effective correlation characteristics,
and the ability to handle clutter interference effectively [61].

Instead of utilizing established sensing and communication waveforms, initiating an ISAC
waveform design from the beginning allows for a readily adjustable balance between per-
formance aspects. This approach, known as joint design or collaborative design, positions
sensing-focused and communication-focused designs as its outer limits. Typically, the process
of designing a joint ISAC waveform is framed as an optimization problem in mathematics, with
the goal being to improve metrics related to sensing or communication, subject to conditions
that ensure the alternate functionality’s effectiveness [61]. As demonstrated in [8, 26, 84, 96],
this encompasses enhancing the probability of detection in sensing applications, adhering
to SINR constraints for communication users, or prioritizing the SINR optimization while
maintaining specific constraints on the probability of detection.

With the advent of 6G networks, DFRC systems have garnered increasing attention, reveal-
ing a rich tapestry of research brimming with advancements and challenges. Key contributions
include Bazzi et al. [104], focusing on efficient beamforming strategies under imperfect CSI,
alongside foundational works by Chiriyath et al. [73] and Barneto et al. [105], which explored
the coexistence of radar and communication systems and the importance of efficient resource
utilization. Further significant research by Hu et al. [106], focused on low-PAPR waveform
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design in MIMO-OFDM DFRC systems, while Xu et al. [107], designed optimal transmit
beampatterns. The intricacies of spectrum sharing, highlighted by Li et al. [70], underscore
the complexity of resource allocation in shared environments. With mmWave frequencies
becoming prominent in 6G networks, insights from Mishra et al. [108] on mmWave joint radar
communications are particularly relevant. The need for secure and efficient waveform designs
was emphasized by Liu et al. [94] and Su et al. [109], addressing pivotal aspects of waveform
design and security. Zhang et al. [60] provided a comprehensive overview of signal processing
techniques for joint communication and radar sensing.

The DFRC system proposed by Liu et al. [6] is an exemplar of innovation, building upon
earlier work [96] to optimize both the radar beam patterns and the SINR for communication
users. This model distinctively precoded communication symbols and individual radar wave-
forms, expanding the DoF in MIMO radar waveforms to match the number of antennas. The
research outlined in [110] introduced an innovative ISAC strategy that enhances angle of arrival
(AoA) estimation at BS through a hybrid fusion of radar data, integrating downlink and uplink
information. Furthermore, the research introduced a system model that seamlessly integrates
monostatic with bistatic radar modes, harnessing communication signals for sensing alongside
communication.

In summary, the fusion of radar sensors with communication systems has sparked a surge
of interest in DFRC systems [6, 93, 96, 111–113]. Employing a common spectrum and
integrated signal processing techniques, these methodologies enable concurrent radar sensing
and wireless communication [114]. The design of DFRC waveforms has evolved through
various approaches, including radar-centric [97–99], communication-centric [101–103], and
joint designs [6]. Recent advancements in multi-antenna arrays have opened new frontiers, as
seen in Hassanien et al. [93, 111] and Ma et al. [95], which offered robust solutions in complex
non-LoS (NLoS) communication channels.

Recent advancements in CF-mMIMO systems, particularly for ISAC, are making significant
impacts on 5G and beyond network technologies. Studies such as those by Zeng et al. [115],
Behdad et al. [24], Demirhan et al. [25], Mao et al. [116], and Elfiatoure et al. [26], demon-
strated capabilities of CF-mMIMO systems are showcased through their superior network
performance and service quality, addressing the constraints found in conventional single-cell
ISAC configurations. These systems excel by enabling simultaneous multipoint transmission
and reception, coupled with a notable reduction in inter-cell interference. This achievement
stems from a sophisticated network architecture comprising distributed APs connected to a
CPU, which collaboratively provide information services to users and engage in radar sensing
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for target identification. Such a strategic approach results in enhanced SE, decreased latency,
and improved accuracy in detecting targets within specific areas. Notably, Zeng et al. [115]
have furthered this field with their work on power allocation techniques in CF-mMIMO ISAC
systems, enhancing the balance between communication and sensing functionalities. In their
study, Behdad et al. [24] explored the dynamics of a CF-mMIMO ISAC system, characterized
by a designated array of transmitting and receiving APs. This setup ensures that users receive
services through the transmitting APs, while simultaneously, these signals facilitate sensing
operations to pinpoint the location of targets. Signals that bounce back from such targets are
captured by the receiving APs and forwarded to the CPU for analysis. To optimize the system’s
efficiency in target detection, the researchers introduced a power distribution strategy aimed at
enhancing the SNR while maintaining the SINR within acceptable limits for users. Building on
similar themes, Demirhan et al. [25] delved into the challenges of beamforming design within
CF-mMIMO ISAC systems. Their research proposed a joint beamforming strategy, meticu-
lously designed to amplify the sensing SNR while concurrently adhering to the communication
SINR requirements. This approach underscores the critical balance between ensuring high-
quality target sensing and maintaining robust communication links within CF-mMIMO ISAC
systems. Additionally, the works of Mao et al. [116] and Da et al. [117] have advanced the field
by focusing on precoder design for CF-mMIMO ISAC systems. Significantly, Da et al. [117]
explored beyond the efficient balance between communication and sensing functionalities to
assess privacy risks associated with target location inference by internal adversaries in ISAC
networks.

To succinctly showcase this thesis’s novel contributions, we now present two tables for
clarity and comparison. The first table (6.1), "Contrasting Our Contributions to the Literature
Review," directly highlights how our findings push the boundaries of current research on
spectrum sharing in wireless communications. Its main objective is to offer a straightforward
comparison, underscoring the advancements we bring to the field. The second table (2.2),
"Comparison of PhD Research Papers with Literature Review," a step further by benchmark
each of our doctoral papers against the backdrop of existing studies, illustrating how our work
both complements and advances the scholarly conversation. These tables aim to provide a clear
framework for understanding the unique value of our research, facilitating its appreciation and
application by fellow researchers.
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Table 2.2 Comparison of PhD research papers with literature review

Research Aspect Comparison
Coexistence Strategy,
Precoding and Power

Allocation

Literature Review: Focuses on the mutual interference man-
agement between MIMO communication systems and radar.
Investigates NSP and techniques for interference manage-
ment beamforming design in MIMO radar and cellular net-
works [66–68].
My Papers: Emphasizes the coexistence of massive MIMO
and MIMO radar systems using novel interference mitiga-
tion techniques and advanced power allocation strategies.

System Performance
Analysis

Literature Review: Addresses the integration of OFDM com-
munications with MIMO radar and the use of transmit beam-
forming to reduce interference [40, 101].
My Papers: Provides analytical results for system perfor-
mance, including radar detection probability and downlink,
in mMIMO environments.

mMIMO Integration Literature Review: Highlights the burgeoning interest in in-
tegrating mMIMO into RCC systems [83, 85, 86].
My Papers: Showcases the application of mMIMO technolo-
gies in RCC, providing novel insights and advancements in
this emerging area.

CF-mMIMO ISAC Literature Review: Mentions recent advancements in CF-
mMIMO systems for ISAC, focusing on power allocation
and precoder design [24, 25, 115–117].
My Papers: introduce an innovative approach to dynamic AP
operation mode selection in CF-mMIMO ISAC networks.
This strategy significantly enhances downlink user perfor-
mance and the capabilities of target detection. Our contribu-
tions substantially advance both the theoretical and practical
frameworks for CF-mMIMO ISAC systems. By enabling
improved communication performance and more robust sens-
ing across multi-zone environments, our work represents a
significant step forward in wireless communication technolo-
gies

In conclusion, Chapter 2 offers a comprehensive literature review, providing a holistic
understanding of the subject matter. The subsequent chapters will further explore specialized
areas of literature review, delving into specific themes and aspects relevant to the research topic.



Chapter 3

Coexistence Between Massive MIMO and
Radar Communications: Performance
Analysis

3.1 Introduction

The fifth generation (5G) of wireless communication is being rolled out globally. More im-
portantly, both fixed and mobile wireless services are becoming increasingly important with
the rapid growth of the wireless communication industry, whilst multiple antenna systems
are essential components of 5G networks [10, 11]. The wireless communication sector is
expanding at a fast rate and the staggering proliferation of connected devices and services
is contributing to the growing congestion of the frequency spectrum. This has led to a phe-
nomenon, coined as the spectrum congestion problem. Recently, sharing spectrum between
communication systems and radar systems is considered as a promising option and for this
reason, has attracted increasing interest in beyond-5G wireless communication systems as a
potential solution to spectrum congestion. Thus, sharing spectrum through signal processing is
becoming increasingly important as the number of wireless users increases continuously [2–4].

We now recall that the radar bands are an excellent choice to be shared with cellular
communication systems due to the extensive spectrum available at radar frequencies for
commercial and governmental uses. For instance, radars cover a wide range of frequencies,
such as airborne navigation radars around the 3.4 GHz band, shipborne radars and vessel traffic
service radars (VTS) at 5.6 GHz [5, 6].
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In the last decade, multiple-input multiple-output (MIMO) radar systems have demonstrated
superior performance compared with conventional phased-array radars, in terms of providing
adaptive arrays for target detection, parameter (location, distance and speed of targets) iden-
tifiability, as well as enhanced flexibility for beam pattern design [119, 120, 30]. Unlike the
phase-shifted counterparts of a benchmark waveform, each antenna in a MIMO radar transmits
an individual waveform [121]. Due to this, phased array radars are less flexible and have a
weaker sensing performance than those with an enlarged virtual aperture as in MIMO radar.
We also note that the foundations of MIMO radar were built upon concepts, such as degrees-of-
freedom (DoFs) and diversity, which were "borrowed" from the MIMO communication theory
space [30].

Previous works on sharing spectrum between communication systems and radar, such
as [72, 73], almost exclusively focused on a limited number of antennas at the base station
(BS) and radar and considered only the interference from the BS to the receive radar which
deteriorates its detection probability capabilities. In addition, the radar interference was
examined from the perspective of a cellular system, where the BS attempts to estimate the
radar-cellular interference by identifying whether or not the radar is in search or tracking mode
via a hypothesis testing. Then, the BS estimates the channel parameters to obtain channel
state information (CSI) [74]. Recently, a number of works have considered the coexistence
between multiple-input multiple-output (MIMO) communication and MIMO radar and focused
on developing mutual interference management techniques between MIMO communication
and MIMO radar. By doing so, both systems can operate harmonically without interfering
with each other while guaranteeing satisfactory performance. For example, in [32], a study has
been conducted on the feasibility of combining Orthogonal Frequency Division Multiplexing
(OFDM) communications and MIMO radar.

In the context of this work, transmit beamforming has been identified as a promising
method for reducing mutual interference between radar and communications. To this end, [40]
focused on robust beamforming for MIMO radar and maximized the probability of detection,
while guaranteeing a satisfactory received signal-to-interference-plus-noise-ratio (SINR) for
each downlink user. The approach used in this investigation is similar to that used by other
researchers, such as in [75], who developed a Software-Defined Radio (SDR) based cognitive
MIMO radar prototype using Universal Software Radio Peripheral (USRP) devices that coexist
with LTE links. Moreover, [67] focused on the interference created by the operation of the
radar to the BS by using a projection based technique, where the radar waveforms are projected
on the null space of the channel interference matrix between communication and radar system,
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but ignored interference to the users. The recent works of [81] and [82] introduced the
concept of reconfigurable intelligent surfaces (RISs) to improve the coexistence of radar and
communication systems and also to reduce the mutual interference between both systems. In
the recent study of [85], only the uplink was considered for the coexistence of massive MIMO
and MIMO radar, ignoring the downlink of massive MIMO and the detection probability of
the MIMO radar. Furthermore, it examined the interference caused by the radar that affects
the uplink of communication systems. We also recall [122], which proposed an opportunistic
interference alignment approach for spectrum-shared radar and uplink cellular communications,
both of which utilize multiple antennas. The study placed more emphasis on the uplink quality
of the user equipment than on the downlink, which is considered as an interference source for
radar and the sharing process, whereas the study in [123] investigated the impact of worst-case
cellular interference on the radar performance. In order to characterize the impact of cellular
uplink interference on the radar performance. It is notable that information sharing, such
as CSI, and security issues in information exchange make it difficult to manage interference
simultaneously at radars and communication systems [124]. When radar and communication
systems are aware of each other, they can cooperate to exchange information that will help
in designing their transmissions optimally under some security constraints. There have been
some works on interference management in cognitive radio, but from a communication systems
perspective only. Nevertheless, it becomes harder to maintain the coexistence between radar
and communication, since interference signals stem not only from the communication side, but
also from the radar side [125]. Therefore, this paper seeks to develop efficient methodologies
to address this challenging issue.

In general, the above mentioned works, focusing on interference mitigation for the coex-
istence between MIMO radar and communications, have mainly considered the interference
from one side; for example, from the BS to the radar or from the radar to BS. They have also
exclusively focused on the probability of detection with a limited number of antennas at the
radar and BS.

By availing of the recent advances in massive MIMO communications, we intend to
investigate the potential benefits of having a very large number of antennas when massive
MIMO coexists with MIMO radar to mitigate the mutual interference from communication and
radar. The specific contributions of our paper can be summarized as follows:

• We analyze the system performance in the asymptotic regime, where the number of BS
antennas (denoted by M) goes to infinity. We show that by deploying more antennas at
the BS, we can improve the performance of the massive MIMO system, while keeping
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the interference to the radar system unchanged. Moreover, if we use large M and at the
same time reduce the transmit power M times, we can avoid the interference to the radar
system, while maintaining a satisfactory quality of service at the massive MIMO system.

• We derive closed-form expressions for the average probability of detection of the radar
system, and the downlink spectral efficiency of the massive MIMO system using the use-
and-then-forget bounding technique. Our numerical results corroborate our theoretical
analysis and provide interesting designs into the interplay between massive MIMO
communications and radar operation.

• We propose a power allocation scheme which selects the transmit powers at the MIMO
radar and the BS to maximize the probability of detection for MIMO radar, given a
quality-of-service constraint at the communication systems. The optimal powers can
be determined in closed-form. Considering the power budget at the radar and BS,
our proposed power allocation achieves substantial improvement in the probability of
detection over the case without optimal power allocation.

• As demonstrated by the numerical results, by increasing the number of antennas at both
the BS and radar, the system improves in terms of target detection performance and
spectral efficiency. This improvement is even more striking when the environmental con-
ditions are harsh, for example in the case of low signal-to-noise ratio (SNR). In addition,
the investigation of the trade-off between the performance of radar and communication
is revealed.

3.2 System Model

We consider a time division duplex (TDD) downlink massive MIMO communication system
coexisting with a MIMO radar system on the same time-frequency resources. A BS consisting
of an array with M elements serves K single-antenna users (M > K). The MIMO radar system
consists of a uniform linear array (ULA) radar, equipped with Nt transmitting antennas and Nr

receiving antennas, that is detecting targets located in the far field. For the sake of analytical
tractability and without significant loss of generality, we henceforth assume that Nt = Nr = N.
The basic structure of the system model is illustrated in Fig. 1, where:
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• zk ∈ CM×1 is the channel vector response between the BS and the k-th user. The channel
zk is modeled as follows:

zk = β
1/2
k hk, (3.1)

where hk represents the small-scale fading, assuming to include independent and identi-
cally distributed (i.i.d.) random variables, i.e., hk ∼ C N (0,IM), while βk represents the
large-scale fading.

• G ∈ CM×N represents the interference channel matrix from the BS to the radar receiver,
whose elements are i.i.d. ∼ C N (0,βbr), where βbr is the corresponding large-scale
fading coefficient.

• fk ∈ CN×1 is the interference channel from the radar transmitter to the k-th user. Denote
by F = [f1 . . . fK] ∈ CN×K the corresponding channel matrix from the radar transmitter
to all K users. We assume that fk ∼ C N

(
0, β̄kIN

)
, where β̄k represents the large-scale

fading.

For the downlink transmission, we assume that the BS has perfect channel state information1

and employs maximum-ratio (MR) precoding to process the data symbols before broadcasting
to the K users. We consider MR precoding at the BS because MR has low computational
complexity for practical implementation and performs sufficiently well in the massive MIMO
regime [126]. In addition, MR precoding is very suitable for distributed massive MIMO or
cell-free massive MIMO systems, where the antennas are distributed in a large area, since
it can be implemented locally at each antenna. The system performance can be improved
with other linear processing techniques, such as zero-forcing (ZF). However, it requires high
computational complexity (due to the matrix inversion), and cannot be implemented in a
distributed manner. The transmitted signal from the BS to all K users is

x =
K

∑
k=1

tkdk, (3.2)

where ρ is the normalized transmit power at the BS, i.e. E
{
∥x∥2

}
= ρ . where dk is the symbol

intended for the k-th user, with E
{
|dk|2

}
= 1 and tk ∈CM×1 is the MR precoding vector given

1We assume that the BS has perfect CSI knowledge from its users and of the large-scale fading (channel
statistics) from the radar to the BS. Note that the channels from the BS to the users can be acquired easily by
uplink pilots via time-division duplex operation [126]. The large-scale fading coefficients from the radar to the BS
change very slowly with time (compared to the instantaneous CSI), and hence, can be estimated readily [127].
Although this is an idealistic assumption, it offers analytical tractability and also is very relevant for systems with
small mobility with a relatively large coherence interval.
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Fig. 3.1 The considered system setup where a mMIMO communication system coexists with a
MIMO radar.

by

tk =
√

ρ

βkKM
zk

∗. (3.3)

At the same time, the radar transmitter sends probing signals to the target. Let s ∈ CN×1,
where E

{
ssH
}
= IN , be the radar transmit waveform. Then, the received signal at user k is

yk = zk
T x+

√
PRfT

k s+nk, (3.4)
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where PR and nk ∼ C N
(

0,σ2
C

)
denote the transmitted power of the radar signal and the noise

at user k, respectively.

For the radar link, we make the classical assumption that the channel from the MIMO radar
to the target is line-of-sight (LoS) [119, 121] . Then, the received vector by the radar receiver,
yR, contains the desired signal (echo from the target) and the interference from BS, described
as follows:

yR = α
√

PRA(θ)s︸ ︷︷ ︸
desired signal

+ GT
K

∑
k=1

Tkdk︸ ︷︷ ︸
interference from BS

+w, (3.5)

where w ∼ C N
(

0,σ2
RIN

)
is the noise at the radar receiver. In addition, α is the complex

path loss of the radar-target-radar path, θ is the azimuth angle of the target, and A(θ) = AR(θ)

AT
T (θ), where AR(θ) and AT

T (θ) represent the transmit and receive steering vectors of radar
antenna array respectively, where [40]

AT (θ) =
[
1,e− j 2πd

λ
sin(θ), . . . ,e− j 2πd

λ
(N−1)sin(θ)

]T
, (3.6)

AR(θ) = AT (θ) = A(θ). (3.7)

In the above, λ and d denote the signal wavelength and inter-antenna spacing, where d = λ/2.

3.3 Probability of Detection and Spectral Efficiency Analysis

3.3.1 Large-M Analysis

In this section, in order to see how massive MIMO supports the coexistence between radar and
communication systems, we analyze the system performance when the number of BS antennas
goes to infinity.

Scenario 1 (M → ∞ and ρ is fixed):

For the radar communication link, by substituting (3.3) into (4.11), we obtain

yR = α
√

PRA(θ)s+GT
K

∑
k=1

√
ρ

βkKM
zk

∗dk +w. (3.8)
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Applying the Lindeberg-Lévy central limit theorem, we obtain

yR d→ α
√

PRA(θ)s+
K

∑
k=1

√
ρ

K
vkdk +w, as M → ∞, (3.9)

where d→ denotes convergence in distribution, and vk is Gaussian vector with i.i.d. C N (0,βbr)

elements. We can see that, when the number of BS antennas grows without bound, the
interference from the BS is independent of M. This means that even when the number of BS
antennas increases, the performance of the radar communications will remain unchanged.

For the massive MIMO system, the substitution of (3.2) into (3.4) gives the received signal
at the k-th user, as follows

yk = zk
T Tkdk +

K

∑
j=1, j ̸=k

zk
T T jd j +

√
PRfk

T s+nk. (3.10)

By dividing the LHS and RHS of (3.10) by
√

M and using the law of large numbers, we obtain

yk√
M

a.s.→
√

ρβk

K
dk, as M → ∞. (3.11)

where a.s.→ denotes almost sure convergence. The above result implies that, as M → ∞, the
interuser interference, interference from radar, and noise disappear, and hence, the system
performance of massive MIMO improves without bound. In other words, the use of more
antennas at the BS can improve the massive MIMO system performance, while does not cause
more interference to the radar.

Scenario 2 (M → ∞ and ρ = ρ0/M, where ρ0 is fixed):

In this section, we consider the case where the number of BS antennas goes to infinity, and
at the same time the transmit power is scaled down proportionally to 1/M. For the radar
communication link, with ρ = ρ0/M, (3.8) becomes

yR = α
√

PRA(θ)s+GT
K

∑
k=1

√
ρ

βkKM2 zk
∗dk +w

a.s.→ α
√

PRA(θ)s+w, (3.12)
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where we have used the law of large numbers to obtain the above convergence. For the massive
MIMO system, by substituting (3.3) and ρ = ρ0/M into (3.10), and using again the law of
large numbers, we obtain

yk =

√
ρ0

βkKM2∥zk∥2dk +
K

∑
j=1, j ̸=k

zk
T
√

ρ0

β jKM2 z∗jd j

+
√

PRfk
T s+nk

a.s.→
√

ρ0βk

K
dk +

√
PRfk

T s+nk. (3.13)

The results obtained in (3.12) and (3.13) imply that by using a large number of antennas at
the BS together with cutting down the BS transmit power proportionally to 1/M, we can avoid
the interference to the radar system, while maintaining a given quality of service at the massive
MIMO system.

3.3.2 Probability of Detection

In this section, we derive a closed-form expression for the average probability of detection,
under the Neyman-Pearson criterion. By using the generalized likelihood ratio test, the
asymptotic probability of detection for radar, Pd , is [40]

Pd = 1−FX2
2 (µ)

(
F−1

X2
2
(1−PFA)

)
, (3.14)

where PFA, FX2
2 (µ)

, F−1
X2

2
represent the probability of false alarm, the non-central Chi-square

Cumulative Distribution Function (CDF) with 2 Degrees of Freedom (DoF) and the inverse
function of Chi-square CDF, respectively. The non-centrality parameter (µ) for X2

2 is given by

µ = |α|2LPRtr
(

AAH
(

GT T̃G∗+σ
2
RIN

)−1
)
, (3.15)

where L is the length of the communication frame for the radar link, and

T̃ =
K

∑
k=1

TktH
k = TTH =

ρ

KM

(
H∗HT

)
, (3.16)
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where H = [h1 . . .hK]. By the definition of the generalized Marcum Q-function, Pd given by
(3.14) can be rewritten as

Pd = Q1(
√

µ,
√

CFA), (3.17)

where Q1(., .) is the Marcum Q-function of order 1 [128], and CFA = F−1
x2

2
(1−PFA). Thus, the

average probability of detection is given by

E{Pd}= E
{

Q1(
√

µ,
√

CFA)
}
, (3.18)

where the expectation is taken over µ .

It is difficult (if not impossible) to obtain a closed-form solution for the above average prob-
ability of detection due to the analytically intractable form of Marcum-Q function and µ given
in (4.29). To render (3.18) more amenable to further analysis, we use a tight approximation for
µ , which is obtained from the massive MIMO space. More precisely, by using the trace lemma,
as M → ∞, we obtain

1
M

GT T̃G∗− βbr

M
tr(T̃)IN

a.s.→ 0. (3.19)

This implies that at large M, 1
M GT T̃G∗ is very close to βbr

M tr(T̃)IN . As a result, the non-centrality
parameter µ given by (4.29) can be approximated by

µ ≈ |α|2LPRtr
(

AAH
(

βbrtr(T̃)IN +σ
2
RIN

)−1
)

=
|α|2LPRtr(AAH)

βbrtr(T̃)+σ2
R

=
|α|2LPRtr(AAH)

ε +σ2
R

, (3.20)

where ε = βbrtr(T̃). From (6.24) and the law of large numbers together with the fact that, in
massive MIMO, the number of BS is large, we can reasonably consider ε is close to βbrρ with
high probability. Since ρ is the transmit power at the BS, which is normally chosen so that βbrρ

is much larger than the noise power σ2
R, we can remove σ2

R from the denominator of (3.20) to
obtain

µ ≈

∣∣∣α|2LPRtr
(

AAH)

ε
. (3.21)

By using the approximation (3.21), we can obtain an approximating closed-form expression
for the average probability of detection provided in the following proposition.
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Proposition 1 The average probability of detection can be approximated by

P̄d = 1− ∑
n≥0

1
2MKΓ(MK)

(
c
2

)n

dn2c
MK−n

2

× I(MK−n)(
√

c), (3.22)

where I(MK−n)(
√

c) denotes the modified Bessel function of the second kind and (MK−n) order,

c = 2MK|α|2LPRtr(AAH)/(βbrρ), and

dn =

γ

(
1+n,

F−1
x2
2
(1−PFA)

2

)
Γ(1+n)

,

where Γ(·) is the Gamma function, and γ(·, ·) is the lower incomplete Gamma function.

Proof 1 See Appendix A.

3.3.3 Spectral Efficiency

In this section, we derive a closed-form expression for the spectral efficiency of the downlink
transmission from the BS to the users. The signal received at the k-th user given in (3.10) can
be further expressed as

yk = E
{

zk
T tk
}

dk +

(
zk

T tk −E
{

zk
T tk
})

dk

+
K

∑
j=1, j ̸=k

zk
T tk jd j +

√
PRfk

T s+nk. (3.23)

By using the use-and-then-forget bounding technique [126, Eq. (2.44)], we obtain the
following spectral efficiency at the k-th user:

SEk = log2 (1+SINRk) , (3.24)

where

SINRk =
|E
{

zk
T Tk

}
|2

E
{
|zk

T Tk|2
}
−
∣∣E{zk

T Tk
}∣∣2 +Ak

, (3.25)
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where Ak represents the interference from other users and radar, given by

Ak =
K

∑
j=1, j ̸=k

E
{∣∣∣zk

T T j

∣∣∣2}︸ ︷︷ ︸
inter-user interference

+PRE
{∥∥fk

∥∥2
}

︸ ︷︷ ︸
radar interference

+σ
2
c . (3.26)

Proposition 2 The downlink spectral efficiency (in bit/s/Hz) for user k is

SEk = log2

(
1+

ρMβk/K
ρβk +PRNβ̄k +σ2

c

)
. (3.27)

Proof 2 See Appendix A.

Remark 1 From (3.27), we can first represent ρ as a function of the spectral efficiency as

follows:

ρ =

(
2SEk −1

)(
PRNβ̄k +σ2

c

)
Mβk/K −

(
2SEk −1

)
βk

. (3.28)

Then, by substituting (3.28) into (3.22), we can represent the average probability of detection

as a function of the spectral efficiency which enables us to further investigate the performance

tradeoff between the radar and massive communications.

3.4 Power Allocation

We aim at allocating the transmitted power at the radar PR and transmit power at the BS ρ to
maximize the probability of detection, under the constraints on per user spectral efficiency
and transmit powers at the radar and the BS. More precisely, the optimization problem is
mathematically described as:

(P1) : max
PR,ρ

Pd (3.29a)

s.t. SEk ≥ SEth, ∀k, (3.29b)

PR ≤ PR(max), (3.29c)

ρ ≤ ρ(max), (3.29d)
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where ρ(max) denotes the maximum transmit power at the BS, PR(max) is the maximum transmit
power at the MIMO radar, and SEth is the minimum spectral efficiency required by the k-th
user.

By using (3.17) and (3.21), problem (P1) can be (approximately) equivalent to

(P2) : max
PR,ρ

µ̄ ≜

∣∣∣α|2LPRtr
(

AAH)

βbrρ
(3.30a)

s.t.
ρMβk/K

ρβk +PRNβ̄k +σ2
c
≥ γth, ∀k, (3.30b)

PR ≤ PR(max) (3.30c)

ρ ≤ ρ(max), (3.30d)

where γth = 2SEth −1. The constraint (30b) is equivalent to(
Mβk

K
− γthβk

)
ρ ≥ γthPRNβ̄k+ γthσ

2
c . (3.31)

Note that, if
(

Mβk
K − γthβk

)
≤ 0, then (3.31) is not satisfied, and hence, the optimization

problem is infeasible. This means that we cannot find transmit powers at the radar and the
BS to meet the constraints. We next consider the case where

(
Mβk

K − γthβk

)
> 0. Under this

condition, (3.31) results in

ρ ≥ γthNβ̄k
Mβk

K − γthβk︸ ︷︷ ︸
C1,k

PR +
γthσ2

c
Mβk

K − γthβk︸ ︷︷ ︸
C2,k

, ∀k. (3.32)

From (30d) and (32), the problem is feasible only if

ρ(max) ≥C1,kPR +C2,k, ∀k, (3.33)

which is equivalent to

PR ≤
ρ(max)−C2,k

C1,k
, ∀k. (3.34)
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Fig. 3.2 Average detection probability versus the radar SNR with different N, with PFA = 10−5,
M = 35, K = 4.

Thus, the optimization problem is feasible only if

PR ≤ min

(
PR(max),

ρ(max)−C2,1

C1,1
, . . . ,

ρ(max)−C2,K

C1,K

)
≜ P̄R. (3.35)

From (30a) and (33), we have

µ̄ ≤

∣∣∣α|2LPRtr
(

AAH)

βbr max
k

(C1,kPR +C2,k)

=

∣∣∣α|2Ltr
(

AAH)

βbr max
k

(C1,k +C2,k/PR)

≤

∣∣∣α|2LP̄Rtr
(

AAH)

βbr max
k

(C1,kP̄R +C2,k)
. (3.36)
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Fig. 3.3 Average detection probability versus the radar SNR, with and without interference
from the BS.

Therefore, the optimal values of PR and ρ are
P∗

R = P̄R

ρ∗ = max
k

(C1,kP̄R +C2,k),

(36)

which yield the optimum value of µ̄ as

µ̄
∗ =

∣∣∣α|2LP̄Rtr
(

AAH)

βbr max
k

(C1,kP̄R +C2,k)
. (3.37)
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Fig. 3.4 The downlink spectral efficiency versus the number of base station antennas (M), for
different radar SNR, K = 10.

3.5 Numerical Results

In this section, we provide numerical results to verify our analysis based on Monte-Carlo
simulations with 50,000 iterations. For all examples, we choose σ2

R = σ2
C = 1, and PFA = 10−5.

We start with a simple model where all large-scale fading coefficients are equal to 1, i.e,
βk = β̄k = βbr = 1,∀k. We first evaluate the tightness of our closed-form expression for the
probability of detection. Figure 3.2 shows the average probability of detection versus the radar
SNR, for M = 35, K = 4, and ρ = 0 dB. As mentioned before, we assume that the MIMO radar
system deploys a ULA. The inter-antenna spacing for MIMO radar is d = λ/2. The radar SNR
is defined as SNRR = L|α|2PR

σ2
R

[40]. The target is set to be located at the direction of θ = 10◦.
In Fig. 3.2, the analytical curves are generated by using the closed-form expression given by
(3.22), while the simulation curves are generated by using (3.18) together with Monte-Carlo
experiments. We can see from the figure that the relative gap between our analytical results and
the simulation results is very small which verifies the tightness of our approximating closed-
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Fig. 3.5 The downlink spectral efficiency versus the number of the radar antennas (N), K = 20,
ρ = 5 dB.

form expression. In addition, as expected, Fig. 3.2 shows that the probability of detection
improves when the SNR increases or the number of antennas at the radar increases.

Next, we study the effect of interference from the BS on the performance of the radar link.
Figure 3.3 shows the average probability of detection with and without interference from the
BS. The case of without interference from the BS is equivalent to the scenario where there
is no coexistence between massive MIMO and radar communications. For this case, we set
ρ = 0. It can be seen from Fig. 3.3 that the interference from the BS significantly reduces
the performance of the radar communications. For example, when the radar SNR is −2 dB,
the average probability of detection is equal to 0.4 and 0.9 for the cases with and without
interference from the BS, respectively.

Figure 3.4 shows the downlink spectral efficiency of massive MIMO systems versus the
number of BS antennas M, for different radar SNRs. The analytical results perfectly match
with the simulation results, which verifies the correctness of our analysis. As expected, when
the number of BS antennas increases, the spectral efficiency increases as well. In addition,
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Fig. 3.6 Trade-off between the downlink spectral efficiency and the probability of detection
with different radar SNR, M = 500.

the radar SNR has a strong effect on the spectral efficiency. The figure also shows that by
using more antennas at the BS, we can reduce the effect of interference from the radar. For
example, when the radar SNR increases from −5 dB to 5 dB, the spectral efficiency reduces
about 2.5 times at M = 100, and about 2 times at M = 200. The strong effect of the radar
interference on the massive MIMO systems is also shown in Fig. 3.5 where we plot the spectral
efficiency as a function of the number of transmit/receive antennas at the radar. Note that
the transmit signal vector at the radar is

√
PRs, where E

{
ssH
}
= IN . Thus, the total transmit

power at the radar is NPR. As a result, the more antennas are used at the radar, the more
interference is caused on the massive MIMO system, and hence, the spectral efficiency reduces.
Finally, Fig. 3.6 shows the important trade-off between the performance of massive MIMO and
radar communication systems. For a given radar SNR, when the spectral efficiency increases,
the probability of detection decreases and vice versa. Figure 3.7 shows the comparison of
detection probability with and without optimal power allocation following the methodology in
Section 3.4. Without power allocation means that we use the full powers at the BS and the radar,
i.e., ρ = ρ(max) and PR = PR(max). For fair comparison, in power allocation, we choose SEth
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Fig. 3.7 Average probability of detection with and without power allocation for different number
of antennas (M) and (N), where PR(max) = 0 dB, ρ(max) = 10 dB, K = 4.

based on the case of without power allocation. It is evident to see the substantial improvement
in the probability of detection. For example, at (M = 30, N = 15), when the radar SNR is
0 dB, the average probability of detection is about 0.97 and 0.7 for the cases with and without
optimal power allocation, respectively. In addition, as shown in the figure, the probability of
detection improves when M and N increase. This implies that using more antennas at the BS
will improve the massive MIMO system performance without affecting the radar performance.

We next consider a more practical scenario, where the large-scale fading is modeled by
path loss, shadow fading, and random user locations. To generate the large-scale fading βk, β̄k

and βbr, we follow the model described in [129]. More precisely, we consider a circular cell
with a radius of 1 Km. In the centre of the cell, there is a BS with M antennas serving K users
that are randomly located within this cell. The MIMO radar is located 2 Km from the BS. The
large-scale fading coefficient βk is modeled as

βk = PL0

(
dk

Rmin

)υ

×10
σsh·N (0,1)

10 , (3.38)
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Fig. 3.8 CDF of the per-user spectral efficiency. Here, M = 100.

where dk is the distance between user k and the MIMO radar, while PL0,υ ,σsh denote a
reference path loss constant which is chosen to satisfy a given downlink cell-edge SNR, path
loss exponent and the standard deviation of the shadow fading, respectively. The same model is
applied for β̄k and βbr. In our examples, we chose υ = 3.8, σsh = 8dB, Rmin = 100 m. Figure
3.8 illustrates the cumulative distribution of the per-user spectral efficiency for different K,
with M = 100 and SNRd = 20dB. We can see that per-user rate in the case of K = 10 is higher
than that in the case of K = 20. This comes from the fact that when the number of users is
large, the system suffers more interuser interference. Finally, Fig. 3.9 shows the cumulative
distribution of the probability of detection for different transmit power at the BS. As we can see,
the transmit power of the BS has a significant effect on the performance of the radar link. In
particular, when the transmit power ρ increases from 0 dB to 20 dB, the probability of detection
reduces significantly.
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Fig. 3.9 CDF of the probability of detection. Here, M = 100,K = 10.

3.6 Conclusions

In this work, we have considered the coexistence between downlink massive MIMO communi-
cation and MIMO radar systems to enable the operation of these two systems with minimal
mutual interference. In the massive MIMO system, we consider TDD operation with the MR
precoding scheme. Our asymptotic analysis showed that the use of massive number of antennas
at the BS can reduce the interference to the radar system, while guaranteeing a satisfactory
quality of service at the massive MIMO system. This implies that by using massive MIMO
architectures, we can make the coexistence between radar and communication systems feasible.
To get more insights, and to facilitate the subsequent design of the considered system, we
analytically derived the approximating probability of detection and exact downlink spectral
efficiency in closed-forms. Based on the constraints on the transmit powers at the BS and the
radar, and quality of service of communication systems, we formulated and solved a power
allocation problem to maximize the probability of detection for MIMO radar. In comparison
with the non-optimized scenario, our proposed power allocation improves the detection proba-
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bility significantly. Our numerical results verified the tightness as well as the correctness of our
closed-form expressions.



Chapter 4

Protecting Massive MIMO-Radar
Coexistence: Precoding Design and Power
Control

4.1 Introduction

Spectrum sharing between the radar and cellular communication systems, termed as communi-

cation/radar co-existing systems, has been envisioned as an enabling solution to address the
explosive growth of wireless traffic demands and shortage of licensed spectra [3, 1, 6, 73].
Nevertheless, the inherent challenge of spectrum sharing, i.e., inter-system interference that
compromises the performance of both systems, calls for an efficient cross interference man-
agement and spectrum assignment. To facilitate co-existence with overlaid communication
systems, a variety of techniques, such as opportunistic spectrum sharing between cellular and
rotating radar [130], interference mitigation [3, 131], precoding or spatial separation [3, 132],
and waveform design for radar [3, 133, 134] have been proposed in the literature.

The widespread deployment of the massive multiple-input, multiple-output (MIMO) tech-
nology in cellular networks on one hand [10, 11], and the potential of MIMO radars on the
other hand [30], has paved the way to the co-existence of MIMO structures. MIMO technology
offers waveform diversity and higher detection capability for the radars, while at the same time,
massive MIMO technology delivers the significant user coverage and spectral efficiency (SE)
enhancement for the cellular systems. While the literature has focused more on conventional
MIMO for both systems, the potential of massive MIMO technology to further boost the
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system’s performance has not been thoroughly studied yet. Massive MIMO is a key enabling
technology for 5G and beyond networks, which relies on a large number of antennas at the BS
to provide high spectral and energy efficiency using relatively simple processing [126]. More
importantly, a BS with a large-antenna array can easily form a null to minimize interference
to a coexistent radar. This motivates us to develop a massive MIMO communication system
overlaid with a radar system.

4.1.1 Related Works

To manage the interference between the MIMO radar system and MIMO cellular networks,
the null space projection method [76, 77] and optimum beamforming design [40, 78, 79, 135]
have been widely discussed in the literature. More specifically, Mahal et al. [76] proposed a
radar precoder design using subspace projection methods and based on zero-forcing (ZF) and
minimum mean-square-error (MMSE) criteria. Biswas et al. [77] applied null-space based
waveform projection to mitigate the interference from the radar system toward a full-duplex
cellular system and proposed a joint transceiver design at the base station (BS) and users to
maximize the detection probability of the MIMO radar system. The authors in [40] considered
the transmit beamforming design for spectrum sharing between downlink multiuser MIMO
communication and colocated MIMO radar to maximize the detection probability of the radar,
while guaranteeing the transmit power budget of the BS and the received signal-to-interference-
plus-noise-ratio (SINR) of each downlink user. The authors in [40] focused on the transmit
beamforming design for spectrum sharing between downlink multiuser MIMO communication
and colocated MIMO radar. Their aim was to maximize the radar’s detection probability, while
ensuring that the base station’s transmit power budget and each downlink user’s received signal-
to-interference-plus-noise ratio (SINR) are maintained. Qian et al. [78] addressed the problem
of joint design of the radar transmit code, radar receive filter, and the communication system
codebook for the co-existence of MIMO radar and MIMO communication. Liu et al. [79]
investigated power efficient transmission in the overlaid systems, where the BS beamforming is
designed to minimize the transmit power at the BS, while guaranteeing the receive SINR at the
users and the interference level from BS to radar. Pu et al. [135] extended the proposed design
in [79] by taking the radar transmit waveform design into consideration and maximized the
radar SINR, under the constraints of communication constructive interference, radar waveform
similarity and constant modulus.
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4.1.2 Research Gap and Main Contributions

The integration of the massive MIMO into communication/radar co-existing systems has been
recently studied in [83, 8]. In [83], the rate region of a coexistence based joint radar and
communications system, comprising a single cell massive MIMO communication system
and a static MIMO radar has been characterized. In the presence of radar interference, the
uplink and downlink achievable rates of the cellular system have been derived by applying
MMSE combining and regularized ZF beamformer at the BS, respectively. In [8], closed-form
expressions for the detection probability of the radar system and the downlink SE of the massive
MIMO system with maximum ratio (MR) precoding were derived. Nonetheless, research on
the coexistence of massive MIMO communications and radar systems is still in its infancy and
how joint precoding design and power allocation affects its performance remains unclear.

Thanks to the promising features of the massive MIMO technology, in this paper, we
investigate the potential benefits of massive MIMO coexisting with MIMO radar to alleviate
the inter-system interference. We consider a joint radar communication system comprising
a single-cell massive MIMO cellular communication system and a MIMO radar operating
over the same frequency band. The specific contributions of our paper can be summarized as
follows:

• We characterize the performance of the cellular and radar system in terms of downlink
SE and detection probability, respectively, in the presence of imperfect channel state
information (CSI). Analytical results for MR and ZF beamforming at the BS are de-
rived. In order to manage the inter-system interference, we design protective ZF (PZF)
precoding at the BS to ensure the radar’s functionality is not significantly impaired
by the interference caused by downlink transmission towards users. Accordingly, we
characterize the performance of the cellular and radar system with the PZF scheme.

• We formulate a power allocation problem with the objective of maximizing the detection
probability for MIMO radar, subject to a power budget constraint at the radar and
minimum SE requirements at the cellular users. This problem is efficiently solved via
the bisection method. Our proposed power allocation strategy provides a significant
detection probability gain for all precoding designs compared to the case without power
allocation.

• Our numerical results show that by increasing the number of BS antennas, the gap
between the PZF and MR design reduces, while ZF constantly outperforms the MR. Nev-



4.2 System Model 53

ertheless, while increasing the number of antennas at the radar results in SE degradation,
it can also significantly enhance the detection probability at the radar site. By imple-
menting power control at both the BS and radar, the MR, ZF, and PZF schemes achieve
detection probability improvements of up to 55%, 49%, and 38%, respectively, compared
to their baseline values, while the detection probability approaches to 1. Finally, our
findings demonstrate that the PZF scheme, when combined with optimal power control,
can consistently achieve a probability of detection exceeding 0.8 with a high probability
(greater than 0.6).

4.2 System Model

We consider a time division duplex (TDD) downlink massive MIMO communication system
coexisting with a MIMO radar system on the same time-frequency resource. Radar is equipped
with N transmit and N receive antennas, while the massive MIMO communication system
includes an M-antenna BS serving K single-antenna users (M > K). The basic structure of the
model is illustrated in Fig. 4.1, where

• gk ∈ CM×1 is the channel vector response between the BS and the k-th user. The channel
gk is modeled as follows:

gk =
√

βkzk, (4.1)

where zk represents the small-scale fading, assuming to include independent and identi-
cally distributed (i.i.d.) RVs, i.e., zk ∼ C N (0,IM), while βk represents the large-scale
fading. Denote by G = [g1 . . .gK] ∈ CM×K the corresponding channel matrix from the
BS to all K users.

• R ∈ CN×M represents the channel matrix from the BS to the radar receiver, whose
elements are i.i.d. ∼ C N (0,βbr) RVs, where βbr is the corresponding large-scale fading
coefficient.

• fk ∈ CN×1 is the channel from the radar transmitter to the k-th user. Denote by F =

[f1 . . . fK] ∈ CN×K the corresponding channel matrix from the radar transmitter to all K

users. We assume that fk ∼ C N
(

0, β̄kIN

)
, where β̄k represents the large-scale fading.

In the following subsections, we provide details on the architecture of the two systems.
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Fig. 4.1 Coexistence between mMIMO cellular systems and MIMO radar.

4.2.1 Massive MIMO Communication System

Our focus here is on data transmission over the downlink with TDD operation. Each transmis-
sion frame is divided to two phases: 1) uplink training phase and 2) downlink data transmission.
Relying on the channel estimates obtained in the uplink training phase, different linear process-
ing schemes are applied at the BS to transmit information towards all users.

Uplink Training

In this phase, the users and radar will first send the pilot sequences to the BS. Then, based
on the received pilot signals, the BS will estimate the channels to users and radar. The CSI
of the radar at the BS is required to design the PZF scheme and protect the radar against the
interference from the BS. Let τp be the number of symbols per coherence interval used for
uplink training phase. All users and radar simultaneously transmit pilot sequences of length τp

symbols.

Let √τpΦΦΦr ∈ Cτp×N , and √
τpΦΦΦp ∈ Cτp×K be the pilot sequences sent by the radar and the

K users, respectively. It is assumed that pilot sequences transmitted from all users and radar
are pairwisely orthogonal, i.e., ΦΦΦH

r ΦΦΦr = IIIN , ΦΦΦH
p ΦΦΦp = IIIK , ΦΦΦH

r ΦΦΦp = 000N×K , and ΦΦΦH
p ΦΦΦr = 000K×N .
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This requires τp ≥ N +K. Then, the received pilot signal at the BS can be expressed as

Yp =
√

τpPRRH
ΦΦΦ

H
r +

√
τpρuGΦΦΦ

H
p +N, (4.2)

where N ∈ CM×τp is the AWGN, whose elements have zero mean and variance σ2
C.

Denote by R̂ and ĝk the MMSE estimates of R and gk, respectively. Then, they can be
expressed as

R̂ = R+ R̃, (4.3)

ĝk = gk + g̃k, (4.4)

where R̃ and g̃k represent the corresponding channel estimation errors. Following [136], the
elements of R̂ and the elements of ĝk are independent and distributed as C N (0,γr) and
C N (0,γk), respectively, with

γr =
τpPRβ 2

br

τpPRβbr +σ2
C
, (4.5)

γk =
τpρuβ 2

k

τpρuβk +σ2
C
, (4.6)

where PR and ρu are the transmit power of each pilot symbol at the radar and the user, re-
spectively, and σ2

C is the noise power at the BS. From the MMSE estimation property, R̃ is
independent of R̂ and g̃k is independent of ĝk, and hence, [R̃]n,m ∼ C N

(
0,(βbr − γr)

)
and

g̃k ∼ C N
(

0,(βk − γk)IM

)
. We can represent the overall channel estimation matrix between

the BS and users as

Ĝ = HD
1
2
γ , (4.7)

where Ĝ = [ĝ1, . . . , ĝK] ∈ CM×K , H = [h1, . . . ,hK] ∈ CM×K with hk ∼ C N (0,IM), while
Dγ = diag{γ1, . . . ,γK} is a diagonal matrix. We can further represent ĝk as

ĝk =
√

γkhk. (4.8)
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Downlink Signal Transmission

By using the channel estimates obtained during the training phase, precoding matrix is designed
at the BS for downlink data transmission phase. Suppose that the information symbols d =

[d1, . . . ,dK]
T ∈ CK×1 are independent with E

{
ddH

}
= IK , where dk denotes the information

symbol intended for the k-th user. Then, the signal transmitted from the BS can be expressed as

x = TD
1
2
ηd =

K

∑
k=1

√
ηktkdk, (4.9)

where T = [t1 . . . tK] ∈ CM×K is the precoding matrix, which is a function of the channel
estimate Ĝ and tk ∈ CN×1, where E

{
∥tk∥2

}
= 1, is the precoding vector for user k, Dη =

diag{η1, . . . ,ηK} is a diagonal matrix whose k-th diagonal element, ηk, represents the power
control coefficient for user k, chosen to satisfy the power constraint at the BS E{∥x∥2} ≤ 1,
which implies ∑

K
k=1 ηk ≤ 1. The received signal vector at the users can be expressed as

y =
√

ρGTx︸ ︷︷ ︸
desired signal

+
√

PRFT s,︸ ︷︷ ︸
interference from radar

+n, (4.10)

where ρ denotes the BS transmit power, s ∈ CN×1 is the transmitted probing signal from the
radar, with E

{
ssH
}
= IN , to the target, while n ∼CN

(
0,σ2

CIN

)
is the AWGN at the users.

4.2.2 MIMO Radar

We consider a MIMO radar system that detects targets located in the far field. Assuming the
MIMO radar-to-target channel is line-of-sight (LoS), the reflected signal (echo from the target)
from one point-like target to the radar receiver is interfered by the signal transmitted from the
BS. Assuming that a uniform linear array (ULA) is used at the radar, at the l-th snapshot, the
discrete signal vector yR[l] received by the radar is given by [40, 137]

yR[l] =α
√

PRA(θ)s[l]+R
K

∑
k=1

√
ηktkdk[l],+w[l], (4.11)

where α denotes the complex path loss of the radar-target-radar path; PR is the transmitted
power from the MIMO radar; θ is the azimuth angle of the target; w[l] =

[
wi[l], . . .wN [l]

]T ∈
CN×1 is the received additive white Gaussian noise (AWGN) vector at the l-th snapshot with
wm[l]∼ C N

(
0,σ2

R

)
, ∀m; A(θ) = aR(θ)aT

T (θ), in which aT (θ) ∈ CN×1 and aR(θ) ∈ CN×1
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are the transmit and receive steering vectors of the radar antenna array. Similar to [40, 137],
and without significant loss of generality, we assume that aR(θ) = aT (θ) = a(θ), where

a(θ) =
[
1,e− j2πd sin(θ), . . . ,e− j2πd(N−1)sin(θ)

]T
, (4.12)

where d represents the inter-antenna spacing normalized by the carrier wavelength.

4.3 Performance Analysis

We evaluate the performance, in terms of downlink SE of the cellular communication systems
and detection probability for the radar system, for different precoding schemes. Theoretically,
the precoding matrix, T, can be optimized to achieve the optimal performance of the system.
However, the complexity of the optimum precoding grows dramatically with M and K. For
the massive antenna regime with M ≫ K, it is known that linear precoders, i.e., MR and ZF
perform fairly well [13, 20, 138]. Therefore, we focus on the performance of those precoders
in the following subsections. While these two precoders provide cellular users with satisfactory
performance, the BS may create interference at the radar receiver. To address this issue, we
propose to use PZF precoding at the BS, to guarantee full protection for the radar against
signals intended for cellular users.

4.3.1 Spectral Efficiency

We assume that estimated CSI is not available at the user side and each user uses only the
statistical CSI for signal detection. Therefore, users treat the mean effective channel gain as the
channel knowledge for data detection. By invoking (4.10) and using the use-and-then-forget
bounding technique in [126, Eq. (2.44)][9], known as hardening bound, we derive a lower
bound on the downlink SE of user k. To this end, using (4.10) we first rewrite the received
signal at user k as

yk = DSkdk +BUkdk + ∑
k′ ̸=k

IUIkk′dk′ +
√

PRfT
k s+nk, (4.13)

where
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DSk =
√

ρηkE
{

gT
k tk

}
, (4.14)

BUk =
√

ρηk

(
gT

k tk −E
{

gT
k tk

})
, (4.15)

IUIkk′ =
√

ρηk′gT
k tk′, (4.16)

represent the strength of the desired signal (DSk), the beamforming gain uncertainty (BUk),
and the interference caused by the k′-th user, respectively.

Accordingly, an achievable downlink SE at the k-th user can be expressed as

SEk =

(
1−

τp

τ

)
log2(1+SINRk), (4.17)

where the effective SINR is given by

SINRk =

∣∣DSk
∣∣2

E
{∣∣BUk

∣∣2}+∑k′ ̸=kE
{∣∣IUIkk′

∣∣2}+PRβ̄kN +σ2
C

. (4.18)

The achievable downlink SE in (4.17) is general and valid regardless of the precoding
scheme used at the BS. We derive closed-form expressions for the MR, ZF, and PZF precoding
schemes in the following subsection.

Maximum-Ratio Precoder

The MR precoder is employed at the BS, particularly due to its advantages including low
computational complexity, ease of analysis, and reasonable performance, as shown in [13, 20,
138, 139]. With MR precoding design, the linear precoding vectors tk = tMR

k given by [20]

tMR
k = αMRh∗

k , (4.19)

where αMR = 1√
M

is the normalization factor.

Proposition 3 The SE of the k-th user achieved by the MR precoding can be expressed

by (4.20), at the top of the next page.

SEMR
k =

(
1−

τp

τ

)
log2

(
1+

Mργkηk

ργk ∑
K
k′=1 ηk′ +PRβ̄kN +σ2

C

)
,∀k. (4.20)
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Proof 3 See Appendix B.

Zero-Forcing Precoder

In order to mitigate the inter-user interference, we exploit the ZF principle for precoding design.
With ZF, the precoding vector tk can be expressed as

tZF
k = αZF

[
H∗(HT H∗)−1

]
(:,k)

, (4.21)

where αZF =
√

M−K is the normalization factor [129].

Proposition 4 The SE of the k-th user achieved by the ZF precoding can be expressed by (4.22),
at the top of the next page.

SEZF
k =

(
1−

τp

τ

)
log2

(
1+

(M−K)ργkηk

ρ(βk − γk)∑
K
k′=1 ηk′ +PRβ̄kN +σ2

C

)
,∀k. (4.22)

Proof 4 See Appendix B.

Protective Zero-Forcing Precoder

The MR and ZF precoders do not take the interference from the BS to radar into account. To
protect the radar against the interference caused by the downlink transmission towards cellular
users, we now elaborate on the PZF precoding scheme. The PZF scheme ensures that the radar
is fully protected from BS interference if the BS has perfect CSI from the radar. To achieve this
objective, some degrees-of-freedom at the BS are used to steer the BS beams into the radar’s
null-space. Therefore, from the perspective of the cellular communication network, we can
see that PZF is inferior to ZF, while it performs better than the MR scheme. Importantly, it
outperforms both ZF and MR in terms of the detection probability.

Let now B denote the projection matrix onto the orthogonal complement of R̂, which can
be expressed as

B = IM − R̂H
(

R̂R̂H
)−1

R̂. (4.23)
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SEPZF
k =

(
1−

τp

τ

)
log2

(
1+

ρ

M (M−K)(M−N)γkηk
ρ

M (M−N)(M−K)(βk − γk)∑
K
k′=1 ηk′ +PRβ̄kN +σ2

C

)
,∀k.

(4.27)

Then, the PZF precoder is designed as

tPZF
k = αPZFBwZF

k , (4.24)

where wZF
k and tPZF

k are k-th column of WZF and TPZF matrices, respectively, where WZF =

H∗(HT H∗)−1 and TPZF = αPZFBWZF. Moreover, the normalization factor is expressed as:

αPZF =
1√

E{∥BwZF
k ∥2}

=
1√

E{tr(wZF
k (wZF

k )HB)}
, (4.25)

where we have used BHB = B. By noticing that B is independent of wZF
k , we have

αPZF =
1√

tr
(
E
{

wZF
k (wZF

k )H
}
E{B}

)

=

√
M(M−K)

(M−N)
, (4.26)

where we have applied Lemma 1 from Appendix B.0.1 and [140, Lemma 2.10] to derive the
final result. Accordingly, the achievable SE by the k-th user using PZF precoding is given in
the following proposition.

The idea of PZF is the same as interference nulling which has been introduced in the space
of multi-cell cellular systems [141] to mitigate the inter-cell interference and next applied to the
cell-free massive MIMO systems in [142] to suppress the interference caused by each access
point to part of users.

Proposition 5 The SE of the k-th user achieved by the PZF precoding can be expressed

by (4.27) at the top of the next page.

Proof 5 See Appendix B.
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4.3.2 Detection Probability

In this subsection, we derive the detection probability for radar system, under the Neyman-
Pearson criterion. By using the Generalized Likelihood Ratio Test, the asymptotic detection
probability for radar Pd is given as [8]

Pd = 1−FX2
2 (µ)

(
F−1

X2
2
(1−PFA)

)
, (4.28)

where PFA is the radar’s probability of false alarm, FX2
2 (µ)

is the non-central chi-square cu-
mulative distribution function (CDF) with two degrees-of-freedom (DoF), F−1

X2
2

is the inverse

function of chi-square CDF, while the non-centrality parameter, µ , for X2
2 is given by [8]

µ = |α|2LPRtr
(

AAH
(

RT̃RH +σ
2
RIN

)−1
)
, (4.29)

where T̃ = TDηTH .

By invoking the generalized Marcum Q-function, Pd can be written as

Pd = Q1

(√
µ,
√

CFA

)
, (4.30)

where CFA = F−1
x2

2
(1−PFA) [8]. Hence, in order to derive Pd for different precoding schemes,

we need to find µ .

By leveraging the massive MIMO concept, we are able to obtain a tight approximation to µ .
Specifically, by using the trace lemma [143], as M → ∞, for the considered linear precoding
schemes, we get  1

M RT̃iRH − βbr
M tr(T̃i)IN

a.s.→ 0 i ∈ {MR,ZF}
1
M RT̃PZFRH − (βbr−γr)

M tr(T̃PZF)IN
a.s.→ 0,

(4.31)

where a.s.→ denotes the almost sure convergence. Moreover, in the case of PZF scheme, we have
used the fact that

RT̃PZFRH = (R̂+ R̃)T̃PZF(R̂+ R̃)H

= R̃T̃PZFR̃H . (4.32)
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As a result, (4.29) can be tightly approximated as

µ
i ≈ |α|2LPRtr

(
AAH

(
ζitr(T̃i)IN +σ

2
RIN

)−1
)

=
|α|2LPRtr(AAH)

ζitr
(

T̃i
)
+σ2

R

, (4.33)

where ζMR = ζZF = βbr and ζPZF = (βbr − γr). We now derive closed-form expressions of µ

for the MR, ZF, and PZF precoding schemes in the following subsections.

Maximum-Ratio Precoder:

From (4.19), T̃MR can be defined as

T̃MR =
K

∑
k=1

tMR
k ηk(tMR

k )H = TMRDη(TMR)H

=
1
M
(H∗DηHT ). (4.34)

Since 1
M HT H∗ → IK for sufficiently large M [20], we have tr

(
T̃MR

)
= tr

(
Dη

HT H∗

M

)
≈

∑
K
k=1 ηk. As a result,

µ
MR ≈

|α|2LPRtr
(

AAH
)

βbr ∑
K
k=1 ηk +σ2

R
. (4.35)

Zero-Forcing Precoder:

Form (4.21), T̃ZF can be derived as

T̃ZF = TZFDη(TZF)H

= (M−K)H∗(HT H∗)−1Dη(HT H∗)−1HT . (4.36)
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To this end, by using (4.36), we get

tr
(

T̃ZF
)
= (M−K)tr

(
Dη(HT H∗)−1

)
(a)
≈ M−K

M
tr
(
Dη

)
(b)
=

M−K
M

K

∑
k=1

ηk, (4.37)

where (a) follows from the fact that (HT H∗)−1 ≈ 1
M IK for sufficiently large values of M, and (b)

holds since tr
(
Dη

)
= ∑

K
k=1 ηk. Then, the non-centrality parameter µZF can be approximated

by

µ
ZF ≈

|α|2LPRtr
(

AAH
)

M−K
M βbr ∑

K
k=1 ηk +σ2

R
. (4.38)

Protective Zero-Forcing Precoder:

Proposition 6 With PZF precoding, the non-centrality parameter, µ , can be derived as

µ
PZF ≈

|α|2LPRtr
(

AAH
)

M−K
M (βbr − γr)∑

K
k=1 ηk +σ2

R
. (4.39)

Proof 6 See Appendix B.

4.4 Power Optimization

To protect the radar system against the BS transmissions and at the same time to guarantee
the performance requirements of the cellular users, power control at the BS and radar can be
applied. In this regard, we aim at selecting the radar transmit power PR and BS power control
coefficients ηk to maximize the detection probability for MIMO radar, under the constraints
on per-user SE and sum of power control coefficients ηk. More precisely, the optimization
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problem is mathematically described as

(P1) : max
PR,ηk

Pd (4.40a)

s.t. SEk ≥ SEk,th, ∀k, (4.40b)

0 ≤ PR ≤ PR,max, (4.40c)
K

∑
k=1

ηk ≤ 1, (4.40d)

where PR,max is the maximum transmit power at the MIMO radar and SEk,th is the minimum SE
requirement by the k-th user. The constraint (4.40d) represents the maximum transmit power
constraint at the BS. By invoking (4.30), and since the Marcum Q-function is an increasing
function of µ , we can further rewrite (P1) as the following optimization problem

(P2) : max
PR,ηk

µ (4.41a)

s.t. SEk ≥ SEk,th, ∀k, (4.41b)

0 ≤ PR ≤ PR,max, (4.41c)
K

∑
k=1

ηk ≤ 1. (4.41d)

By invoking (4.35), (4.38), and (4.39), we can rewrite the optimization problem (P2) in the
general form

(P3) : max
PR,ηk

|α|2LPRtr
(

AAH
)

ai ∑
K
k=1 ηk +σ2

R
(4.42a)

s.t.
biρηkγk

ρci,k ∑
K
k′=1 ηk′+β̄kPRN+1

≥ γk,th, ∀k, (4.42b)

0 ≤ PR ≤ PR,max, (4.42c)
K

∑
k=1

ηk ≤ 1, (4.42d)

where γk,th = 2SEk,th −1, i∈{MR,PZF,ZF} and aMR = βbr, aZF =
(M−K)

M βbr, aPZF =
M−K

M (βbr−
γr), bMR = M; bPZF =

1
M (M−K)(M−N), bZF = (M−K); cMR,k = γk, cPZF,k = bPZF(βk − γk),

and cZF,k = βk − γk.
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Algorithm 1 Bisection Algorithm for Solving (P4)
1: Initialization: choose the initial values of tmin and tmax, where tmin and tmax define a range

of relevant values of the objective function, choose a tolerance ς ≥ 0.
2: While tmin − tmax ≤ ς .
3: Set t = tmin+tmax

2 and solve the feasibility problem.
4: If problem (P4) is feasible, then set tmin = t, else set tmax = t.
5: Stop if tmax − tmin ≤ ε . Otherwise, go to Step 2.

4.4.1 Bisection Search-Based Solution

Since expression (4.42a) is quasi-concave and constraints of the problem are linear functions
of the optimization variables, the optimization problem (P3) is quasi-concave. Thus, it can be
equivalently reformulated as

(P4) : max
PR,ηk

t (4.43a)

s.t. biρηkγk ≥

γk,th

(
ρci,k

K

∑
k′=1

ηk′+β̄kPRN+1
)
,∀k, (4.43b)

∣∣∣α|2LPRtr
(

AAH)≥ t
(

ai

K

∑
k=1

ηk +σ
2
R

)
(4.43c)

0 ≤ PR ≤ PR,max, (4.43d)
K

∑
k=1

ηk ≤ 1, (4.43e)

where

t =

∣∣∣α|2LPRtr
(

AAH)

ai ∑
K
k=1 ηk +σ2

R
, (4.44)

is an auxiliary variable.

Problems (4.43) can be solved efficiently by a bisection search[144], where in each step we
solve a sequence of convex feasibility problems as detailed in Algorithm 1.
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Convergence and Complexity Analysis

Let p⋆ denote the optimal value of the quasiconvex optimization problem (P3). If the feasibility
problem (P4) is feasible, then we have p⋆ ≤ t. Conversely, if the problem (P4) is infeasible,
then we can conclude that p⋆ ≥ t. We can assess whether the optimal value, denoted as p⋆, for
a quasiconvex optimization problem is less than or greater than a predefined value t by solving
the convex feasibility problem (P4). If the convex feasibility problem yields a feasible solution,
we can conclude that p⋆ ≤ t. Conversely, if the convex feasibility problem is infeasible, it
implies that p⋆ ≥ t. To implement a bisection algorithm, the interval [tmin, tmax] is guaranteed to
contain p⋆, i.e., we have tmin ≤ p⋆ ≤ tmin at each step. In each iteration, the interval is divided in
two, i.e., bisected, so the length of the interval after k iterations is (tmax−tmin)

2k , where (tmax− tmin)

is the length of the initial interval. It follows that exactly ⌈log2((tmax − tmin)/ε)⌉ iterations
are required before the algorithm terminates. Each step involves solving the convex feasibility
problem (P4).

According to [145], the per-iteration cost to solve the feasibility problem (P4) is O
(
(nl +

nv)n2
vn0.5

l

)
, where nl = K +3 denotes the number of linear constraints and nv = K +1 is the

number of real valued scalar decision variables. Therefore, the overall complexity of the
bisection algorithm is ⌈log2((tmax − tmin)/ε)⌉O

(
(nl +nv)n2

vn0.5
l

)
.

4.4.2 Linear Programming Solution

The computational complexity of the bisection-based search algorithm can be reduced by
noticing that (P1) can be presented as a linear programming (LP) problem. The optimization
problem in (4.42) is a non-concave problem due to non-concavity of the objective function.
Before proceeding, we notice that both the objective function and first constraint (4.42a) are
coupled together via the optimization variables PR and ηk, for k = 1, . . . ,K. We now prove
that the optimal value for PR is P⋆

R = PR,max. To this end, assume that P⋆
R ≥ PR,max. Now, we

define the new variables PR,new = cP⋆
R and ηk,new = cη⋆

k , where c ≥ 1. Then, the objective
function (4.42a) can be obtained as

f (PR,new,{ηk,new}) =
|α|2LcP∗

Rtr
(

AAH
)

aic∑
K
k=1 η∗

k +σ2
R

≥
|α|2LcP⋆

R tr
(

AAH
)

aic∑
K
k=1 η∗

k +σ2
R

= f (P⋆
R ,{η

⋆
k }). (4.45)
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Moreover, at given PR,new and ηk,new, the first constraint is upper bounded as

biρcη⋆
k γk

ρci,kc∑
K
k′=1η

⋆
k′+β̄kcP∗

RN+1
≥

biρη⋆
k γk

ρci,k ∑
K
k′=1 η⋆

k′+β̄kP∗
RN +1

, ∀k. (4.46)

Therefore, by increasing PR and ηk, respectively, beyond PR,max and η⋆
k , the objective function

is increased, and the first constraint is still satisfied. This implies that at the optimal point we
have P⋆

R = PR,max.

Now, for the sake of notational simplicity, let 1K = [1, . . . ,1]T be a vector of size K × 1.
Moreover, define η = [η1, . . . ,ηK]

T . Then, the optimization problem (P3) can be reduced to

(P5) : max
η

1T
Kη +

σ2
R

ai
(4.47a)

s.t. Cη ≤ b, (4.47b)

where b = [Λ1, . . . ,ΛK,1], with Λk =−γk,th(β̄kPR,maxN+1) and

C =



Ψ1 Θ1 Θ1 . . . Θ1 Θ1

Θ2 Ψ2 Θ2 . . . Θ2 Θ2
...

...
... . . . ...

...
ΘK ΘK ΘK . . . ΘK ΨK

1 1 1 . . . 1 1


, (4.48)

with Θk = ρci,kγk,th and Ψk = ρci,kγk,th −ρbiγk. The problem (P5) is an LP problem and can
be efficiently solved via interior-point algorithms [144]. We use the linprog function in Matlab
platform to solve Problem (P5).

According to [145], the complexity of the optimization problem (P5) is O
(
(nl +nv)n2

vn0.5
l

)
,

where nl = K +1 denotes the number of linear constraints while nv = K is the number of real
valued scalar decision variables.
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4.5 Extensions

4.5.1 Multi-target Scenarios

The considered spectrum sharing MIMO radar and communication system has interesting
application scenarios. For instance, identifying abnormal or suspicious activities in a specific
area and sending an alert is one potential scenario. Therefore, the coexistence of co-located
MIMO radar for single-target detection and communication has been the subject of several
research studies [40, 22]. On the other hand, multi-target detection can be achieved through
the multibeam/beampattern design at the MIMO radar [146]. Accordingly, new performance
metrics such as beampattern gain are used in the literature to study the performance of such
designs.

The primary concept of beampattern design is to determine the covariance matrix of the
radar probing signals through convex optimization problems. Let Rw = 1

L ∑
L
l=1 slsH

l denote
the covariance matrix of the probing signals, where sl is the l-th snapshot across the radar
antennas. Three different optimization problems have been proposed in the literature to
determine Rw. More specifically, the authors in [96] formulated a constrained least-squares
problem to approach an ideal beampattern as

min
α,Rw

M

∑
m=1

∣∣∣αP̃d (θm)−aH (θm)Rwa(θm)
∣∣∣2 (4.49a)

s.t. diag(Rw) =
P01N

N
, (4.49b)

Rw ⪰ 0,Rw = Rw
H , (4.49c)

α ≥ 0 (4.49d)

tr(f∗i fT
i Rw) = 0, ∀i, (4.49e)

where {θm}M
m=1 is defined as a fine angular grid that covers the detection angle range of [−π

2 ,
π

2 ],
a(θm) = [1,e− j2πd sin(θm), . . . ,e− j2πd(N−1)sin(θm)]T ∈CN×1 is the steering vector of the transmit
antenna array, P̃d (θm) is the desired ideal beampattern gain at θm, P0 is the power budget, α

is a scaling factor, and 1N ∈ RN×1. We notice that via constraint (4.49e), we force the radar
signals to fall into the nullspace of the channel between the radar antennas and downlink users.

Nevertheless, finding the detection probability of the radar is challenging. We leave the
performance evaluation of the multi-target scenario for future investigation.
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4.5.2 Correlated Fading

In this subsection, we extend our analysis to consider the spatially correlated Raleigh fading
scenario. The correlated Rayleigh channel vector between the k-th user and the BS can be
modeled as

gk ∼ C N (0,Ωk) , (4.50)

where Ωk ∈ CM×M is the transmit correlation matrix specific to terminal k.

Training phase: Based on the observable pilot matrix in (4.2), the BS correlates YP with
the pilot sequence ϕϕϕ p,k of user k, leading to the processed pilot sequence

y̆k,p = Ypϕϕϕ p,k =
√

τpρugk +Nϕϕϕ p,k, (4.51)

where ϕϕϕ p,k ∈Cτp×1 indicates the pilot signal assigned to the k-th user. Based on the observation
y̆k,p, the MMSE estimate of the channel gk is given by

ĝk =
√

τpρuΩkΞky̆k,p,

where

Ξk =

(
τpρuΩk + IM

)−1

. (4.52)

Therefore, the MMSE estimated channel ĝk and the corresponding estimation error g̃k are
complex Gaussian random vectors, distributed as follows

ĝk ∼NC (000, Qk) ,

g̃k ∼NC (000,Ck) ,

where Qk = Ωk −Ck and Ck is expressed as

Ck = Ωk − τpρuΩkΞkΩk. (4.53)

The following Proposition provides the SE at the kth cellular user and detection probability
at the radar over the spatially correlated fading environments and with MR precoding design at
the BS.

We proceed to find closed-form expression for SINRk with MR precoding.
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Proposition 7 For the considered spatially correlated Rayleigh channels, the SE of the k-th

user achieved by the MR precoding is given by (4.54) at the top of the next page.

SEMR,Cor
k =

(
1−

τp

τ

)
log2

1+
ηkρτpρutr(ΩkΞkΩk)

∑
K
k′=1 ηk′ρ

tr(Ωk′Ξk′Ωk′Ωk)
tr(Ωk′Ξk′Ωk′)

+PRβ̄kN +σ2
C

 , (4.54)

Moreover, the detection probability at the radar is given by (4.28), where

µ
MR,Cor ≈ |α|2LPRtr(AAH)

ζMR ∑
K
k=1 ηk +σ2

R
. (4.55)

Proof 7 See Appendix B.

We notice that, in the case of uncorrelated fading channels tr(ΩkΞkΩk)=
Mγk
τpρu

and tr(Ωk′Ξk′Ωk′Ωk)=
Mγkγk′
τpρu

. Therefore, SEMR,Cor
k reduces to SEMR

k in (4.20). Moreover, by comparing (4.55)
and (4.35), we observe that when using MR precoding at the BS, the same detection probability
is achieved over both correlated and uncorrelated Rayleigh fading channels.

Remark 1 Finding closed-form expressions for the achievable SE and detection probability

for ZF and PZF precoding designs seems intractable. However, the corresponding results can

be obtained through numerical simulations.

4.6 Numerical results

In this section, we provide numerical results to verify our analysis and evaluate the performance
of the proposed power control design. We assume that the MIMO radar system deploys
a uniform linear array with inter-antenna spacing d = λ/2. The radar SNR is defined as
SNRR = L|α|2PR

σ2
R

[40]. The target is set to be located at the direction of θ = 10◦. In the
communication system, we consider large-scale fading with path loss, shadow fading, and
random user locations. To generate the large-scale fading coefficients, we adopt the model
proposed in [129]. For the sake of understanding, let us visualize a circular cell with a radius
of approximately 15 kilometres. At the center of the cell, the BS equipped with M antennas
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serves K users randomly distributed within the cell. Furthermore, a MIMO radar is positioned
10 kilometres away from the BS. We model the large-scale fading coefficient β as [129]

β = PL0

(
d

Rmin

)υ

×10
σshz
10 , (4.56)

where β ∈ {βk, β̄k,βbr}, d ∈ {dk, d̄k,dbr} with dk (d̄k) being the distance between the BS (radar)
and user k, while dbr is the distance between the BS and radar; PL0 denotes a reference path loss
constant which is chosen to satisfy a given downlink cell-edge SNR; υ and σsh represent the
path loss exponent and standard deviation of the shadow fading, respectively; and z ∼ N (0,1).
In our examples, we chose υ = 3.8, σsh = 8 dB.

The (i, j) entry in the correlation matrix of terminal k is given by [147]

[Ωk]i, j =
1

2∆

∫
∆+φk

−∆+φk

e− j2πd(i− j)sin(θk)dθk, (4.57)

where ∆ denotes the azimuth angular spread, φk is the central azimuth angle from BS array
to the terminal k, θk is the actual angle-of-departure and d (i− j) captures the inter-element
spacing normalized by the carrier wavelength between i-th and j-th antenna elements. Unless
explicitly stated, we set d(1) = 0.5 and assume that φk drawn from a uniform distribution
on 0, 2π , i.e., φk ∼ U [0,2π]. The instantaneous value of θk is also drawn from a uniform
distribution on −∆

2 , ∆

2 , i.e., θk ∼ U [−∆

2 ,
∆

2 ]. As such, ∆ represents the tota angular spread,
naturally bounded from 0 to 2π radians.

Figure 4.2 shows the downlink SE of different massive MIMO systems versus the number
of BS antennas M, for different precoding schemes MR,ZF and PZF. Our analysis has been
confirmed by the simulation results, demonstrating a precise alignment between the analytical
and simulated outcomes. As anticipated, an increase in the number of BS antennas directly
corresponds to SE enhancement. We observe that the performance gaps between the considered
precoding schemes are decreased, when the number of BS antennas increases. For example, by
increasing the number of BS antennas from M = 200 to M = 400, the gap between the ZF (PZF)
scheme and MR is reduced from 85% (50%) to 72% (27%). This behavior can be explained
as follows: By comparing (4.22) and (4.27), we observe that by increasing the number of BS
antennas M, for a fixed number of receive antennas at the radar, N, we have M−N

N
M→∞−−−→ 1.

Therefore, the numerators of the SINRs inside the logarithmic functions are approximately
the same for the ZF and PZF schemes. However, the first term in the denominator of SINRPZF

k

scales as (M −K), whereas the corresponding term in SINRZF
k scales as 1. Therefore, by



4.6 Numerical results 72

50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3

3.5

27%

85%
50%

72%

Fig. 4.2 Per-user SE versus the number of BS antennas, M, (N = 20, ρ = 20 dB, K = 20,
∆ = 20o).
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Fig. 4.3 Sum-SE versus the number of users, K, (M = 200, ρ = 20 dB, N = 20).
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Fig. 4.4 Per-user SE versus the number of radar antennas, N, (M = 200, ρ = 20 dB, K = 20).
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Fig. 4.5 CDF of the per-user SE for different number of users (N = 20, M = 200, ρ = 20 dB).

increasing M, the reduction in SINRPZF
k becomes greater compared to SINRZF

k . As a result, the
gap between the SE achieved by ZF and PZF increases with higher values of M. Finally, when
comparing the results between the correlated and uncorrelated channels, we find that the same
insights apply to correlated environments.

Figure 4.3 shows the downlink sum-SE of massive MIMO system versus the number of
users K, for different precoding schemes, i.,e MR,ZF and PZF. By increasing the number
of users, sum-SE increases and tends to the maximum value and then starts to reduce due to
increasing pilot overhead. Moreover, we observe that by increasing K, the gap between the ZF
and MR increases, while the gap between the ZF and PZF remains constant, which is due to the
severe increase of the inter-user interference in the case of MR processing. These results reveal
the necessity of developing pilot reuse among different users and designing pilot assignment
algorithms to manage the pilot contamination effects.

To demonstrate the impact of radar interference on massive MIMO systems, we examine
the SE as a function of the number of transmit antennas at the radar in Figure 4.4. As the
number of antennas at the radar increases, the interference towards the massive MIMO system
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Fig. 4.6 Average detection probability versus the radar SNR (M = 200, K = 20, N = 20,
SNRR = 0 dB).
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Fig. 4.7 CDF of detection probability (M = 200, K = 20, N = 20).

increases, leading to SE reduction. For different number of antennas at the radar, MR yields
the worst performance, while ZF outperforms all schemes. Notably, ZF exhibits a remarkable
improvement of 78% over MR, while PZF demonstrates a substantial enhancement of 50%
compared to MR, when the number of radar antennas is N = 20. When the number of radar
antennas is increased to N = 80, ZF achieves a significant improvement of up to 50% over
MR, while PZF exhibits a substantial enhancement of 24% over MR. This further solidifies the
superiority of ZF and PZF techniques over the MR scheme in the given context.

Figure 4.5 shows the cumulative distribution of the per-user SE for different values of K = 5
and K = 20, with M = 200 and ρ = 20 dB. We can observe that the per-user SE in the case of
K = 5 is higher than that in the case of K = 20. This difference can be attributed to the fact
that when there are more users, inter-user interference becomes more prevalent. Additionally,
it is evident from the figure that MR suffers more from inter-user interference compared to ZF
and PZF.

Figure 4.6 provides a comparative analysis of detection probabilities under two power
allocation schemes: our proposed optimal power allocation (OPA) solutions and equal power
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Fig. 4.8 Detection probability versus the SE threshold (M = 200, K = 20, SNRR = 0 dB).



4.6 Numerical results 79

1 2 3 4 5 6 7 8

0

5

10

15

Fig. 4.9 Convergence behavior of the bisection algorithm to solve the problem (P4) for different
number of BS antennas (K = 20, N = 20).
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Fig. 4.10 Average detection probability versus the radar SNR for single and multiple target
scenarios (M = 200, K = 20, N = 20, SNRR = 0 dB)
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allocation (EPA). It can be observed that the results obtained using the OPA via the bisection
algorithm closely match those obtained using LP. In the EPA scenario, the radar transmits
with maximum power level, i.e, PR = PR,max and power control coefficients at the BS are set as
ηk =

1
K , ∀k = 1, . . . ,K. To ensure a fair comparison, the selection of the SE threshold (SEth) in

the power allocation scheme is based on the EPA scenario. Among the considered schemes, our
proposed PZF scheme yields the highest performance, followed by ZF and MR, respectively.
Moreover, our proposed power allocation scheme yields a remarkable enhancement in the
detection probability. For example, when the radar SNR is 2 dB and OPA is applied, the
detection probability of PZF, ZF and MR precoding schemes improved from 0.5, 0.35, and 0.3
to 0.97, 0.72, and 0.68, respectively.

Figure 4.7 shows the CDF of the detection probability for PZF, ZF, and MR precoding
designs and for OPA and EPA. It is evident that our proposed OPA strategy yields a substantial
improvement in the detection probability performance and PZF design provides the best
performance.

Figure 4.8 examines the trade-off between the detection probability and SE for PZF, ZF,
and MR precoding designs and for two different radar antenna number. For a specific network
realization, we first derive the maximum value for SEk,th, termed as SEmax

k,th , according to the
EPA. Then, the optimization problem (P4) is solved for different values of SEk,th = [0,SEmax

k,th ],
and corresponding detection probability is derived. From Fig. 4.8, we can observe that for small
values of SEk,th, the radar can transmit with more power, yielding better detection probability
performance. Moreover, by increasing the number of radar receive antennas the detection
probability is improved, while it degrades the SE of the users in the communication system (cf
Fig. 4.4).

Figure 4.9 shows value of (tmax − tmin) versus the number of iterations for one randomly
generated set of channel realizations for different number of BS antennas. It can be observed
that the algorithm with different number of BS antennas has a similar convergence speed and,
as a matter of fact, converges to the optimal value after only a small number of iterations.

Figure 4.10 presents a comparison of average detection probabilities versus the radar SNR
for both single and multiple target scenarios. In the multiple target scenario, three targets
are located at specific angular directions. The comparison is conducted for three precoding
techniques: MR, ZF, and PZF. A key observation from the figure is the enhanced detection
probability in single target scenarios compared to multiple targets, which is likely due to the
increased interference challenges in multi-target environments. Notably, the PZF scheme
emerges as the most effective technique, achieving the highest detection probability across
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various SNR levels. The superiority of PZF is particularly marked in multiple target scenarios,
underlining its efficiency in interference mitigation.

Remark 2 To improve the detection probability at the radar, the multiple-target detection

problem can be modeled as a multi-hypothesis testing, followed by beampattern design at

the radar [148, 44]. Exploring the development of a closed-form expression for the detection

probability and subsequently applying joint power control and beamforming design at the BS

represent interesting future research directions.

4.7 Conclusion

We have studied the coexistence of massive MIMO communication and MIMO radar. PZF
precoding design has been proposed to achieve favourable SE performance in the cellular
system, while delivering substantial improvements to the radar system. Closed-form expressions
for the SE of users and the detection probability at the radar have been derived for MR, ZF, and
PZF precoding designs. Accordingly, power control at the BS and radar has been developed
to manage the inter-system interference, subject to the SE requirements of the users. The
optimization problem has been efficiently solved, showing substantial improvement in detection
probability, when compared with the equal power allocation scenario.



Chapter 5

Cell-Free Massive MIMO for ISAC:
Access Point Operation Mode Selection
and Power Control

5.1 Introduction

ISAC has recently been envisioned as a key enabling technology for future wireless networks,
aiming to efficiently utilize the congested resources for both communication and sensing [59,
146]. The radar bands set aside for sensing can be harnessed for wireless communication
operation, enabling the implementation of high data-rate applications. To unify the radar
and communication operations, two well-known designs, namely separated and co-located
systems, were introduced in [40, 88, 8] and [73, 96], respectively. The former utilizes different
devices, operating over the same frequency band, for communication and sensing, while in
the latter a single device acts as radar and communication base station (BS) by simultaneously
communicating with multiple downlink users and detecting radar targets.

The main driving force behind the transition from the separated design to a co-located
design was to reduce the complexity induced by side-information exchange among the radar
and communication devices [96]. However, co-located design with a MIMO BS often suffers
from a fairness problem, since the cell-boundary users are subject to inter-cell interference and
significant power decay over long distances. The key feature of massive MIMO technology, i.e.,
inter/intra-cell interference suppression, revitalizes the interest towards separated design with
multiple communication and radar devices to implement distributed ISAC architectures. In
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this context, cell-free massive MIMO with distributed MIMO APs can be exploited to support
ISAC. In cell-free massive MIMO, all users are coherently served by all APs over the same
time-frequency band. Each AP is connected to a central processing unit (CPU) via fronthaul
links, and the CPU is responsible for coordination [10, 9].

The integration of ISAC into cell-free massive MIMO networks, has been recently inves-
tigated in [24, 25]. Specifically, Behdad et al. [24] studied a cell-free massive MIMO ISAC
system, consisting of a fixed number of transmit and receive APs. Users are served by the
transmit APs and, at the same time, the transmitted signals are used for sensing to detect the
presence of a target in a certain location. The reflected signals are received at the receive APs
and then processed at the CPU. The authors proposed a power allocation algorithm to maximize
the sensing signal-to-noise ratio (SNR) under signal-to-interference-plus-noise ratio (SINR)
constraints at the user. Demirhan et al. [25] studied the sensing and communication beam-
forming design problem in cell-free massive MIMO ISAC systems, where a joint beamforming
design was proposed to maximize the sensing SNR, while satisfying the communication SINR
constraints.

Different from the above-mentioned works [24, 25], where the AP operation modes are
fixed, we consider a novel cell-free massive MIMO ISAC network with dynamic AP operation
mode selection. The APs’ operation mode is designed to maximize the minimum SE of the
downlink users, while satisfying the sensing requirement to detect the presence of a single
target in a certain location. Relying on the long-term channel state information (CSI), the APs
are divided into communication APs (C-APs) and sensing APs (S-AP) to support downlink
communication and sensing operations simultaneously. The main contributions of our paper
can be summarized as follows:

• By leveraging the use-and-then-forget strategy, we derive closed-form expressions for
the downlink SE and MRSR to evaluate the performance of the communication and
sensing operation, respectively. Then, we formulate the problem of joint AP operation
mode selection and power control, considering per-AP power constraints and a MASR
constraint for target detection.

• We propose a greedy algorithm for AP operation mode selection. Accordingly, an
alternating optimization (AO) algorithm is developed to handle the coupling between the
C-AP and R-AP power control coefficients’ design.

• Numerical results show that our proposed greedy AP operation mode selection with
optimal power control (GAP-OPC) significantly improves the SE performance of the
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downlink users for given MASR, compared to the greedy/random operation mode selec-
tion with no power control (GAP/RAP-NPC) benchmarks.

5.2 System Model

We consider a cell-free massive MIMO ISAC system under time division duplex operation,
where M APs serve Kd users in the downlink, while radiating probing signals to a target
direction for radar sensing. Each user is equipped with one single antenna, while each AP is
equipped with N antennas. All APs and users operate as half-duplex devices. For notational
simplicity, we define the sets M ≜ {1, . . . ,M} and K ≜ {1, . . . ,Kd} as the collections of indices
of the APs and users, respectively. As shown in Fig. 6.1, downlink communication as well as
target detection take place simultaneously and over the same frequency band. The AP operation
mode selection approach is designed according to the network requirements, determining
whether an AP is dedicated to information transmission or radar sensing. The users receive
information from a group of the APs, termed as C-APs, while the remaining APs, termed as
S-APs, are used for target detection.

5.2.1 Channel Model and Uplink Training

We assume a quasi-static channel model, with each channel coherence interval spanning a
duration of τ symbols. The duration of the training is denoted as τt , while the duration of
downlink information transfer and target detection is (τ − τt).

For the sensing channel model, we assume there is a line-of-sight (LOS) path between the
target location and each AP, which is a commonly adopted model in the literature [24, 25]. The
LOS channel between AP m and target is given by

gm = aN(φ
a
m,t ,φ

e
m,t), ∀m ∈ M, (5.1)

where φ a
m,t , φ e

m,t denote the azimuth and elevation angles of departure (AoD) from AP m towards
the target. Moreover, the q-th entry of the array response vector aN(φ

a
m,t ,φ

e
m,t) ∈CN×1, is given

by

[aN(φ
a
m,t ,φ

e
m,t)]q=

1√
N

exp
(

j2π
d
λ
(q−1)sinφ

e
m,t sinφ

a
m,t

)
, (5.2)

where d and λ denote the AP antenna spacing and carrier wavelength, respectively.
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Fig. 5.1 Cell-free massive MIMO ISAC system.

The channel vector between the m-th AP and k-th user is modeled as gmk =
√

βmkhmk,
where βmk is the large scale fading coefficients, and hmk ∈CN×1 is the small-scale fading vector,
whose elements are independent and identically distributed C N (0,1) random variables [9].

An uplink training process is implemented to acquire the local CSI between each AP and
all users. In each coherence block of length τ , all users are assumed to transmit their pairwisely
orthogonal pilot sequence of length τt to all APs, which requires τt ≥ Kd . At AP m, gmk is
estimated by using the received pilot signals and applying the minimum mean-square error
(MMSE) estimation technique. By following [9], the MMSE estimate ĝmk of gmk is obtained as
ĝmk ∼ C N (0,γmkIN), where

γmk =
τtρtβ

2
mk

τtρtβmk +1
, (5.3)

while ρt represents the normalized transmit power of each pilot symbol.
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5.2.2 Data and Probing Signal Transmission

AP operation mode selection is performed by considering large-scale fading effects and relying
on the statistical CSI, obtained during the training phase. The binary variables used to indicate
the operation mode for each AP m are defined as

am =

1, if AP m operates as C-AP

0, if AP m operates as S-AP.
(5.4)

The transmission phase comprises information transmission from C-APs to users and
probing signal transmission from S-APs to the target. Let xc,m and xr,m denote the data and
probing signals, respectively, where E

{
|xc,m|2

}
= 1 and E

{
|xr,m|2

}
= 1. The signal vector

transmitted from AP m can be expressed as

xm = amxc,m +(1−am)xr,m. (5.5)

The power control coefficients at AP m are chosen to satisfy the power constraint at each
S-AP and C-AP, respectively, i.e.,

amE{∥xc,m∥2}+(1−am)E{∥xr,m∥2} ≤ ρ, (5.6)

where ρ denotes the maximum normalized downlink power.

The transmit signal for communication at the m-th C-AP can be expressed as xc,m =

∑k∈Kd

√
ηmkρtCom

mk xc,k, where ηmk represents the downlink power control coefficient at the m-th
C-AP during communication, while tCom

mk ∈ CN×1 and xc,k denote the precoding vector and
intended signal for user k, respectively.

Moreover, the probing signal transmitted by the m-th S-AP can be expressed as xr,m =
√

ηmρtSen
m xr, where ηm denotes the power control coefficient at S-AP m, while tSen

m ∈ CN×1

denotes the beamforming vector for sensing and xr is the sensing symbol.

We note that in the absence of communication users, conjugate sensing beamforming
solution becomes optimal, as it directly maximizes the sensing SNR [24, 25]. Therefore, to
detect the presence of a target in a certain location, we design the sensing beamforming vector
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at S-AP m as

tSen
m = aN(φ

a
m,t ,φ

e
m,t). (5.7)

Furthermore, the conjugate precoder is employed at the C-AP, particularly due to its advantages
including low computational complexity, ease of analysis, and reasonable performance, as
shown in [149, 139]. Hence, tCom

mk is given by

tCom
mk = ĝ∗mk. (5.8)

5.2.3 Sensing Operation and MASR

For a given channel realization, the average spatial power pattern for sensing is defined as

Pave(φ a
m,t ,φ

e
m,t) = E

 ∑
m∈M

|aH
N (φ

a
m,t ,φ

e
m,t)xm|2


= ρ ∑

m∈M
amE


∣∣∣∣ ∑

k∈Kd

√
ηmkaH

N (φ
a
m,t ,φ

e
m,t)t

Com
mk

∣∣∣∣2


+ρ ∑
m∈M

(1−am)ηmE
{∣∣aH

N (φ
a
m,t ,φ

e
m,t)t

Sen
m
∣∣2}, (5.9)

where the expectation is taken over the transmitted signals, assuming that the information signal
and probing signals are independent zero-mean Gaussian distributed.

Proposition 8 The average spatial power pattern for sensing is given by Pave(φ a
m,t ,φ

e
m,t) =

Pave
Com(φ

a
m,t ,φ

e
m,t)+Pave

Sen(φ
a
m,t ,φ

e
m,t), where

Pave
Com(φ

a
m,t ,φ

e
m,t) = ρ ∑

m∈M
∑

k∈Kd

amηmkγmk, (5.10a)

Pave
Sen(φ

a
m,t ,φ

e
m,t) = ρ ∑

m∈M
(1−am)ηm. (5.10b)

Proof 8 By invoking (5.7) and (5.8), and then taking the expectation of (5.9) over tCom
mk , the

desired result is obtained.

We would like PaveCom(φm, ta,φ e
m,t), ∀φ a

m,t ,φ
e
m,t , to be as small as possible to confine the

pattern distortion. For illuminating a target angle (φ a
m,t ,φ

e
m,t), it is desirable that the mainlobe
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level Pave
Sen(φ

a
m,t ,φ

e
m,t) is higher than Pave

Com(φ
a
m,t ,φ

e
m,t) by a certain minimum sensing level κ ,

which is referred to as the MASR:

MASR(a,ηCom,ηSen) =
Pave

Sen(φ
a
m,t ,φ

e
m,t)

Pave
Com(φ

a
m,t ,φ

e
m,t)

(5.11)

=
∑m∈M(1−am)ηm

∑m∈M ∑k∈Kd
amηmkγmk

≥ κ,

where a = {a1, . . . ,aM}, ηCom = {ηm1, . . . ,ηmKd}, ∀m ∈ M, and ηSen = {η1, . . . ,ηM}.

5.2.4 Communication Operation and Downlink SE

The received signal at k-th user can be expressed as

yk = ∑
m∈M

am
√

ρηmkgT
mktCom

mk xc,k + ∑
m∈M

∑
k′∈Kd\k

am
√

ρηmk′gT
mktCom

mk′ xc,k′

+ ∑
m∈M

(1−am)
√

ρηmgT
mktSen

m xr +nk, (5.12)

where the second term is the inter-user interference, the third term represents the interference
from S-APs, and nk ∼ C N (0,σ2

n ) denotes the additive white Gaussian noise at the user k.

Proposition 9 With conjugate precoding at the APs for downlink communication, the achiev-

able downlink SE of user k, can be expressed as SEk =

(
1− τp

τ

)
log2

(
1+SINRk(a,ηCom,ηSen)

)
,

where SINRk(a,ηCom,ηSen) is given by

SINRk(a,ηCom,ηSen) =
ρN2

(
∑m∈M amη

1/2
mk γmk

)2

ρN ∑m∈M ∑k′∈Kd
amηmk′γmk′βmk +ρ∑m∈M(1−am)ηmβmk +1

.

(5.13)

Proof 9 See Appendix C.

5.3 Proposed Design Problem and Solution

In this section, we formulate and solve the AP mode selection to maximize the minimum
SE. More specifically, we aim to optimize the AP operation mode selection vector (a) and
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power control coefficients (ηCom,ηSen) to maximize the minimum per-user SE subject to a
prescribed MASR level for the target detection and transmit power constraints at the APs. The
optimization problem is then formulated as

(P1): max
a,ηCom,ηSen

min
k∈Kd

SINRk(a,ηCom,ηSen) (5.14a)

s.t. MASR(a,ηCom,ηSen)≥ κ, (5.14b)

am ∑
k∈Kd

ηmkγmk ≤
1
N
, ∀m ∈ M, (5.14c)

ηm ≤ 1−am, ∀m ∈ M, (5.14d)

am ∈ {0,1}. (5.14e)

Problem (P1) is a challenging combinatorial problem. Therefore, for AP operation mode
selection, we only focus on a heuristic greedy method which simplifies the computation, while
providing a significantly successful monitoring performance gain.

5.3.1 AP Operation Mode Selection with Fixed Power Control

Let ASen and ACom denote the sets containing the indices of APs operating as radar, i.e., APs
with am = 0, and APs operating in communication mode, i.e., APs with am = 1, respectively. In
addition, MASR(ASen,ACom) and SINRk(ASen,ACom) underline the dependence of the sensing
MASR and received SINR of the k-th user on the different choices of AP mode selections. Our
greedy algorithm of AP mode selection is shown in Algorithm 6. To guarantee the sensing
MASR requirement, all APs are initially assigned for sensing operation, i.e., ASen = M and
ACom = /0. Then, in each iteration, one AP switches into communication operation mode
for maximizing the minimum of SE (or equivalently SINR in (5.13)), while the minimum
MARS required for target sensing is guaranteed. This process continues until there is no more
improvement in the minimum SINR among all users.
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Algorithm 2 Greedy AP Operation Mode Selection
1: Initialize: Set ACom = /0 and ASen = M. Set iteration index i = 0.
2: Calculate Π⋆[i] = mink∈Kd SEk(ASen,ACom)
3: repeat
4: for all m ∈ ASen do
5: Set As = ASen \m.
6: if MASR(As,ACom

⋃
m)≥κ then

7: Calculate Πm = mink∈Kd SINRk(As,ACom
⋃

m)
8: else
9: Set Πm = 0

10: end if
11: end for
12: Set Π⋆[i+1] = max

m∈ACom
Πm

13: e = |Π⋆[i+1]−Π⋆[i]|
14: if e ≥ emin then
15: Update ACom={ACom

⋃
m⋆} and ASen=ASen\m⋆

16: end if
17: Set i = i+1
18: until e < emin
19: return ASen and ACom, i.e., the indices of APs operating in radar mode and communication

mode, respectively.

5.3.2 Power Control

For a given AP mode selection, the optimization problem (5.14) reduces to the power control
problem, given by

(P2): max
ηCom,ηSen

min
k∈Kd

SINRk(η
Com,ηSen) (5.15a)

s.t. (5.14b)− (5.14e). (5.15b)

Problem (P2) is a non-convex optimization problem due the to non-convex objective
function and constraints. Since the variables ηCom and ηSen are coupled in both the objective
and MASR constraint, it is difficult to simultaneously optimize them. Therefore, we propose
an AO algorithm to jointly optimize ηCom and ηSen in two sub-problems.

Firstly, for a given ηSen, we formulate the sub-problem for optimizing ηCom as

(P2-1): max
ηCom

min
k∈Kd

SINRk(η
Com) (5.16a)

s.t. (5.14b), (5.14c). (5.16b)
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By introducing the slack variables θmk = η
1
2
mk and υm, we reformulate (P2-1) as

(P2-2): max
ηCom,t

t (5.17a)

s.t.

(
∑m∈Mamθmkγmk

)2

1
N∑m∈M amβmkυ2

m+ϕk
≥ t, ∀k ∈ Kd (5.17b)

∑m∈M(1−am)ηm

∑m∈M amυ2
m

≥ κ, (5.17c)

∑
k′∈Kd

amθ
2
mk′ ≤ υ

2
m, ∀m ∈ M (5.17d)

0 ≤ amυ
2
m ≤ 1

N
, ∀m ∈ M, (5.17e)

θmk ≥ 0,∀m ∈ M,∀k ∈ Kd, (5.17f)

where ϕk
∆
= 1

N2 ∑m∈M(1−am)ηmβmk+
1

ρN2 and and υ2
m

∆
= ∑k∈Kd

amηmk. The equivalence be-
tween (5.17) and (5.16) follows directly from the fact that the second constraint in (5.17) holds
with equality at the optimum. Problem (P2-2) can be reformulated as a second-order cone
program (SOCP). More precisely, for given t, we have

(P2-3): max
ηCom

t (5.18)

s.t. ∥vk∥ ≤
1√
t ∑

m∈M
amθmkγmk, ∀k ∈ Kd, (5.19)

(5.23c)− (5.17f), (5.20)

where vk = [vT
k1,

√
ϕk]

T , with vk1 =
[√

β1k
N υ1, . . . ,

√
βMk
N υM

]T
. The first constraint represents

a second order cone and thus (P2-3) is a standard SOCP, which is a convex problem. The
bisection search method is exploited to find the optimal solution, in each step solving a sequence
of convex feasibility problem. This bisection based search method is summarized in Algorithm
2.

Secondly, when ηCom is fixed, the sub-problem for optimizing ηSen can be expressed as

(P2-4): max
ηSen

min
k∈Kd

SINRk(η
Sen) (5.22a)

s.t. (5.14b), (5.23d). (5.22b)
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Algorithm 3 Bisection Method for Power Control
1: Initialization of tmin and tmax, where tmin and tmax define a range of relevant values of the

objective function in (5.16). Initial line-search accuracy ε .
2: repeat
3: Set t := tmin+tmax

2 . Solve the following convex feasibility program

∥vk∥ ≤ 1√
t

(
∑m∈Mamθmkγmk

)
, ∀k ∈ Kd.

∑m∈M amυ2
m ≤ 1

κ ∑m∈M(1−am)ηm,

∑k′∈Kd
amθ 2

mk′ ≤ υ2
m, ∀m ∈ M

0 ≤ amυm ≤ 1√
N
, ∀m ∈ M,

θmk ≥ 0,∀m ∈ M,∀k ∈ Kd,

(5.21)

4: If problem (5.21) is feasible, then set tmin := t, else set tmax := t.
5: until tmax − tmin < ε .

By introducing a new slack variable ρ , we can reformulate the optimization problem as

(P2-5): max
ηSen,ρ

ρ (5.23a)

s.t.
∑m∈M(1−am)ηmβmk+φk(

N ∑m∈Mamθmkγmk

)2 ≤ 1
ρ
, ∀k ∈ Kd (5.23b)

∑
m∈M

(1−am)ηm ≥ κ ∑
m∈M

amυ
2
m, (5.23c)

ηm ≤ 1−am, ∀m ∈ M, (5.23d)

where φk
∆
= 1

N∑m∈M amβmkυ2
m+

1
ρN2 . Now, for a fixed ρ , all inequalities involved in (P2-5)

are linear, hence the solution to the optimization problem can be obtained by harnessing a
line-search over ρ to find the maximal feasible value. Therefore, we can apply the bisection
method in Algorithm 2 to solve (5.23), where tmin, tmax, and the feasibility problem (5.21)
are replaced with ρmin, ρmax and problem (5.23), respectively. We summarize the overall AO
algorithm in Algorithm 3.

5.3.3 Complexity Analysis

Here, we provide the computational complexity of Algorithm 3, which involves a SOCP
problem in (5.18) and a linear-search problem (5.23) at each iteration. In order to solve a
SOCP, the iterative bisection search method requires O(n2

v1
nc) arithmetic operations, where nv1
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Algorithm 4 AO Algorithm for Problem P2

1: Initialize a feasible initial point, (ηSen)(0) and (ηSen)(0).
2: Set the iteration number n = 1.
3: repeat
4: Determine (ηCom)(n) by using Algorithm 2.
5: Compute (ηSen)(n) by solving (5.23).
6: Set n = n+1.
7: until some stopping criterion is satisfied.

is the number of optimization variables and nc is the total number of SOC constraints [150].
Moreover, the total number of iterations required is log2

(
tmax−tmin

ε

)
. In (5.18), the total number

of variables is nv1 = MKd and there are nv = Kd SOC constraints. Therefore, the per-iteration
computational complexity for solving (5.18) is log2

(
tmax−tmin

ε

)
O(MK3

d ). Problem (5.23)
involves nv2 = M scalar-value variables and nc2 = M+Kd +1 linear constraints. According
to [151], the per-iteration cost to solve (5.23) is O

(
(nc2 +nv2)n

2
v2

n0.5
c2

)
.

5.4 Numerical Results

We assume that the M APs and Kd users are uniformly distributed at random within a square of
size D×D km2, whose edges are wrapped around to avoid the boundary effects. The large-scale
fading coefficient βmk models the path loss and shadow fading, according to βmk = PLmk10

σshzmk
10 ,

where PLmk represents the path loss, and 10
σshzmk

10 represents the shadow fading with the standard
deviation σsh, and zmk ∼ C N (0,1). We use the three-slope model for the path-loss PLmk (in
dB) as

PLmk=


−L−35log10(dmk) dmk > d1,

−L−15log10(d1)−20log10(dmk) d0 < dmk ≤ d1

−L−15log10(d1)−20log10(d0) dmk ≤ d0.

where L is a constant depending on the carrier frequency, the user and AP heights, given in [9].
We further use the correlated shadowing model for dmk > d1 [9]. Here, we choose σsh = 8 dB,
D = 0.5 km, d1 = 50 m, and d0 = 10 m. We further set the noise power σ2

n =−108 dBm. Let
ρ̃ = 1 W and ρ̃t = 0.25 W be the maximum transmit power of the APs and uplink training
pilots, respectively. The normalized maximum transmit powers ρ and ρt are calculated by
dividing these powers by the noise power σ2

n .
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Fig. 5.2 The CDF of the minimum per user SE for different values of κ (M = 80, N = 3,
Kd = 5).

In the absence of power control, termed as no power control (NPC) design, both C-APs
and S-APs transmit at full power. With NPC, the power coefficients at the m-th C-AP are the

same and ηmk =
(

N ∑k∈Kd
γmk

)−1
, ∀k ∈ Kd . Moreover ηm = 1, ∀m ∈ M. For comparison, two

benchmark system designs are studied: 1) Random AP mode selection with NPC (RAP-NPC),
and 2) Greedy AP mode selection with NPC (GAP-NPC).

Figure 5.2 shows the cumulative distribution function (CDF) of the minimum per-user SE
for two different values of κ . For a fair comparison, the achievable SE of the RAP-NPC is
set to zero, when the MASR target value is not satisfied. It is noteworthy that the 95%-likely
minimum per-user SE increases, when κ decreases from 15 to 10. This behavior can be
explained by the fact that a great number of APs are assigned for downlink communication by
reducing κ . Furthermore, by applying power control, the 95%-likely SE is improved by 50%
(for κ = 15) and 35% (for κ = 10) compared to the GAP-NPC design.

Figure 5.3 shows the minimum SE of the downlink communication system versus the
MASR requirement of the radar system, κ . In this figure, we assume that a fixed number
of service antennas, i.e., MN = 240, is utilized to support both communication and sensing
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Fig. 5.3 Average minimum SE versus MASR level (Kd = 5, NM = 240).

applications. We observe that by increasing κ , the achievable downlink SE is decreased since
the number of C-APs is decreased. Moreover, while RAP-NPC nearly fails to satisfy the MASR
requirements, the GAP scheme with NPC and OPC not only meets the MASR requirements of
the sensing operation, but also provides significant SE for the communication system, especially
when the number of antennas per each AP is increased from N = 3 to N = 12.

5.5 Conclusion

In this chapter, we studied the problem of AP operation mode selection and power control
design in a cell-free massive MIMO ISAC system, aiming to support multiuser downlink
communication and single-target detection. After deriving closed-form expressions for the
per-user effective SINR and sensing MASR, we formulated a max-min SE fairness problem.
To deal with the complicated non-convex problem, a greedy algorithm, grounded on long-term
statistics, was proposed for the AP operation mode design and an AO algorithm was developed
for power control design at all APs. Our numerical results highlighted that our proposed



5.5 Conclusion 97

GAP-OPC design significantly enhances the downlink SE compared to the GAP-NPC and
RAP-NPC benchmarks, while maintaining reliable sensing performance.



Chapter 6

Multiple-Target Detection in Cell-Free
Massive MIMO-Assisted ISAC

6.1 Introduction

The advent of ISAC marks a significant leap forward for the sixth generation (6G) of wireless
technology, introducing a pivotal shift in the use of limited spectral resources [59, 146, 63].
This innovative approach aims at enhancing both the radar sensing capabilities and commu-
nication efficiency, by assigning frequencies traditionally dedicated to sensing for wireless
communication purposes as well. Such dual functionality supports high data-rate applications,
contributing to the efficient utilization of spectral resources. ISAC’s innovative framework
has catalyzed the development of two distinct system architectures: the separated system and
the co-located system. The separated system, also referred to as coexistence communication
and radar, relies on distinct devices to perform radar sensing and communication within the
same frequency band, generating sensing and communication beams independently. This
method has been thoroughly investigated in our previous studies [84, 8] among others. In
contrast, the co-located systems, or dual-functional radar-communication (DFRC), integrate
these functionalities within a single device. This allows for the simultaneous detection of radar
targets and communication with multiple users (UEs), facilitated by an ISAC base station (BS)
that utilizes shared hardware components for concurrent beam generation [6]. Recognized
for its efficiency and cost-effectiveness, the DFRC architecture is heralded as a significant
breakthrough for the beyond 5G (B5G) era, poised to redefine the network performance and
optimization [152, 153, 96].
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Transitioning from separated to co-located systems reflects an intention to streamline
operational efficiency and reduce the complexity inherent in managing the exchange of side-
information between radar and communication technologies [153, 96]. This evolution is
notably supported by the integration of massive multiple-input multiple-output (mMIMO)
technology, which particularly within co-located architectures, can effectively minimize the
inter-user interference across the same time-frequency resources. Leveraging the substantial
spatial degrees of freedom and intrinsic sensing capabilities, the fusion of mMIMO technology
with MIMO-ISAC is poised to deliver high-quality wireless communication, while ensuring
high-resolution and robust sensing. Such advancements are instrumental in accelerating the
development of various emerging applications, including, but not limited to, autonomous
driving in intelligent transportation systems and unmanned aerial vehicle (UAV) networks in
smart cities [154, 155].

Expanding on this groundwork, recent research endeavors, as highlighted in studies by [156]
and [157], have delved into the intricacies of a dual-functional system that marries communica-
tion and radar functionalities within an mMIMO-orthogonal frequency division mutliplexing
(OFDM) architecture. These studies comprehensively address both downlink and uplink sce-
narios, offering insightful analytical derivations of the achievable rate and detection efficiency
under various conditions of channel side information (CSI), encompassing both perfect and im-
perfect scenarios. Moreover, the work in [158] sought to optimize this dual-functional system.
The focus is on maximizing the sum-rate and energy efficiency, while ensuring compliance
with essential operational parameters, including a baseline target detection probability and the
satisfaction of individual UE rate demands.

A new architectural paradigm, cell-free mMIMO (CF-mMIMO), has gained attention
for its potential to significantly improve the quality of service (QoS) at the network edges.
Diverging from traditional cellular setups that centralize all antennas at the BS, CF-mMIMO
distributes antennas across multiple access points (APs). These APs are then coordinated by
a central processing unit (CPU), paving the way for a more distributed and flexible network
architecture [10, 9]. A CF-mMIMO ISAC topology has several advantages over the single-cell
ISAC, including larger monitoring areas, broader sensing coverage, and a wider range of
sensing angles. Nevertheless, in such systems, proper resource allocation plays a key role to
facilitate both communication and sensing functionalities.
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Table 6.1 Contrasting our contributions to the mMIMO ISAC literature

Contributions This
paper

[115] [24] [25] [116]

CF-mMIMO ✓ ✓ ✓ ✓ ✓
Power allocation ✓ ✓ ✓ ✓
Beamforming design ✓ ✓ ✓ ✓
AP operation mode selection ✓
Multi-target ✓ ✓
Asymptotic analysis ✓

6.1.1 Related Works

Recent research efforts have focused on integrating ISAC capabilities within CF-mMIMO
networks. These studies aim to harness the benefits of both ISAC and CF-mMIMO technologies
to further the enhance network performance and service delivery, as evidenced by works such
as those in [115, 24, 25, 116, 117].

Among these contributions, Zeng et al.[115] made notable advancements in power alloca-
tion techniques within CF-mMIMO ISAC systems, optimizing the balance between communi-
cation and sensing functionalities. Behdad et al.[24] further explored the operational dynamics
of CF-mMIMO ISAC systems, demonstrating how transmitting APs not only provide service
to UEs but also partake in sensing operations for target location identification. Their research
introduced a power distribution strategy that enhances the sensing signal-to-noise ratio (SNR)
while adhering to signal-to-interference-plus-noise ratio (SINR) constraints for UEs. Building
on these themes, Demirhan et al. [25] tackled the challenges of beamforming design in CF-
mMIMO ISAC systems. They proposed a joint beamforming approach designed to maximize
sensing SNR without compromising the communication SINR, highlighting the critical balance
required for effective sensing and communication within these networks. Additionally, the
papers by Mao et al.[116] and Da et al.[117] have been instrumental in advancing precoder
design for CF-mMIMO ISAC systems. These works also delved into the assessment of privacy
risks associated with the inference of target locations by internal adversaries, marking a signifi-
cant exploration beyond the technical aspects to include security and privacy considerations
within ISAC networks.
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6.1.2 Contributions

Contrary to the above studies, which assume static AP operation modes, our research introduces
an innovative approach to CF-mMIMO ISAC networks by adopting dynamic AP operation
mode selection. This novel strategy aims to optimize the spectral efficiency (SE) fairness
among the UEs, while also ensuring the system’s capability to detect multiple designated
target. Utilizing long-term CSI, APs are categorized into communication APs (C-APs) and
sensing APs (S-APs) to simultaneously support both downlink communication and sensing
tasks. Compared to our recent work [26], where a single sensing zone area was considered
and maximum ratio transmission (MRT) was performed at all APs, we consider a multiple
sensing zone scenario and apply local partial zero-forcing (PZF) and maximum ratio transmit
precoding at the C-APs and S-APs, respectively. The principle behind PZF design is that each
AP only suppresses the inter-UE interference it causes to the strongest UEs, namely the UEs
with the largest channel gain, while the inter-UE interference caused to the weakest UEs is
tolerated [142]. The main contributions of our paper can be summarized as follows:

• We develop a framework for analyzing the performance of a CF-mMIMO ISAC system
with multiple C-APs and S-APs employing PZF and MRT precodings, respectively,
under channel estimation errors. By leveraging the use-and-then-forget strategy, we
derive closed-form expressions for the downlink SE of the communication UEs and
mainlobe-to-average sensing ratio (MASR) of the sensing zones. We further pursue an
asymptotic SE analysis, which discloses that when the number of C-APs and S-APs,
denoted by Mc and Ms respectively, are large, we can scale down the transmit powers at
the C-APs and S-APs proportionally to 1/M2

c and 1/M2
s , respectively.

• We formulate an interesting problem of joint AP operation mode selection and power
control design, considering per-AP power constraints and a MASR constraint for target
detection in a multi-target environment. A new algorithm is developed to solve the
challenging formulated mixed-integer non-convex problem. In particular, we transform
the formulated problem into more tractable problem with continuous variables only.
Then, we solve the problem using successive convex approximation (SCA) techniques.

• To achieve a performance-complexity tradeoff, we propose a greedy algorithm for AP
operation mode selection. This algorithm iteratively selects the optimal mode for each AP
by considering the constraints for sensing operation, while maximizing fairness among
UEs. Then, we propose a power control design algorithm for fixed AP operation mode
design.
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• Our numerical results show that the proposed optimum algorithm can provide perfect
fairness among the UEs, while ensuring successful sensing performance for all sensing
zones. The greedy algorithm achieves an acceptable level of success in the sensing rate.

A comparison of our contributions against the state of the art in the space of CF-mMIMO
ISAC is tabulated in Table 6.1.

6.2 System Model

We consider a CF-mMIMO ISAC system operating under time division duplex, where M APs
serve K downlink UEs, while concurrently emitting probing signals towards L specific sensing
zones. Each UE is equipped with a single antenna, and each AP deploys an array of N antennas.
All APs and UEs function in a half-duplex mode. For the ease of exposition, we introduce the
sets M ≜ {1, . . . ,M}, L ≜ {1, . . . ,L}, and K ≜ {1, . . . ,K} to represent the indices of the APs,
sensing areas, and UEs, respectively. As depicted in Fig. 6.1, downlink communication and
target detection are conducted concomitantly over the same frequency band. To accommodate
the varying network demands, a dynamic AP operation mode selection strategy is implemented,
determining the allocation of APs for downlink information transmission or radar sensing.
A subset of APs, designated as communication-APs, termed as C-APs, is responsible for
delivering information to the UEs. In contrast, the rest, labeled as S-APs, are employed for
target detection. This categorization enables a specialized functionality of each AP group,
where the C-APs aim to optimize the communication quality, while the S-APs enhance the
radar sensing accuracy.

6.2.1 Channel Model and Uplink Training

We assume a quasi-static channel model, with each channel coherence interval spanning a
duration of τ symbols. The duration of the training is denoted as τt , while the duration of
downlink information transfer and target detection is (τ − τt).

For the sensing channel model, we assume there is a line-of-sight (LoS) path between the
sensing area and each AP, which is a commonly adopted model in the literature [24, 25]. The
LoS channel between AP m and senssing area l is given by

ḡml = aN(φ
a
t,ml,φ

e
t,ml), ∀m ∈ M , (6.1)
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where φ a
t,ml , φ e

t,ml denote the azimuth and elevation angles of departure (AoD) from AP m to-
wards the sensing area l. Moreover, the q-th entry of the array response vector aN(φ

a
t,ml,φ

e
t,ml) ∈

CN×1, is given by

[aN(φ
a
t,ml,φ

e
t,ml)]q = exp

(
j
2πd

λ
(q−1)sin(φ a

t,ml)cos(φ e
t,ml)

)
, (6.2)

where d, and λ denote the AP antenna spacing and carrier wavelength, respectively.

The channel vector between the m-th AP and k-th UE is modeled as gmk =
√

βmkhmk, where
βmk is the large scale fading coefficient, while hmk ∈ CN×1 is the small-scale fading vector,
whose elements are independent and identically distributed C N (0,1) random variables (RVs).

An uplink training process is implemented to acquire the local CSI between each AP and
all UEs. In each coherence block of length τ , all UEs are assumed to transmit their pairwisely
orthogonal pilot sequence of length τt to all APs, which requires τt ≥ K. At AP m, gmk is
estimated by using the received pilot signals and applying the minimum mean-square error
(MMSE) estimation technique. By following [9], the MMSE estimate ĝmk of gmk is obtained as
ĝmk ∼ C N (0,γmkIN), where

γmk =
τtρtβ

2
mk

τtρtβmk +1
, (6.3)

while ρt represents the normalized transmit power of each pilot symbol.

6.2.2 Data and Probing Signal Transmission

AP operation mode selection is performed by considering large-scale fading effects and relying
on the statistical CSI, obtained during the training phase. The binary variables used to indicate
the operation mode for each AP m are defined as

am =

 1, if AP m operates as C-AP

0, if AP m operates as S-AP.
(6.4)

The transmission phase comprises information transmission from the C-APs to UEs and
probing signal transmission from the S-APs to the target. Let xc,m and xr,m denote the data and
probing signals, respectively. The signal vector transmitted from AP m can be expressed as
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Interference between the S-AP and C-UE

Interference between the DL-AP and senssing zone

Communication link between the DL-AP and C-UE

Sensing zones

Fig. 6.1 Illustration of the CF-mMIMO ISAC system.

xm =
√

amxc,m +
√

(1−am)xr,m. (6.5)

The probing signal transmitted by the m-th S-AP, targeting specific sensing zones, can be
expanded as

xr,m = ∑l∈L

√
ρηs

mlt
Sen
ml xr,ml, (6.6)

where ρ denotes the maximum normalized downlink power; ηs
ml is the power control coefficient

at S-AP m related to sensing zone l; tSen
ml ∈ CN×1 denotes the beamforming vector for sensing

the lth sensing area, while xr,ml , with E{|xr,ml|2}= 1, is the radar sensing symbol from S-AP m

for sensing the lth zone. This directional beamforming approach allows each S-AP to transmit
a beam focused on a specific sector, facilitating spatially distributed sensing across the network.
Therefore, to detect the presence of a target within its designated sector, each S-AP tailors its
sensing beamforming vector to concentrate the radiated energy towards a specific direction.
This is accomplished by configuring the beamforming vector to align with the azimuth and
elevation angles that correspond to the sector of interest. Therefore, to detect the presence of a
target in a certain location, we design the sensing beamforming vector at the mth S-AP as
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tSen
ml = aN(φ

a
t,ml,φ

e
t,ml). (6.7)

This focused beamforming ensures that the radar echo from the target is sufficiently strong
for reliable detection.

6.2.3 Downlink Communication and SE

In this section, we investigate the performance of partial zero forcing (PZF) precoding scheme.
The conventional maximum ratio (MR) and ZF are special cases of PZF, and hence, their
performances can be directly obtained from PZF.

PZF precoding emerges as an innovative method with the potential to combine the benefits of
both ZF and MR approaches. The cornerstone of PZF lies in its ability to suppress interference
caused to the strongest UEs, i.e., UEs with the highest channel gain, while tolerating the
interference caused to the weakest UEs. In more detail, for any given AP (denoted as AP m),
the set of active UEs is conceptually divided into two distinct subsets: (i) strong UEs, and (ii)
weak UEs. The sets of indices for strong and weak UEs are represented as Sm ⊂ {1, . . . ,K}, and
Wm ⊂ {1, . . . ,K} respectively. It should be noted that Sm ∩Wm = φ and |Sm|+ |Wm|= K. The
grouping strategy can be determined using various criteria. For example, it may be based on
the mean-square of the channel gain: a UE k is allocated to Sm if βmk exceeds a predetermined
threshold, otherwise, k is placed in Wm. PZF operates locally in the following manner: AP m

transmits to all the UEs k ∈ Sm using ZF, and to all the UEs k ∈Wm using MR.

The UE grouping can be based on different criteria. Inspired by [159, 142], the UE grouping
strategy in PZF relies on the following rule

∑
|Sm|
k=1

β̄mk

∑
K
t=1 βmt

≥ ρ%, (6.8)

where AP m constructs its set Sm by selecting the UEs that contribute to, at least, ρ% of the
overall channel gain. Note that in (6.8), {β̄m1, . . . , β̄mK} indicates the set of the large-scale
fading coefficients sorted in descending order.

Therefore, transmit signal from AP m can be expressed as

xc,m =

(
∑k∈Sm

√
ρηc

mktZF−Com
mk +∑k∈Wm

√
ρηc

mktMR−Com
mk

)
xc,k, (6.9)
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where ηc
mk denotes the power control coefficient between C-AP m and UE k, k ∈ K ; xc,k is the

communication symbol satisfying E{|xc,k|2}= 1; tZF−Com
mk and tMR−Com

mk represent the ZF and
MR precoding vectors, respectively, given by

tZF−Com
mk = γmkĜSm

(
ĜH

Sm
ĜSm

)−1
ek (6.10)

tMR−Com
mk = ĝ∗mk, (6.11)

where ek is the kth column of I|Sm| and ĜSm = [ĝT
mk : k ∈ Sm]. Therefore, for any pair of UEs k

and k′ belonging to the Sm, we have

ĝT
mk′t

ZF−Com
mk =

γmk if k = k′,

0 otherwise.
(6.12)

The power control coefficients at AP m are chosen to satisfy the power constraint at each
S-AP and C-AP, respectively, i.e.,

amE{∥xc,m∥2}+(1−am)E{∥xr,m∥2} ≤ ρ. (6.13)

For the sake of notation simplicity, we introduce Zk and Mk as the set of indices of APs that
transmit to UE k using tZF−Com

mk and tMR−Com
mk respectively, given as

Zk ≜
{

m : k ∈ Sm,m = 1, . . . ,M
}
, (6.14a)

Mk ≜
{

m : k ∈Wm,m = 1, . . . ,M
}
, (6.14b)

with Zk ∩Mk = φ and Zk ∪Mk = M . The PZF precoding approach provides a sophisticated
balance between ZF and MR, catering to interference suppression for the strongest UEs and
signal strength maximization for the weakest ones.

The received signal at the k-th UE can be represented as

yk =

(
∑m∈Zk

√
amρηc

mkgT
mktZF−Com

mk +∑m∈Mk

√
amρηc

mkgT
mktMR−Com

mk

)
xc,k

+∑k′∈K \k

(
∑m∈Zk

√
amρηc

mk′g
T
mktZF−Com

mk′ +∑m∈Mk

√
amρηc

mk′g
T
mktMR−Com

mk′

)
xc,k′

+∑m∈M ∑l∈L

√
(1−am)ρηs

mlg
T
mktSen

ml xr,ml+nk, (6.15)
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where the second term is the inter-user interference, the third term represents the interference
from S-APs, and nk ∼ C N (0,1) denotes the additive white Gaussian noise at the UE k. In
order to apply the use-then-forget technique to derive the downlink SE at UE k, we rewrite (6.15)
as

yk = DSkxc,k +BUkxc,k +∑k′∈K \k IUIkk′xc,k′ + IRk +nk, (6.16)

where

DSk ≜ E
{

∑m∈Zk

√
amρηc

mkgT
mktZF−Com

mk +∑m∈Mk

√
amρηc

mkgT
mktMR−Com

mk

}
(6.17a)

BUk ≜

(
∑m∈Zk

√
amρηc

mk′g
T
mktZF−Com

mk′ +∑m∈Mk

√
amρηc

mk′g
T
mktMR−Com

mk′

)
−DSk,

(6.17b)

IUIkk′ ≜ ∑m∈Zk

√
amρηc

mk′g
T
mktZF−Com

mk′ +∑m∈Mk

√
amρηc

mk′g
T
mktMR−Com

mk′ , (6.17c)

IRk ≜ ∑m∈M ∑l∈L

√
(1−am)ρηs

mlg
T
mktSen

ml xr,ml, (6.17d)

represent the strength of the desired signal (DSk), the beamforming gain uncertainty (BUk),
the interference caused by the k′-th UE (IUIkk′) and the interference caused by S-APs (IRk),
respectively. By invoking (6.16), an achievable downlink SE at the k-th UE can be expressed as

SEk =

(
1− τt

τ

)
log2

(
1+SINRk

)
, (6.18)

where

SINRk =

∣∣DSk
∣∣2

E
{∣∣BUk

∣∣2}+∑k′∈K \kE
{∣∣IUIkk′

∣∣2}+E
{∣∣IRk

∣∣2}+1
. (6.19)

For the simplicity of notation, let us introduce a pair of binary variables to indicate the
group assignment for each DL UE k and AP m in the PZF combining scheme as
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ζ
Zk
m =

1 if m ∈ Zk,

0 otherwise.
(6.20a)

ζ
Mk
m =

1 if m ∈ Mk,

0 otherwise.
(6.20b)

Proposition 10 The SE achieved by the PZF scheme is given by

SINRk(a,ηc,ηs) =

ρ

(
∑m∈M

√
amηc

mkγmk(ζ
Zk
m +Nζ

Mk
m )

)2

ρ ∑m∈M ∑k′∈K

(
amηc

mk′γmk′
(

ζ
Zk
m

βmk−γmk
N−|Sm| +ζ

Mk
m Nβmk

))
+ρ ∑m∈M ∑l∈L ηs

mlN(1−am)βmk+1
,

(6.21)

Proof 10 See Appendix D.2.

Remark 3 Setting ζ
Mk
m = 1 and ζ

Zk
m = 0, ∀m ∈ M , results in the SINR given by (6.21) being

reduced to that achieved by the MR precoding scheme. Similarly, if ζ
Mk
m = 0 and ζ

Zk
m = 1,

∀m ∈ M , the SINR in (6.21) reduces to that achieved by the ZF precoding scheme, provided

that N > K.

6.2.4 Sensing Operation and MASR

For a given angles (φ a
m∈M,φ e

m∈M), the average spatial power pattern is

Pave(φ a
m∈M,φ e

m∈M) = E

{∣∣∣∑m∈M aH
N (φ

a
m,φ

e
m)xm

∣∣∣2}

= E

{∣∣∣∑m∈M
√

amaH
N (φ

a
m,φ

e
m)xc,m

∣∣∣2}︸ ︷︷ ︸
T1

+E

{∣∣∣∑m∈M

√
(1−am)aH

N (φ
a
m,φ

e
m)xr,m

∣∣∣2}︸ ︷︷ ︸
T2

, (6.22)
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where the expectation is taken over the transmitted signal xm and the small-sale fading.

Now, we proceed to derive T1 and T2. By using (6.9), we can express T1 as

T1= E

{∣∣∣ ∑
k∈K

(
∑

m∈Zk

√
amρηc

mkaH
N (φ

a
m,φ

e
m)t

ZF−Com
mk + ∑

m∈Mk

√
amρηc

mkaH
N (φ

a
m,φ

e
m)t

MR−Com
mk

)∣∣∣2},
= ∑

k∈K

(
∑

m∈Zk

amρη
c
mkE

{∣∣∣aH
N (φ

a
m,φ

e
m)t

ZF−Com
mk

∣∣∣2}+ ∑
m∈Mk

amρη
c
mkE

{∣∣∣aH
N (φ

a
m,φ

e
m)t

MR−Com
mk

∣∣∣2}).
(6.23)

By invoking Lemma 2 in Appendix D.1, we have

T1 = ∑k∈K

(
∑m∈Zk

amρη
c
mk

γmk

N −|Sm|
+∑m∈Mk

amρη
c
mkNγmk

)
. (6.24)

Moreover, T2 can be obtained as

T2 = ρ ∑m∈M ∑l′∈L
(1−am)η

s
ml′
∣∣aH

N (φ
a
m,φ

e
m)t

sen
ml′
∣∣2. (6.25)

For the simplicity of notation, let us introduce a pair of binary variables to indicate the
group assignment for each AP m and DL UE k, as

δ
Sm
k =

1 if k ∈ Sm,

0 otherwise.
(6.26a)

δ
Wm
k =

1 if k ∈Wm,

0 otherwise.
(6.26b)

By invoking (6.22), the average spatial power pattern for sensing is given by

Pave(φ a
m,φ

e
m) = Pave

Com(φ
a
m,φ

e
m)+Pave

Sen(φ
a
m,φ

e
m), (6.27)

where Pave
Sen(φ

a
m,φ

e
m)=T2 represents power pattern related to L sensing zones, and Pave

Com(φ
a
m,φ

e
m)=

T1 represents the average sensing power distortion caused by simultaneous communication
symbol transmissions in the network, given by

Pave
Com(φ

a
m,φ

e
m) = ρ ∑m∈M ∑k∈K

amη
c
mkγmk

(
δ

Sm
k

N −|Sm|
+Nδ

Wm
k

)
, (6.28)
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which is independent of the angles.

Next, we consider the sensing performance associated with target l, i.e., at angle (φ a
t,ml,φ

e
t,ml)

for all m ∈ M. By using (6.25), Pave
Sen(φ

a
t,ml,φ

e
t,ml) can be expressed as

Pave
Sen(φ

a
t,ml,φ

e
t,ml) = ρN2

∑m∈M(1−am)η
s
ml

+ρ ∑m∈M ∑l′∈L \l(1−am)η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2, (6.29)

where the first term denotes the desired power pattern for sensing at the angles related to target l

and the second term is the average sensing power pattern distortion related to the other sensing
zones.

It is desirable to have the average sensing power pattern distortion as well as Pave
Com(φ

a
m,φ

e
m),

∀ φ a
m and φ e

m, as small as possible to confine the pattern distortion. Moreover, for illumi-
nating a target angle (φ a

t,ml,φ
e
t,ml), it is desirable that the mainlobe level of desired term in

Pave
Sen(φ

a
t,ml,φ

e
t,ml) is higher than the sum of sensing power pattern distortion and Pave

Com(φ
a
m,φ

e
m)

by a certain minimum sensing level κ , ∀ φ a
m and φ e

m, which is referred to as the MASR [160].
Accordingly, the MASR for the lth sensing zone is defined by (6.30) at the top of the next
page. Note that, in general, in the MASR, we need to choose angles that maximize the average
sensing power pattern distortion. However, this leads to an intractable MASR form. To alleviate
such difficulty and make the MASR more amenable to further design, we choose (φ a

t,ml,φ
e
t,ml)

for computing the sensing power pattern distortion in MASR. This is reasonable since we
assume that we know the sensing zone l, and thus, we only need to search some directions
around the angles of target l.

MASRl(a,ηc,ηs)

=
∑m∈M(1−am)N2ηs

ml

∑m∈M ∑k∈K amηc
mkγmk

(
δ

Sm
k

N−|Sm|+Nδ
Wm
k

)
+∑m∈M ∑l′∈L \l(1−am)η

s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2 .

(6.30)

6.3 Asymptotic Analysis

The system comprises a total of M APs. The APs are divided into two categories: Mc APs
designated for communication activities and Ms APs dedicated to sensing tasks, ensuring the
total AP count remains as M = Mc +Ms. With the application of MR precoding across all
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communication APs, we can pursue a detailed assessment of MR precoding’s impact on the
effectiveness of CF-mMIMO ISAC systems. In addition, we assume that equal power control
is applied at the C-APs and S-APs, where

η
c
mk =

1
N ∑k′∈K γmk′

, ∀k, (6.31a)

η
s
ml =

1
NL

. (6.31b)

We analyze the performance of two case studies: i) M is large and N is fixed, and; ii) N is
large and M is fixed.

6.3.1 Case I (Ms,Mc → ∞ and N is fixed)

In this section, we explore a scenario where both the numbers of APs designated for Ms and Mc

approach infinity. Importantly, during this expansion, we maintain a constant ratio between
Mc and Ms, symbolized as c = Mc

Ms
. This examination sheds light on the system’s asymptotic

performance characteristics, when both the sensing and communication resources are scaled
infinitely but proportionally. A critical aspect of this scenario involves the transmit power
scaling of each AP. As Mc becomes very large, the transmit power per AP is adjusted according
to ρ = E

M2
c
, where E is fixed. By applying (6.31) into (6.15), we have

yk = ∑m∈M

√
amE

N ∑k∈K γmk

1
Mc

gT
mktMR−Com

mk xc,k

+∑k′∈K \k∑m∈M

√
amE

N∑k∈K γmk

1
Mc

gT
mktMR−Com

mk′ xc,k′

+∑m∈M ∑l∈L

√
(1−am)E

NL
1

cMs
gT

mktSen
ml xr +nk. (6.32)

Then, by applying Tchebyshev’s theorem we have1

∑m∈M

√
amE

N ∑k∈K γmk

1
Mc

gT
mktMR−Com

mk −∑m∈M

√
amNE

∑k∈K γmk

γmk

Mc

P−−−−→
Mc→∞

0. (6.33)

1Let X1, . . . ,Xn be independent RVs, such that E
{

Xi} = x̄i and Var ≤ c ≤ ∞. Then, Tchebyshev’s theorem

states 1
n ∑

n
n′=1 Xn′ − 1

n ∑n′ x̄n′
P−−−→

n→∞
0 [161].
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Now, we turn our attention on the interference terms. For inter-user interference, by noting
that the zero-mean channel vector gmk is independent of tMR−Com

mk′ for k′ ̸= k, we have

∑
m∈M

√
amE

N ∑k∈K γmk

1
Mc

gT
mktMR−Com

mk′
P−−−−→

Mc→∞
0. (6.34)

Moreover, for the deterministic tSen
ml , we have

∑m∈M ∑l∈L

√
(1−am)E

NL
1

cMs
gT

mktSen
ml

P−−−−→
Ms→∞

0. (6.35)

Accordingly, by using (6.33), (6.34), and (6.35), we have

yk−

(
∑m∈M

√
amNE

∑k∈K γmk

γmk

Mc

)
xc,k−nk

P−−−−−−→
Mc,Ms→∞

0. (6.36)

The result in (6.36) indicates that when both Mc and Ms approach infinity, the received signal
contains the desired signal plus noise. This indicates that inter-user interference and interference
caused by S-APs fade, enhancing the signal quality. Most importantly, as M grows large, while
the ratio of Mc and Ms is kept fixed, the transmit power at each AP can be made inversely
proportional to the square of the number of APs with no degradation in performance.

6.3.2 Case II (N → ∞ and Mc and Ms are fixed)

We explore the scenario where N approaches infinity, while Mc and Ms remain constant. The
scaling of the transmit power for each AP is adjusted according to ρ = E

N , where E remains a
fixed value.

By implementing the power scaling rule ρ = E
N , considering (6.15) and substituting

gmk = (ĝmk + g̃mk), the desired received signal at the UE can be characterized, as follows

∑m∈M

√
amE

∑k∈K γmk

1
N
(ĝmk + g̃mk)

T ĝ∗mk
a.s.−→ ∑m∈M

√
amE

∑k∈K γmk
γmk, (6.37)

where we have used the results on very long random vectors [162].
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For the interference terms, noticing that gT
mk and tMR−Com

mk′ are independent zero-mean
vectors, we have

∑m∈M

√
amE

∑k∈K γmk

1
N

gT
mktMR−Com

mk′
a.s.−→ 0 (6.38a)

∑m∈M ∑l∈L

√
(1−am)E

L
1
N

gT
mktSen

ml
a.s.−→ 0. (6.38b)

Then, by using (6.37) and (6.38) we have

yk −∑m∈M

√
amE

∑k∈K γmk
γmkxc,k −nk

a.s.−→ 0, as N → ∞, (6.39)

where a.s.→ denotes almost sure convergence. Akin to colocated mMIMO systems, the huge
power gain (i.e. ρ = E

N ) can be achieved, and the channels between the UEs and APs tend toward
orthogonality as N → ∞, elucidating the profound impact of deploying an extensive number
of antennas in the CF-mMIMO ISAC space. This tendency towards channel orthogonality
inherently mitigates the interference and enhances the signal quality, thereby reinforcing the
premise that increasing the antenna count per AP not only avails of the advantages seen in
traditional mMIMO architectures, but also significantly boosts the overall system performance
and SE within the CF-mMIMO ISAC paradigm.

6.4 Proposed Design Problems and Solution

In this extended section, we formulate and solve the problem of joint AP mode selection
and power allocation to provide fairness across the UEs, subject to quality of service (QoS)
requirements of the sensing zone. More specifically, we aim to optimize the AP operation
mode selection vector (a) and power control coefficients (ηc

mk,η
s
ml) to maximize the minimum

per-UE SE subject to a prescribed MASR level for the target detection and transmit power
constraints at the APs.

In order to further simplify the optimization problem, we propose a greedy-based algorithm
for AP mode selection and power control design. More specifically, the joint optimization
problem is decomposed into two sub-problems: 1) AP mode selection, which is performed via
a greedy algorithm and 2) Power control design for fixed AP modes.
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Note that AP m is required to meet the average normalized power constraint, i.e., E
{
∥xc,m∥2

}
≤

ρ . By invoking (6.13), and noticing that E
{∥∥tZF−Com

mk

∥∥2
}
= γmk

N−|Sm| , we have the following

per-AP power constraint

∑k∈Sm
η

c
mk

γmk

N −|Sm|
+∑k∈Wm

Nγmkη
c
mk ≤ am. (6.40)

6.4.1 Joint AP Mode Selection and Power Allocation Design

In this subsection, we formulate and solve the problem of joint AP mode selection and power
control design. Define a ≜ {a1, . . . ,aM}, ηc ≜ {ηc

m1, . . . ,η
c
mK} and ηs ≜ {ηs

m1, . . . ,η
s
mL} for

all m ∈ M. The optimization problem is then formulated as

(P1): max
a,ηc,ηs

min
k∈K

SINRk(a,ηc,ηs) (6.41a)

s.t. MASRl(a,ηc,ηs)≥ κ, ∀l ∈ L , (6.41b)

∑k∈Sm
η

c
mk

γmk

N −|Sm|
+∑k∈Wm

Nγmkη
c
mk ≤ am,∀m ∈ M , (6.41c)

∑
l∈L

η
s
ml ≤

(1−am)

N
,∀m ∈ M , (6.41d)

am ∈ {0,1}, (6.41e)

where the first constraint (6.41b) is to explicitly control the level of the MASR for all sensing
zones, while the second and third constraint control the transmit power at the C-APs and S-APs,
respectively.

Before proceeding, we introduce an auxiliary variable t = mink∈K SINRk(a,ηc,ηs). We
further relax the binary constraint (6.42f). Since at the optimal point am ∈ {0,1}, we replace
am with a2

m in the second and third constraint to accelerate the convergence speed of the
optimization problem. Accordingly, the optimization problem (6.41) is reformulated as follows:
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(P2): max
a,ηc,ηs,t

t−λ ∑m∈M
am −a(n)m

(
2am−a(n)m

)
(6.42a)

s.t. SINRk(a,ηc,ηs)≥ t, ∀k ∈ K (6.42b)

MASRl(a,ηc,ηs)≥ κ, ∀l ∈ L , (6.42c)

∑k∈Sm
η

c
mk

γmk

N−|Sm|
+∑k∈Wm

Nγmkη
c
mk

≤ a(n)m

(
2am−a(n)m

)
,∀m ∈ M , (6.42d)

∑
l∈L

η
s
ml ≤

(1−a2
m)

N
, ∀m ∈ M , (6.42e)

0 ≤ am ≤ 1, ∀m ∈ M . (6.42f)

The non-convex nature of constraints (6.42b) and (6.42c) make the resulting problem
non-convex. To address the non-convexity, we employ the method of SCA. To deal with the
non-convexity of (6.42b), we first define

ρmk ≜ ζ
Zk
m
(βmk − γmk)

N −|Sm|
+ζ

Mk
m Nβmk, (6.43a)

fmk ≜ ζ
Zk
m +Nζ

Mk
m . (6.43b)

Now, constraint (6.42b) can be expressed as(
∑m∈M

√
amρηc

mkγmk fmk

)2

t
≥

ρ ∑m∈M
am

(
∑k′∈K

η
c
mk′γmk′ρmk −∑l∈L

η
s
mlNβmk

)
+ρ ∑m∈M ∑l∈L

η
s
mlNβmk +1. (6.44)

For ease of description, let us denote

µmk ≜ ∑k′∈K
η

c
mk′γmk′ρmk −∑l∈L

η
s
mlNβmk. (6.45)

To this end, (6.44) is equivalent to



6.4 Proposed Design Problems and Solution 116

(
2∑m∈M

√
amηc

mkγmk fmk

)2

t
+∑m∈M

(am−µmk)
2

≥∑m∈M
(am+µmk)

2+4∑m∈M ∑l∈L
η

s
mlNβmk+4/ρ. (6.46)

It is clear that we need to find a concave lower bound of the left-hand side of the above
inequality. To this end, we note that the function x2/y is convex for y > 0, and thus, the
following inequality holds

x2

y
≥ x0

y0

(
2x− x0

y0
y
)
, (6.47)

which is obtained by linearizing x2/y around x0 and y0. Let us now define

q(n)k ≜
2∑m∈M

√
a(n)m (ηc

mk)
(n)γmk fmk

t(n)
. (6.48)

From the inequality (6.47), we can recast (6.46) as

q(n)k

(
4∑m∈M

√
amηc

mkγmk fmk−q(n)k t
)

+∑m∈M

(
a(n)m −µ

(n)
mk

)(
2
(

am −µmk

)
−
(

a(n)m −µ
(n)
mk

))
≥ ∑m∈M

(am +µmk)
2 +4∑m∈M∑l∈L

η
s
mlNβmk+4/ρ, (6.49)

where we have used the following inequality

x2 ≥ x0(2x− x0), (6.50)

and replaced x and x0 by am −µmk and a(n)m −µ
(n)
mk , respectively.

Now, we focus on (6.42c), which can be expressed as

∑m∈M(1−am)N2
η

s
ml

≥ κ ∑m∈M ∑l′∈L \l(1−am)η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2

+κ ∑m∈M ∑k∈K
amη

c
mkγmkθmk, (6.51)
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where θmk ≜
δ

Sm
k

N−|Sm|+Nδ
Wm
k . Now, we can recast (6.51) as

∑m∈M N2
η

s
ml ≥

∑m∈M am

(
N2

η
s
ml +κ ∑k∈K

η
c
mkγmkθmk

−κ ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2)

+κ ∑m∈M ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2. (6.52)

For ease of description let us denote

νml ≜

(
N2

η
s
ml +κ ∑k∈K

η
c
mkγmkθmk

−κ ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2). (6.53)

Accordingly, (6.52) can be written as

4∑m∈M N2
η

s
ml +∑m∈M(am −νml)

2 ≥ ∑m∈M(am +νml)
2

+4κ ∑m∈M ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2. (6.54)

To this end, by using (6.50), we obtain the concave lower bound of the left-hand side of the
above inequality. Then, we get

4∑m∈M N2
η

s
ml +∑m∈M

(
a(n)m −ν

(n)
ml

)
×
(

2(am −νml)− (a(n)m −ν
(n)
ml )

)
≥ ∑m∈M(am +νml)

2

+4κ ∑m∈M ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2. (6.55)

Now, the convex optimization problem is given as (6.56), at the top of the next page.
Problem (P3) is a convex optimization problem and can be efficiently solved using CVX [163].
In Algorithm 5, we outline main steps to solve problem (P3), where x̃ ≜ {a,ηc,ηs} and
F̂ ≜ {(6.56b), (6.56c), (6.56d), (6.56e), (6.56f)} is a convex feasible set. Starting from a
random point x̃ ∈ F̂ , we solve (6.56) to obtain its optimal solution x̃∗, and use x̃∗ as an initial
point in the next iteration. The proof of this convergence property uses similar steps as the
proof of [164, Proposition 2], and hence, is omitted herein due to lack of space.
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Algorithm 5 Proposed algorithm for joint AP mode selection and power allocation design
(JAP-PA)

1: Initialize: n=0, λ > 1, a random initial poin x̃(0)∈F̂ .
2: repeat
3: Update n = n+1
4: Solve (6.56) to obtain its optimal solution x̃∗
5: Update x̃(n) = x̃∗
6: until convergence

Complexity of Algorithm 5: Algorithm 5 requires solving a series of convex problems
(6.56). For ease of presentation, if we let K = L, problem (6.56) can be transformed to an
equivalent problem that involves Av ≜ (M+2MK +1) real-valued scalar variables, Al ≜ 3M

linear constraints, Aq ≜ 2K quadratic constraints. Therefore, the algorithm for solving problem
(6.56) requires a complexity of O(

√
Al +Aq(Av +Al +Aq)A2

v) in each iteration [? ? ]. In
Section 6.5, we will show that this algorithm converges to the optimal solution after a few
iterations.

(P3): max
a,ηc,ηs,t

t −λ ∑m∈M
am −a(n)m

(
2am−a(n)m

)
(6.56a)

s.t. q(n)k

(
4∑m∈M

√
amηc

mkγmk fmk−q(n)k t
)
+∑m∈M

(
a(n)m −µ

(n)
mk

)(
2
(

am −µmk

)
−
(

a(n)m −µ
(n)
mk

))
≥ ∑m∈M

(am +µmk)
2 +4∑m∈M ∑l∈L

η
s
mlNβmk +4/ρ,

(6.56b)

4∑m∈M N2
η

s
ml +∑m∈M

(
a(n)m −ν

(n)
ml

)(
2(am −νml)− (a(n)m −ν

(n)
ml )

)
≥ ∑m∈M(am +νml)

2+4κ ∑m∈M ∑l′∈L \l η
s
ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2,

(6.56c)

∑k∈Sm
η

c
mk

γmk

N −|Sm|
+∑k∈Wm

Nγmkη
c
mk ≤ a(n)m

(
2am−a(n)m

)
,∀m ∈ M ,

(6.56d)

∑
l∈L

η
s
ml ≤

(1−a2
m)

N
,∀m ∈ M , (6.56e)

0 ≤ am ≤ 1. (6.56f)
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6.4.2 Greedy AP Mode Selection and Optimized Power Allocation

In this subsection, to reduce the complexity of the joint optimization problem, while maintaining
an acceptable system performance, we propose a greedy algorithm to determine the operation
modes of the APs. Then, given the operation modes for the APs, we jointly optimize the power
control coefficients at the C-APs and S-APs.

Greedy AP Mode Selection

Let ASen and ACom denote the sets containing the indices of APs operating as radar, i.e., APs
with am = 0, and of APs operating in communication mode, i.e., APs with am = 1, respectively.
In addition, MASRl(ASen,ACom) and SINRk(ASen,ACom) underline the dependence of the
sensing MASR (of the l-th zone) and received SINR (of the k-th UE) on the different choices of
AP mode selection. Our greedy algorithm of AP mode selection is shown in Algorithm 6. To
guarantee the sensing MASR requirement, all APs are initially assigned for sensing operation,
i.e., ASen = M and ACom = /0. Then, in each iteration, one AP switches into communication
operation mode for maximizing the minimum SE (or equivalently SINR), while the minimum
MARSs, required for target sensing, in all sensing zones are guaranteed. This process continues
until there is no more improvement in the minimum SINR across all UEs.

Power Allocation

For a given operation mode selection vector (a), we optimize the power control coefficients
(ηc

mk,η
s
ml) to achieve maximum fairness among the EUs. Therefore, the optimization prob-

lem (6.41) is reduced to

(P4): max
ηc,ηs

t (6.57a)

s.t. SINRk(η
c,ηs)≥ t, (6.57b)

MASRl(η
c,ηs)≥ κ, ∀l ∈ L , (6.57c)

∑k∈Sm
η

c
mk

γmk

N −|Sm|
+∑k∈Wm

Nγmkη
c
mk ≤ am,∀m ∈ M , (6.57d)

∑l∈L
η

s
ml ≤

(1−am)

N
,∀m ∈ M . (6.57e)
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We note that constraints (6.57b) and (6.57c) are non-convex. To deal with this non-convexity, we
first introduce the auxiliary variables ξ 2

mk = ηc
mk, which yields the optimization problem (6.58),

at the middle of the next page.

(P5): max
ξ ,ηs,t

t (6.58a)

s.t.

(
∑m∈M

√
ρamξmkγmk fmk

)2

ρ ∑m∈M amρmk ∑k′∈K ξ 2
mk′γmk′+ρ ∑m∈M N(1−am)βmk ∑l∈L ηs

ml+1
≥ t,

(6.58b)

∑m∈M(1−am)N2ηs
ml

∑m∈M am ∑k∈K ξ 2
mkγmkθmk+∑m∈M(1−am)∑l′∈L \l ηs

ml′
∣∣aH

N (φ
a
t,ml,φ

e
t,ml)t

sen
ml′
∣∣2

≥ κ, ∀l ∈ L , (6.58c)

∑k∈K
ξ

2
mkγmkθmk ≤ am,∀m ∈ M , (6.58d)

∑l∈L
η

s
ml ≤

(1−am)

N
,∀m ∈ M , (6.58e)

At the next step, we replace the convex function in the numerator of (6.58b) with its concave
lower bound, which results in the following constraint

z(n)k

(
2∑m∈M

√
amξmkγmk fmk − z(n)k

)
∆(ξ ,ηs)

≥ t, (6.59)

where ∆(ξ ,ηs) ≜ ρ ∑m∈M amρmk ∑k′∈K ξ 2
mk′γmk′+ρ ∑m∈M N(1 − am)βmk ∑l∈L ηs

ml +1 and
z(n)k ≜ ∑m∈M

√
amξ

(n)
mk γmk fmk. Therefore, the power control design problem for fixed AP

mode operation is given by

(P6): max
ξ ,ηs,t

t (6.60a)

s.t. (6.59), (6.58c)− (6.58e), (6.60b)

The optimization problem in (6.60) is again convex, which we can solve directly using the
bisection technique and solving linear feasibility problems, as shown in Algorithm 7.
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Algorithm 6 Greedy AP Mode Selection
1: Initialize: Set ACom = /0 and ASen = M . Set iteration index i = 0.
2: Calculate Π⋆[i] = mink∈K SEk(ASen,ACom)
3: repeat
4: for all m ∈ ASen do
5: Set As = ASen \m.
6: if MASRl(As,ACom

⋃
m)≥κ , ∀l ∈ L then

7: Calculate Πm = mink∈K SINRk(As,ACom
⋃

m)
8: else
9: Set Πm = 0

10: end if
11: end for
12: Set Π⋆[i+1] = max

m∈ACom
Πm

13: e = |Π⋆[i+1]−Π⋆[i]|
14: if e ≥ emin then
15: Update ACom={ACom

⋃
m⋆} and ASen=ASen\m⋆

16: end if
17: Set i = i+1
18: until e < emin
19: return ASen and ACom, i.e., the indices of APs operating in radar mode and communication

mode, respectively.

Remark 4 It is important to note that, for a given network realization, it is likely that the

greedy and/or random AP selection schemes cannot guarantee the sensing requirement in the

network design. Hence, we introduce a new metric known as the success sensing rate, defined

as the ratio of the number of network realizations with successful sensing for all sensing zones

to the total number of channel realizations. For a fair comparison, in each channel realization,

if the MASR requirements are not met or the optimization problem of a scheme is infeasible, we

set the SE of that scheme to zero.

6.5 Numerical Examples

In this section, we verify the correctness of our analytical results and the performance of the
proposed algorithms.



6.5 Numerical Examples 122

Algorithm 7 Bisection algorithm for solving (6.60)

(1) Initialization: Choose the initial values of tmax and tmin, where tmax and tmin define a
range of objective function values. Set tolerance ε > 0.

(2) Set t := tmax+tmin
2 and solve the convex feasibility problem (6.60).

(3) If the problem in Step 2 is feasible, set tmin := t; else set tmax := t.

(5) Stop if tmax − tmin < ε . Otherwise, go to Step 2.

6.5.1 Large-scale Fading Model and System Parameters

We assume that the M APs and K UEs are uniformly distributed in a square of 0.5× 0.5
km2, whose edges are wrapped around to avoid the boundary effects. The large-scale fading
coefficients βmk are modeled as [165]

βmk[dB] =−30.5−36.7log10

(
dmk

1m

)
+Fmk, (6.61)

where dmk is the distance between UE k and AP m (computed as the minimum over different
wrap-around cases) and Fmk ∼ C N (0,42) is the shadow fading. The shadowing terms from
an AP to different UEs are correlated, as

E{FmkFjk′}≜

422−δkk′/9m, if j = m,

0, otherwise,
(6.62)

where δkk′ is the physical distance between UEs k and k′.

The values of the network parameters are τ = 200, and τt = K +L. We further set the
bandwidth B = 50 MHz and noise figure F = 9 dB. Thus, the noise power σ2

n = kBT0BF ,
where kB = 1.381×10−23 Joules/oK is the Boltzmann constant, while T0 = 290oK is the noise
temperature. Let ρ̃ = 1 W, and ρ̃t = 0.25 W be the maximum transmit power of the APs and
uplink training pilot sequences, respectively. The normalized maximum transmit powers ρ and
ρt are calculated by dividing these powers by the noise power. To evaluate the performance of
proposed AP mode selection schemes, we consider random AP selection with optimized power
allocation (RAP-OPA). In the numerical results, JAP-OPA denotes our proposed design in
Algorithm 5, i.e., joint AP mode selection and power allocation design. Moreover, greedy AP
selection and optimized power allocation design is indicated by GAP-OPA.
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95%-Likely Rate

Fig. 6.2 CDF of the per-UE SE and sensing success rate (κ = 8 dB, M = 30, N = 16, K = 4,
and L = 2).

6.5.2 Results and Discussions

The empirical cumulative distributed functions (CDFs) of the per-UE SE for all scenarios with
κ = 8 dB, MN = 480, K = 4 and L = 2 are plotted in Fig. 6.2. The bar chart corresponds to the
sensing success rate of different schemes. It can be observed that while JAP-OPA guarantees
the sensing requirement for all network realizations, RAP-OPA fails to meet this requirement,
with a success rate of 10%. In other words, the power allocation problem becomes infeasible in
90% of cases. On the other hand, GAP-OPA yields comparable results, achieving a success
rate of approximately 70%, which confirms the effectiveness of the proposed greedy algorithm.
For the infeasible cases, according to our discussion in Remark 4, we set the SE of the UEs to
zero. By comparing the CDFs of the per-UE SE across all schemes, we observe that JAP-OPA
provides a satisfactory fairness among the UEs. Moreover, the SE achieved by JAP-OPA is
much higher than that of the GAP-OPA and RAP-OPA.

Figure 6.3 shows the worst SE (minimum SE) across the UEs for given realizations of the
large-scale fading coefficients and for two different number of sensing zones: L = 3 (dashed
lines) and L = 2 (solid lines). The proposed JAP-OPA scheme significantly improves the worst
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95%-Likely Rate

Fig. 6.3 CDF of the per-UE minimum SE for different schemes and for different number of
sensing zones. The dashed lines depict results for L = 3 while the solid lines show results for
L = 2 (κ = 6 dB, M = 30, N = 16, K = 4).

SE over the benchmarks and provides 100% sensing success rate for both scenarios. Moreover,
we observe that joint optimization can guarantee nearly the same minimum SE per UE across
all different channel realizations, while random and greedy AP selection provides varying
levels of per-UE SE. For example, when L = 2, in 60% of channel realizations, the minimum
SE obtained via GAP-OPA is less than 3 bit/s/Hz, while JAP-OPA consistently provides a
minimum SE greater than 4 bit/s/Hz. Moreover, by increasing the number of sensing zones
from 2 to 3, the sensing performance of both the GAP-OPA and RAP-OPA severely degraded,
resulting in success rates of 27% and 1% for GAP-OPA and RAP-OPA, respectively. These
findings confirm the importance of joint AP mode selection and power allocation for both
communication and sensing operations. Figure 6.4 shows the average of the minimum SE
per-UE with a fixed number of antenna units in the network versus the number of APs. By
increasing the number of APs, the proposed JAP-OPA outperforms all other schemes, while
RAP-OPA yields the worst performance in terms of SE. Moreover, the sensing success rate
of GAP-OPA and RAP-OPA decreases as the number of APs increases. It is most likely
for RAP-OPA to fail when M > 30. This behavior is due to the fact that the MASR heavily
depends on N, (it is proportional to N2 according to (6.30)). Therefore, the MASR decreases
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Fig. 6.4 Average of the per-UE minimum SE and sensing success rate versus the number of
APs (κ = 8 dB, MN = 480, K = 4, and L = 2).

significantly as M increases, and both RAP-OPA and GAP-OPA schemes cannot guarantee
to meet the sensing requirement under this condition. Conversely, the proposed JAP-OPA
scheme ensures successful sensing for all network realizations, while delivering much higher
per-UE minimum SE compared to the RAP-OPA and GAP-OPA schemes. Interestingly, the
SE performance of the the proposed JAP-OPA scheme is improved by increasing the number
of APs. These results reveal the importance of joint AP mode selection and power control
design in dense CF-mMIMO networks.

Figure 6.5 illustrates the average of the minimum SE per-UE versus κ , along with the
sensing success rate of different schemes as a function of κ . As the sensing requirements
increase, the sensing success rate of the RAP-OPA and GAP-OPA schemes decreases, particu-
larly when κ > 8 dB. Additionally, the minimum SE per-UE sharply decreases for these two
schemes. However, the proposed JAP-OPA scheme continues to meet the MASR requirements
and delivers high values for the minimum per-UE . Figure 6.5 illustrates the average of the
minimum SE per-UE versus κ , along with the sensing success rate of different schemes as a
function of κ . As the sensing requirements increase, the sensing success rate of the RAP-OPA
and GAP-OPA schemes decreases, particularly when κ > 8 dB. Additionally, the minimum SE
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Fig. 6.5 Average of the per-UE minimum SE and sensing success rate versus κ (MN = 480,
M = 30, K = 4, and L = 2).

per-UE sharply decreases for these two schemes. However, the proposed JAP-OPA continues
to meet the MASR requirements and delivers high values for the minimum per-UE SE.

In Fig. 6.6, we compare the convergence rate of Algorithm 5 for different number of APs
in the network. To solve (6.56), we use the convex conic solver MOSEK and set λ = 10. We
can see that with a small number of iterations (less than 60 iterations), Algorithm 5 returns
the optimized solution. The transient behavior stems from the penalty term λ ∑m∈M am −
a(n)m

(
2am−a(n)m

)
in the optimization problem. Furthermore, it is worth mentioning that the

resulting values of the parameters am converge to 1 and 0 with high accuracy.

6.6 Conclusion

In this paper, we proposed a distributed ISAC implementation underpinned by a CF-mMIMO
architecture. We analyzed both the exact and asymptotic SE performance of the downlink
communication system and provided exact results for the MASR metric of the sensing zones.
The operation mode of the distributed APs and their transmit power coefficients were jointly



6.6 Conclusion 127

Fig. 6.6 Convergence behavior of Algorithm 5 (MN = 480, K = 4, L = 2, λ = 10).

optimized to maximize fairness among communication UEs, while ensuring a specific level of
MASR for different sensing zones in the network. To reduce the computational complexity
of the proposed optimal scheme, a low-complexity design was also developed, wherein the
operation mode of the APs was determined through a greedy algorithm and then the transmit
power of the APs was optimized via a bisection algorithm. The proposed AP mode selection and
power control design has shown to provide significant performance over the benchmark systems
with random/greedy AP mode selection for both communication and sensing operations.



Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

7.1.1 Conclusions

This thesis has journeyed through the dynamic and evolving field of wireless communication,
with a particular focus on the pivotal role of mMIMO technologies and their coexistence with
MIMO radar within the framework of ISAC. The research presented in this thesis spans forth
comprehensive studies, each shedding light on different aspects of this challenging yet crucial
domain, setting a path for the advancement of 5G and upcoming 6G networks.

In Chapter 3, the thesis laid the groundwork by exploring the coexistence of a multiuser
mMIMO downlink system and MIMO radar. The chapter’s significant contributions, such
as deriving closed-form expressions for radar detection probability and mMIMO SE, and
introducing an innovative power allocation scheme, set a strong foundation. These contributions
are crucial in enhancing the mMIMO performance while carefully balancing the radar system
interference.

Chapter 4 built upon these foundational insights to tackle more nuanced challenges in
mMIMO and radar system coexistence, particularly under conditions of imperfect CSI. This
chapter made significant strides in characterizing the performance with advanced precoding
designs such as MR, ZF, and especially PZF, which is a key highlight, designed to mitigate
interference and protect the radar functionality. In addition, this chapter developed power
control strategies, providing practical solutions to optimize system performance in realistic
scenarios. The chapter’s in-depth analysis, including multiple target scenarios and correlated
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fading environments, marked a substantial advancement in understanding and managing the
complex interplay between mMIMO communication systems and MIMO radar.

Chapter 5 expanded the scope further into CF-mMIMO systems within ISAC frameworks,
addressing innovative approaches for AP operation mode selection. The methodologies de-
veloped in this chapter for dynamic mode selection and algorithmic power control solutions
significantly improved the communication performance while meeting stringent sensing re-
quirements. These advancements are not only pivotal for the current network performance but
also pave the way for future wireless networks where integrated communication and precise
sensing are paramount.

Finally, Chapter 6 extended the analysis from Chapter 5 into the complex field of CF-
mMIMO within the ISAC framework, with a special focus on multi-zone sensing and the
evaluation of precoding strategies. It identified PZF as a key strategy for its efficient interfer-
ence management, since it can optimize the network efficiency and improve the user experience
by prioritizing users based on channel gains. In essence, Chapter 6 contributed significantly to
advancing CF-mMIMO ISAC systems, highlighting improvements in communication perfor-
mance and sensing capabilities across various zones, and marking notable progress in wireless
communication technologies.

Collectively, the studies presented in this thesis contribute profoundly to the field of ISAC,
offering a comprehensive consideration of theoretical analysis, algorithmic solutions, and
practical insights. They pave the way for more efficient spectrum sharing in future wireless
networks, ensuring a harmonious coexistence of mMIMO communication systems and MIMO
radar. The findings and methodologies established here are not merely academic achievements;
they are beacons guiding the future development of advanced ISAC systems, promising a more
connected and technologically advanced world. As the wireless communication landscape
continues to evolve, the insights and innovations presented in this thesis will undoubtedly
play a crucial role in shaping the future of ISAC, leading to more sophisticated, efficient, and
integrated wireless networks in the era of 5G and beyond.

7.2 Future Work

This thesis has explored the coexistence of mMIMO systems and MIMO radar, presenting novel
insights into spectrum sharing, precoding design, power control, and operational mode selection
in CF-mMIMO systems. While the contributions significantly advance the understanding and
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practical implementation of these technologies, several avenues for future research have been
identified to further enhance the security and efficiency of ISAC systems, such as:

• Enhancing Security Protocols in ISAC Systems:

Future research should focus on advancing the security protocols for ISAC environments,
particularly in developing secure radar-communication systems to counteract malicious
threats. For instance, the study on [59, 109, 166] served as a foundational reference,
highlighting the need for integrated defense mechanisms against sophisticated cyber and
physical threats.

• Incorporation of Extremely Large-Scale mMIMO (XL-MIMO) Technologies:

As a pioneering approach for the forthcoming 6G networks, XL-MIMO promises sub-
stantial enhancements in wireless communication [167, 168]. Future research should
explore how XL-MIMO technologies can be seamlessly integrated into ISAC frame-
works, focusing on beamforming optimization to improve the SE while minimizing the
cross-system interference. Furthermore, the adaptability and scalability of XL-MIMO in
diverse environments, from urban landscapes to rural expanses, merit thorough examina-
tion to evaluate their performance resilience.

• Applying Machine Learning for Dynamic ISAC Systems:

The application of machine learning in ISAC systems presents an extensive area for
exploration, aimed at boosting the system flexibility and efficiency [169, 59]. Developing
predictive models for dynamic spectrum management, interference control, and resource
distribution, along with exploring the use of reinforcement learning for instantaneous
decision-making in CF-mMIMO contexts, could significantly enhance the symbiosis
between communication and sensing capabilities.

• Hardware Implementation and Real-World Testing:

Translating theoretical and simulation insights into practical, real-world applications
involves designing and building hardware prototypes of the proposed mMIMO and radar
coexistence systems. This phase includes testing these systems in controlled environ-
ments before deploying them in real-world scenarios to assess their performance, identify
unforeseen issues, and refine the system based on empirical data [95]. Challenges include
ensuring the fidelity of the hardware implementation to the theoretical models, managing
the complexities of real-world signal interference and propagation, and adapting the
system to various operational environments [94].
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Pursuing these directions will significantly contribute to the evolution and fortification of ISAC
systems, ensuring they are primed for the future landscape of wireless communications.
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Appendix A

Proofs of Chapter 3

A.1 Proof of Proposition 1

From (3.18) and (3.21), the average probability of detection can be approximated by

E{Pd} ≈ P̄d = E

Q1(

√∣∣α|2LPRtr
(

AAH)

ε
,
√

CFA)

 . (A.1)

From (3.16), we have

ε = βbrtr(T̃) =
βbrρ

MK

K

∑
k=1

∥hk∥2 =
βbrρ

2MK
x̄, (A.2)

where x̄ is a chi-square random distributed variable with 2MK degrees of freedom. Thus, the
probability density function (PDF) of x̄ is given by:

p(x̄) =
1

2MKΓ(MK)
x̄MK−1e−x̄/2. (A.3)

The substitution of (A.2) into (A.1) gives

P̄d =
∫

∞

0
Q1

(√
c
x̄
,
√

CFA

)
p(x̄)dx̄, (A.4)



A.1 Proof of Proposition 1 147

where c is defined in Proposition 1, i.e.,

c = 2MK|α|2LPRtr(AAH)/(βbrρ). (A.5)

By using the series representation of the Marcum Q-function [170]:

Qv(a,b)v = 1− ∑
n≥0

e−
a2
2

(
a2

2

)n
γ

(
ν +n, b2

2

)
Γ(ν +n)

, (A.6)

we obtain

P̄d =
∫

∞

0

1− ∑
n≥0

e−
a2
2

(
a2

2

)n

×dn

p(x̄)dx̄, (A.7)

where a =
√ c

x̄ , b =
√

CFA and dn =
γ

(
1+n, b2

2

)
Γ(1+n) .

As a next step, (A.7) is simplified as (A.8)

P̄d =

∫ ∞

0

1
2MK/2Γ(MK)

e
−x̄
2 x̄MK−1 − ∑

n≥0

1
2MKΓ(MK)

∫
∞

0
e−

c
2x̄

(
c

2x̄

)n

dne
−x̄
2 x̄MK−1dx̄

.

(A.8)

By using the fact that ∫
∞

0

1
2MKΓ(MK)

e
−x̄
2 x̄MK−1dx̄ = 1, (A.9)

we can obtain

P̄d = 1− ∑
n≥0

1
2MKΓ(MK)

∫
∞

0
e−

c
2x̄

(
c

2x̄

)n

dne
−x̄
2 x̄MK−1dx̄. (A.10)

The integral in the above expression can be further derived by using [171, Eq. (9)]. Then, we
can obtain the closed-form expression for P̄d as given in Proposition 3.22.
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A.1.1 Proof of Proposition 2

To derive the closed-form solution for the spectral efficiency given in (3.24), we need to
compute 3 terms: E

{
zk

T Tk

}
, E
{
|zk

T Tk|2
}

, and Ak. The first term represents the desired
signal given by

E
{

zk
T Tk

}
=

√
ρ

βkKM
E
{
∥zk∥2

}
=

√
ρβkM

K
. (A.11)

The second term can be simplified as

E
{
|zk

T Tk|2
}
=

ρ

βkKM
E
{
∥zk∥4

}
=

ρβk

K
(M+1). (A.12)

The third term represents the inter-user interference plus interference from radar, given by

Ak =
K

∑
j=1, j ̸=k

E
{∣∣∣zk

T T j

∣∣∣2}+PRE
{∥∥fk

∥∥2
}
+σ

2
c

=
K

∑
j=1, j ̸=k

ρ

β jKM
E
{∣∣∣zk

T z∗j
∣∣∣2}+PRNβ̄k +σ

2
c

=
ρβk

K
(K −1)+PRNβ̄k +σ

2
c . (A.13)

By substituting (A.11), (A.12), and (A.13) into (3.25), we arrive at the desired result in
Proposition 2.
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Proofs of Chapter 4

B.0.1 Useful Result

lemma 1 For the projection matrix B = IM − R̂H
(

R̂R̂H
)−1

R̂, we have

E{B}= M−N
M

IM, M > N. (B.1)

We denote S = R̂H(R̂R̂H)−1R̂ with R̂ ∈ CN×M. Assuming that N < M, by using the SVD
technique, R can be expressed as

R̂ = UDVH , (B.2)

where U ∈ CN×N and V ∈ CM×M are unitary matrices and D = [D1,0] ∈ CN×M with D1 is
N ×N nonnegative diagonal matrix. Therefore, by using (B.2), we can express S as
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S = VDHUH(UDVHVDHUH)−1UDVH

(a)
= VDHUH(UD2

1UH)−1UDVH

(b)
= VDHD−2

1 DVH

= V

IN 0
0 0

VH , (B.3)

where (a) follows from the fact that VHV = IM and (b) holds since UHU = IN . Now assuming
that V ≜ [V1,V2] with V1 = [v1,1, . . . ,v1,N ] ∈ CM×N and V2 ∈ CM×(M−N), we can further
simplify (B.3) as

S =
N

∑
r=1

v1,rvH
1,r. (B.4)

By using (B.4), the expectation of S can be expressed as

E
{

S
}
=

K

∑
r=1

E
{

v1,r.vH
1,r

}
. (B.5)

Noticing that the distribution of v1,r is the same as z
∥z∥ , with z ∼ C N (0,IM), (B.5) can be

further simplified as

E
{

S
}
= NE

{
zzH

zHz

}
. (B.6)

The diagonal elements of the expectation matrix in (B.6) can be obtained as[
E
{

S
}]

(r,r)
= NE{t}

=
N
M
, (B.7)

where t = |zr|2

∑
M
s=1 |zs|2

is Beta distributed random variables with parameter (1,M−1) and E{t}=
1
M [172].

To find the off-diagonal elements of E
{

S
}

, we have [172]
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[
E
{

S
}]

(r,s)
= KE

{
zrz∗s

∑
M
t=1 |zt |2

}
= 0,∀r ̸= s. (B.8)

To this end, we can conclude that

E
{

B
}
= IM −E

{
S
}
=

M−N
M

IM. (B.9)

B.0.2 Proof of Proposition 3

To derive the closed-form expression for the SINRMR
k , we need to compute DSk, |BUk|2 and

|IUIkk′|2. By substituting (4.19) into the desired signal in (4.14), we obtain firstly DSk as

DSk =
√

ρηkE
{
(ĝT

k − g̃T
k )t

MR
k

}
=

√
ρηk

M
E
{

ĝT
k h∗

k

}
=

√
ρηkγk

M
E{
∥∥∥hk∥2

}
=
√

Mργkηk. (B.10)

In order to compute |BUk|2, we have

E
{
|BUk|2

}
= ρηkE

{
|gT

k tMR
k |2

}
−|DSk|2

= ργkηk(M+1)−Mργkηk

= ργkηk. (B.11)

We now turn our attention to derive |IUIkk′|2, which is given by

E
{∣∣IUIkk′

∣∣2}= ρηk′E
{∣∣gT

k tMR
k′
∣∣2}

= ρηk′E
{

gT
k E
{

tMR
k′ (tMR

k′ )H
}

g∗k

}
= ρηk′γk. (B.12)

Plugging (B.10), (B.11), and (B.12) into (4.18), we obtain the desired result in (4.20).
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B.0.3 Proof of Proposition 4

By using tZF
k , i.e., the k-th column of TZF in (4.21), the desired signal in (4.14), can be obtained

as

DSk =
√

ρηkE
{
(ĝT

k − g̃T
k )t

ZF
k

}
=
√

ρηkE
{

ĝT
k tZF

k

}
=
√

ρηkγkE
{

hT
k tZF

k

}
=
√

(M−K)ρηkγk. (B.13)

In order to derive E{|BUk|2}, which can be further expressed by

E
{
|BUk|2

}
= ρηkE

{
|gT

k tPZF
k |2

}
−|DSk|2, (B.14)

we need to obtain the first term in (B.17), which can be written as

E
{
|gT

k tPZF
k |2

}
= E

{
gT

k tZF
k (tZF

k )Hg∗k

}
. (B.15)

Denote VZF
k = tZF

k (tZF
k )H , we can express (B.15) as

E
{
|gT

k tZF
k |2

}
= E

{
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ZF
k (ĝ∗k − g̃∗k)

}
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k VZF
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}
= E
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k ĝ∗k

}
+E

{
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k VZF
k g̃∗k

}
= (M−K)ρηkγk +(βk − γk). (B.16)

To this end, by substituting (B.16) into (B.17), we have

E
{
|BUk|2

}
= E

{
|gT

k tZF
k |2

}
−|DSk|2

= ρηk(βk − γk). (B.17)



153

Then, we obtain the inter-user interference term as

E
{∣∣IUIkk′

∣∣2}= ρηk′E
{∣∣gT

k tZF
k′
∣∣2}

= ρηk′E
{

g̃T
k E
{

tZF
k′ (t

ZF
k′ )

H
}

g̃∗k

}
= ρηk′(βk − γk). (B.18)

Finally, (4.22) is obtained by plugging (B.13), (B.15), and (B.18) into (4.18).

B.0.4 Proof of Proposition 5

By using tPZF in (4.26), the desired signal in (4.14), can be obtained as

DSk =
√

ρηkE
{
(ĝT

k − g̃T
k )t

PZF
k

}
= αPZF

√
ρηkγkE

{
hT

k E{B}wZF
k

}
(a)
= αPZF

√
ρηkγk

(
M−N

M

)
E
{

hT
k wZF

k

}
(b)
=

√
ρηkγk(M−K)(M−N)

M
, (B.19)

where we exploited, in (a) Lemma 1 and in (b) E
{

hT
k wZF

k

}
= 1.

In order to derive E{|BUk|2}, which can be expressed as

E
{∣∣BUk

∣∣2}= ρηkE
{∣∣gT

k tPZF
k
∣∣2}−|DSk|2, (B.20)

we need to obtain the first term in (B.20), given by

E
{∣∣gT

k tPZF
k
∣∣2}= E

{
gT

k BwZF
k (wZF

k )HBHg∗k

}
. (B.21)
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Denoting Vk = wZF
k (wZF

k )H , we can express (B.21) as

E
{∣∣gT

k tPZF
k
∣∣2}= E

{
gT

k BVkBHg∗k
}

= E
{

gT
k

(
IM − R̂H(R̂R̂H)−1R̂

)
Vk

(
IM − R̂H(R̂R̂H)−1R̂

)
g∗k

}
= E

{
gT

k Vkg∗k −2gT
k VkR̂H(R̂R̂H)−1R̂g∗k +gT

k R̂H(R̂R̂H)−1R̂Vk(R̂H(R̂R̂H)−1R̂g∗k

}
.

(B.22)

Now, by using the fact that R̂ is independent of gk and Vk, we can derive (B.22) as

E
{∣∣gT

k tPZF
k
∣∣2}= E

{
gT

k Vkg∗k

}
−2E

{
gT

k VkE
{

R̂H(R̂R̂H)−1R̂
}

g∗k

}
+E

{
gT

k E
{

R̂H(R̂R̂H)−1R̂Vk(R̂H(R̂R̂H)−1R̂
}

g∗k

}
(a)
= E

{
gT

k Vkg∗k
}
−2

N
M
E
{

gT
k Vkg∗k

}
+

(
N
M

)2

E
{

gT
k Vkg∗k

}
=

(
1− N

M

)2

E
{

gT
k Vkg∗k

}
, (B.23)

where (a) holds since according to Lemma 1 we have E
{

R̂H(R̂R̂H)−1R̂
}
= N

M IM, while the

final result follows from the fact that E
{

gT
k Vkg∗k

}
= 1.

Then, we need to derive E
{

gT
k Vkg∗k

}
, which after vanishing the cross-expectations can be

obtained as

E
{

gT
k Vkg∗k

}
= E

{
(ĝT

k − g̃T
k )Vk(ĝ∗k − g̃∗k)

}
= E

{
ĝT

k Vkĝ∗k
}
+E

{
g̃T

k Vkg̃∗k
}

= 1+(βk − γk). (B.24)
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To this end, by substituting (B.24) into (B.23) and then plugging the result into (B.20), we
get

E
{∣∣BUk

∣∣2}= E
{∣∣gT

k tPZF
k
∣∣2}−|DSk|2

= ρηkα
2
PZF

(
1− N

M

)2

(βk − γk). (B.25)

In order to derive IUI in (4.16), by using similar steps as in (B.22), we have

E
{∣∣IUIkk′

∣∣2}= ρηk′E
{∣∣gT

k BwZF
k′
∣∣2}

= ρηk′

(
E
{

gT
k Vk′g∗k

}
−2

N
M
E
{

gT
k Vk′g∗k

}
+

(
N
M

)2

E
{

gT
k Vk′g∗k

})
= ρηk′

(
1− N

M

)2

E
{

gT
k Vk′g∗k

}
. (B.26)

Therefore, we need to derive E
{

gT
k Vk′g∗k

}
, which, after averaging out the cross-expectations,

it becomes

E
{

gT
k Vk′g∗k

}
= E

{
(ĝT

k − g̃T
k )Vk′(ĝ∗k − g̃∗k)

}
= E

{
(ĝT

k Vk′ ĝ∗k + g̃T
k Vk′ g̃∗k)

}
= E

{
ĝT

k Vk′ ĝ∗k
}
+E

{
g̃T

k Vk′ g̃∗k
}

= (βk − γk). (B.27)

Therefore, the IUI in (B.26), can be derived as

E
{∣∣IUIkk′

∣∣2}= ρηk′

(
1− N

M

)2

(βk − γk). (B.28)

Finally, by substituting (B.19), (B.25), and (B.28), into (4.18), the desired result in (4.27) is
obtained.
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B.0.5 Proof of Proposition 6

From (4.24), T̃PZF can be expressed as

T̃PZF = TPZFDη(TPZF)H

=
M(M−K)

(M−N)
BWZFDη(WZF)HBH . (B.29)

Therefore, tr(T̃PZF) can be obtained as

tr(T̃PZF)
(a)
=

M(M−K)

(M−N)
tr(WZFDη(WZF)HBHB)

(b)
=

M(M−K)

(M−N)
tr(H∗(HT H∗)−1Dη(HT H∗)−1HT B), (B.30)

where we have exploited: in (a) tr(XY) = tr(YX), in (b) BHB = B. To derive tr(T̃PZF), let us
denote C as

C = H∗(HT H∗)−1Dη(HT H∗)−1HT . (B.31)

Then, by substituting (4.23) into (B.30), we get

tr(T̃PZF) =
M(M−K)

(M−N)

(
tr(C)︸ ︷︷ ︸

T1

− tr(CR̂H
(

R̂R̂H
)−1

R̂)︸ ︷︷ ︸
T2

)
. (B.32)

The first term T1 can be calculated as

T1 = tr(H∗(HT H∗)−1Dη(HT H∗)−1HT )

(a)
= tr(Dη(HT H∗)−1)

(b)
≈ 1

M
tr(DηIK)

=
1
M

K

∑
k=1

ηk, (B.33)

where we have exploited: in (a) tr(XY) = tr(YX), in (b) (HT H∗)−1 ≈ 1
M IK .
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Before proceeding to derive T2, we notice that

C = H∗(HT H∗)−1Dη(HT H∗)−1HT

≈ H∗(MIK)
−1Dη(MIK)

−1HT

=
1

M2 H∗DηHT . (B.34)

Therefore, we have

T2 = tr
(

CR̂H
(

R̂R̂H
)−1

R̂
)

≈ 1
M2 tr(DηHT R̂H

(
R̂R̂H

)−1
R̂H∗). (B.35)

Accordingly, by using the law of large number when M → ∞, we get

HT R̂H
(

R̂R̂H
)−1

R̂H∗

M
−

tr(R̂H
(

R̂R̂H
)−1

R̂)

M︸ ︷︷ ︸
=N/M

IK
M→∞→ 0. (B.36)

Finally, by substituting (B.36) into (B.35), T2 can be approximated as

T2 ≈
N

M2 tr(Dη)

=
N

M2

K

∑
k=1

ηk. (B.37)

To this end, by substituting (B.33) and (B.37) into (B.32) and then plugging the results
into (4.33), the desired result in (4.39) is obtained.

B.0.6 Proof of Proposition 7

An achievable downlink SE at the k-th user can be obtained using (4.17) where the effective
SINR is given by

SINRk =
ρηk

∣∣E{gT
k tk

}∣∣2
∑

K
k′=1ρηk′E

{∣∣gT
k tk′
∣∣2}−ρηk

∣∣∣E{gT
k tk

}∣∣∣2+PRβ̄kN +σ2
C

. (B.38)



158

Noticing that the MR precoding is given tMR
k =

ĝ∗k√
E{∥ĝk∥2}

, where E{∥ĝk∥2}= tr(Qk), we

have

E
{

gT
k tMR

k

}
= E

{
(ĝT

k + g̃T
k )t

MR
k

}
=

1√
tr(Qk)

E
{
∥ĝk∥2

}
=
√

tr(Qk) =
√

τpρutr(ΩkΞkΩk). (B.39)

To derive E
{∣∣gT

k tMR
k′
∣∣2}, we consider two different cases as follows

• When k′ ̸= k:

E
{
|gT

k ĝ∗k′|
2
}
= E{gT

k ĝ∗k′ ĝ
T
k′g

∗
k}

= tr
(
E{ĝ∗k′ ĝ

T
k′g

∗
kgT

k }
)

= tr
(
E{ĝ∗k′ ĝ

T
k′}E{g∗kgT

k }
)

= τpρutr(Ωk′Ξk′Ωk′Ωk). (B.40)

• When k′ = k: We notice that according to (4.51) and (4.52), we have y̆k,p = y̆k′,p and

Ξk = Ξk′ , respectively. We first rewrite E
{∣∣gT

k tMR
k′
∣∣2} as

E
{∣∣gT

k tMR
k′
∣∣2}=

1
tr(Qk′)

E
{
|gT

k ĝ∗k′|
2
}

=
1

tr(Qk′)
E
{
(ĝT

k ĝ∗k′ ĝ
T
k′ ĝ

∗
k + g̃T

k ĝ∗k′ ĝ
T
k′ g̃

∗
k)
}
, (B.41)

where the cross-expectations are vanished as the channel estimation error is zero-mean
vector. Now, we derive the first term in (B.41), which can be expressed as

E
{

ĝT
k ĝ∗k′ ĝ

T
k′ ĝ

∗
k

}
= τ

2
p ρ

2
pE
{∣∣∣y̆T

k,pΞkΩk′ΩkΞky̆∗k,p
∣∣∣2}. (B.42)

Before proceeding, we present the following results [16]

E
{∣∣∣uHBu

∣∣∣2}= |tr(BΨ)|2 + tr
(

BΨBH
Ψ

)
, (B.43)
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E
{∣∣gT

k tMR
k′
∣∣2}=


τpρu

tr(Qk′)

(
τpρp

∣∣∣tr(Ωk′ΩkΞk

)∣∣∣2 + tr
(

Ωk′ΩkΞkΩk

))
k′ = k

τpρu
tr(Qk′)

tr(Ωk′Ξk′Ωk′Ωk) k′ ̸= k
(103)

where u ∼ C N (0,Ψ) with covariance matrix Ψ ∈CM×M and any diagonalizable matrix
B ∈ CM×M.

By exploiting (B.43) and noticing that y̆k,p ∼ C N (0,(Ξk)
−1), we can derive (B.42) as

E
{

ĝT
k ĝ∗k′ ĝ

T
k′ ĝ

∗
k

}
= τ

2
p ρ

2
p

(∣∣∣tr(ΞkΩk′ΩkΞk(Ξk)
−1
)∣∣∣2

+ tr
(

ΞkΩk′ΩkΞk(Ξk)
−1

ΞkΩkΩk′Ξk(Ξk)
−1
))

= τ
2
p ρ

2
p

∣∣∣tr(ΞkΩk′Ωk

)∣∣∣2τpρptr
(
(Ωk′ −Ck′)ΩkΞkΩk

)
, (B.44)

where in the last step we used the fact that tr(AB) = tr(BA) and applied (4.53). We now
turn our attention to the second term in (B.41), which can be expressed as

E
{

g̃T
k ĝ∗k′ ĝ

T
k′ g̃

∗
k

}
= tr

(
E
{

g̃∗k g̃T
k }E{ĝ∗k′ ĝ

T
k′

})
= τpρptr(Ck′ΩkΞkΩk). (B.45)

To this end, by substituting (B.44) and (B.45) into (B.41), we obtain E
{∣∣gT

k tMR
k′
∣∣2} as (103)

at the top of the page. Finally, by substituting (B.39) and (103) into (B.38) and then plugging
the result into (4.17), the desired result in (4.54) is obtained.

To derive the detection probability over spatially correlated fading channels, according
to (4.32), we need to obtain tr(T̃MR), which can be expressed as

tr(T̃MR) =
K

∑
k=1

ηk

tr(Qk)
tr(ĝ∗k ĝT

k )

=
K

∑
k=1

ηk

tr(Qk)
∥ĝk∥2. (104)

We notice that ĝk ∼ C N (000, Qk) can be represented as

ĝk = Q
1
2
k zk, (105)



160

where zk ∼ C N (000, IM). Therefore, ∥ĝk∥2 in (104) can be expressed as

∥ĝk∥2 = zH
k Qkzk. (106)

By substituting (106) into (104) and then applying the trace lemma, i.e., zH
k Qkzk ≈ tr(Qk) as

M is large, we get

tr(T̃MR)≈
K

∑
k=1

ηk. (107)

To this end, by substituting (107) to (4.32), the non-centrality parameter for MR processing
and over spatially correlated fading channels is obtained as (4.55).



Appendix C

Proofs of Chapter 5

C.1 Proof of Proposition 9

In order to apply the use-then-forget technique to derive the downlink SE at user k, we
rewrite (5.12) as

yk = DSkxc,k+BUkxc,k+ ∑
k′∈Kd\k

IUIkk′xc,k′+IRkxr+nk, (C.1)

where

DSk
∆
= ∑

m∈M
am

√
ρηmkE

{
gT

mktCom
mk

}
(C.2a)

BUk
∆
= ∑

m∈M
am

√
ρηmk

(
gT

mktk −E
{

gT
mktk

})
, (C.2b)

IUIkk′
∆
= ∑

m∈M
∑

k′∈Kd\k
am

√
ρηmk′gT

mktCom
mk′ , (C.2c)

IRk
∆
= ∑

m∈M
(1−am)

√
ηmρgT

mktSen
m , (C.2d)

respectively represent the strength of the desired signal (DSk), the beamforming gain uncertainty
(BUk), interference caused by the k′-th user (IUIkk′) and the interference caused by S-APs (IRk),
respectively. By invoking (C.1), the achievable downlink SE at the k-th user can be expressed
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as SEk =

(
1− τp

τ

)
log2

(
1+SINRk

)
, where

SINRk=

∣∣DSk
∣∣2

E
{∣∣BUk

∣∣2}+∑k′∈Kd\kE
{∣∣IUIkk′

∣∣2}+E
{∣∣IRk

∣∣2}+1
. (C.3)

Now, we proceed to the desired signal term as

DSk =
√

ρE
{

∑
m∈M

amη
1/2
mk (ĝmk + g̃mk)

T ĝ∗mk

}
=
√

ρ ∑
m∈M

amNη
1/2
mk γmk, (C.4)

where we have used the fact that ĝmk and g̃mk are zero mean and independent.

Noticing that the variance of a sum of independent RVs is equal to the sum of the variances,

we can derive E
{∣∣BUk

∣∣2} as

E
{∣∣BUk

∣∣2}= ρ ∑
m∈M

amηmkE
{∣∣∣gT

mkĝ∗mk −E
{

gT
mkĝ∗mk

}∣∣∣2}
= ρ ∑

m∈M
amηmk

(
E
{∣∣gT

mkĝ∗mk
∣∣2}−∣∣∣E{gT

mkĝ∗mk

}∣∣∣2})
= ρ ∑

m∈M
amηmk

(
E
{∣∣g̃T

mkĝ∗mk|2
}
+E
{
||ĝmk||4

}
−N2

γ
2
mk

)
.

By using the fact that E
{∣∣g̃T

mkĝ∗mk

∣∣2}= E
{

g̃T
mkE

{
ĝ∗mkĝT

mk

}
g̃∗mk

}
= Nγmk(βmk − γmk) and

E
{
||ĝmk||4

}
= N(N +1)(γmk)

2, we get

E
{∣∣BUk

∣∣2}= ρN ∑
m∈M

amηmkγmkβmk. (C.5)

By following the same steps, we can obtain

E
{∣∣IUIkk′

∣∣2}= ρN ∑
m∈M

amηmk′γmk′βmk. (C.6)
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Moreover, by substituting (5.7) into (C.2d) and noticing that tSen
m (tSen

m )H = 1
N IN , we get

E
{∣∣IRk

∣∣2}= ∑
m∈M

(1−am)E
{
|gT

mktSen
m |2

}
= ρ ∑

m∈M
ηm(1−am)βmk. (C.7)

To this end, by substituting (C.4), (C.5), (C.6), and (C.7) into (C.3), the desired result in (5.13)
is obtained.
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Proofs of Chapter 6

D.1 Useful Lemma

lemma 2 For ZF beamforming vector tZF−Com
mk , defined in (6.10), we have

E
{

tZF−Com
mk (tZF−Com

mk )H
}
=

γmk

N(N −|Sm|)
IN . (D.1)

We first define Q≜ ĜSm

(
ĜH

Sm
ĜSm

)−1
and qk =Qek which is the kth column of Q∈CN×|Sm|.

Then, we have

γ
2
mkE

{
qkqH

k

}
=

γ2
mk

|Sm|

|Sm|

∑
k′=1

E
{

qk′qH
k′

}
. (D.2)

Accordingly, we have

E
{

tZF−Com
mk (tZF−Com

mk )H
}
=

γ2
mk

|Sm|
E
{

QQH
}

=
γ2

mk
|Sm|

E
{

ĜSm

(
ĜH

Sm
ĜSm

)−1(
ĜH

Sm
ĜSm

)−1
ĜH

Sm

}
. (D.3)

Let B = E
{

ĜSm

(
ĜH

Sm
ĜSm

)−1(
ĜH

Sm
ĜSm

)−1
ĜH

Sm

}
, For any N ×N unitary matrix Ω, we have

ΩBΩ
H =E

{
ΩĜSm

(
ĜH

Sm
ĜSm

)−1(
ĜH

Sm
ĜSm

)−1
ĜH

Sm
Ω

H
}
. (D.4)
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Now, denote by ḠSm = ΩĜSm . Thus, using (D.4), we have

ΩBΩ
H =E

{
ḠSm

(
ḠH

Sm
ḠSm

)−1(
ḠH

Sm
ḠSm

)−1
ḠH

Sm

}
, (D.5)

where we have used

ḠH
Sm

ḠSm = ĜH
Sm

Ω
H

ΩĜSm = ĜH
Sm

ĜSm. (D.6)

Since ḠSm = ΩĜSm is statistically identical to ĜSm , we have ΩBΩ
H = B, for any unitary

matrix Ω. By using the eigenvalue decomposition, B can be expressed as B = WDλ WH , where
W is a unitary matrix and Dλ is a diagonal matrix. Then, ΩBΩ

H = B is equivalent to

ΩWDλ Ω
HWH = UDλ UH = B. (D.7)

Since (D.7) is true for any unitary U, B must be a scaled identity matrix. This implies that
B = c1IN , where c1 is a constant, given by

c1 =
1
N
E
{

tr
(

ĜSm

(
ĜH

Sm
ĜSm

)−1(
ĜH

Sm
ĜSm

)−1
ĜH

Sm

)}
=

1
N
E
{

tr(ĜH
Sm

ĜSm)
−1
}

=
γmk

N(N −|Sm|)
. (D.8)

D.2 Proof of Proposition 10

Now, we proceed to the desired signal term as

DSk = E
{

∑m∈Zk
am

√
ρηc

mk(ĝmk + g̃mk)
T tZF−Com

mk

+∑m∈Mk
am

√
ρηc

mk(ĝmk + g̃mk)
T tMR−Com

mk

}
=
√

ρ

(
∑m∈Zk

am

√
ηc

mkγmk+N∑m∈Mk
am

√
ηc

mkγmk

)
, (D.9)

where we have used the fact that tZF−Com
mk , tMR−Com

mk and g̃mk are zero mean and independent.
In addition, the variance of the sum of independent RVs is equal to the sum of the variances.
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We can now proceed with the following derivation

E
{∣∣∣BUk

∣∣2}= E
{∣∣∑m∈Zk

am

√
ρηc

mk′g
T
mktZF−Com

mk′ +∑m∈Mk
am

√
ρηc

mk′g
T
mktMR−Com

mk′

∣∣∣2}−DSk.

(D.10)

We notice that

ϑ = E

{∣∣∣∑m∈Zk
am

√
ρηc

mk′g
T
mktZF−Com

mk +∑m∈Mκ
am

√
ρηc

mkgT
mktMR−Com

mk

∣∣∣2}

= ϑZ +ϑM +2
(

∑m∈Zk
am

√
ρηc

mkγmk

)(
N ∑m∈κM am

√
ρηc

mkγmk

)
, (D.11)

where

ϑZ = E
{∣∣∑m∈Zk

am

√
ρηc

mk′g
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We first focus on ϑZ , which can be obtained as
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Then, the second term of (D.11), ϑM, can be derived as
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As a result, plugging (D.13) and (D.14) into (D.15), we have

E
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The same steps can be followed to compute IUIkk′

IUIkk′ =∑m∈Zk
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c
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c
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Moreover, by substituting (6.7) into (6.17d), we get
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We now define A = aN(φ
a
t,ml,φ

e
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H
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e
t,ml)). Then, we have
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where tr(A) = N. To this end, by substituting (D.9), (D.15), (D.16), and (D.18) into (6.19), the
desired result in (6.21) is obtained.


