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Abstract
Climate change and the unsustainability of fossil fuels are calling for cleaner energies such as methanol as a fuel. Methanol 
is one of the simplest molecules for energy storage and is utilized to generate a wide range of products. Since methanol can 
be produced from biomass, numerous countries could produce and utilize biomethanol. Here, we review methanol produc-
tion processes, techno-economy, and environmental viability. Lignocellulosic biomass with a high cellulose and hemicel-
lulose content is highly suitable for gasification-based biomethanol production. Compared to fossil fuels, the combustion of 
biomethanol reduces nitrogen oxide emissions by up to 80%, carbon dioxide emissions by up to 95%, and eliminates sulphur 
oxide emission. The cost and yield of biomethanol largely depend on feedstock characteristics, initial investment, and plant 
location. The use of biomethanol as complementary fuel with diesel, natural gas, and dimethyl ether is beneficial in terms 
of fuel economy, thermal efficiency, and reduction in greenhouse gas emissions.
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Abbreviations
WGSR	� Water–gas shift reaction
SOEC	� Solid oxide electrolysis cell
WWTP	� Wastewater treatment plant
IGCC​	� Integrated gasification combined cycle
BMEP	� Brake mean effective pressure
BSFC	� Brake-specific fuel consumption
DMDF	� Diesel–methanol dual fuel
M-G DFSI	� Methanol–gasoline dual-fuel spark ignition
IBPGM	� Integrated biomass pyrolysis, gasification, 

and methanol synthesis
HCCI	� Homogenous charge compression ignition
DMDF	� Diesel–methanol dual fuel

Introduction

The extensive use of non-renewable fuel-energy sources 
continues to negatively impact the environment due to their 
association with greenhouse gas emissions (Chen et al. 
2022). While there are several contributors, the transpor-
tation industry is one of the largest, accounting for about 
23% of carbon dioxide emissions (Osman et al. 2021a). By 
2030, the overall energy requirements for transportation are 
projected to increase by 80%, accompanied by a proportional 
increase in carbon dioxide emissions (Saboori et al. 2014; 
Leduc et al. 2010). Concurrently, it is widely acknowledged 
that rebalancing carbon dioxide emissions with natural or 
engineered removal processes, i.e. carbon sequestration, is 
necessary for societal well-being. Fuels derived from renew-
able sources are among the numerous options for supporting 
a transition to a carbon–neutral or negative economy (Olabi 
2012). These fuels can be used as drop-in replacements or in 
blends to reduce the need for fossil alternatives and promote 
sustainable emphasis on the use of renewable energy, such 
as biofuels (Gahleitner 2013; Li  et al. 2019; Zheng  et al. 
2017; Zhang  et al. 2005; Asadieraghi  et al. 2014), which 
offer significant advantages over wind and solar power in 
terms of energy density, storage, and intermittency (Kumar 
and Shukla 2016; Dincer 2000).

Efficient utilization of biomass resources can reduce 
greenhouse gas emissions, and by 2050, bioenergy demand 
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is expected to contribute 120–155 exajoules per year 
(IPCC 2011). Moreover, lignocellulosic biomass is a valu-
able alternative energy source as it is relatively carbon diox-
ide neutral (Hill  et al. 2006; Babu 2008; Huber et al. 2006; 
Pham et al. 2014; Zhang et al. 2010). One of the best ways 
to produce biofuels that can partially replace fossil fuels 
is thermochemical conversion of such biomass (Rodionova 
et al. 2017), with the resulting products also complementing 
or supporting the production of other biofuels like ethanol 
(Hasegawa et al. 2010; Lee et al. 2018; Karagoz et al. 2019; 
Taghizadeh-Alisaraei et al. 2019; Soam et al. 2016), metha-
nol (Roode-Gutzmer et al. 2019; Carvalho et al. 2018a; Su 
et al. 2019; Taher and Chandran 2013; Geng et al. 2014), 
biodiesel (Ogunkunle and Ahmed 2019; Torres  et al. 2017; 
Verma and Sharma 2016) and dimethyl ether (Parvez et al. 
2018; Shi et al. 2018; Grové et al. 2018). Recent advance-
ments in the biofuels include the production of gasoline via 
biomass gasification, electricity generation using microal-
gae, use of biodiesel, bioethanol, and biomethanol for energy 
generation and transportation (Tsita  et al. 2019; Osman 
et al. 2021b).

Gasification (Zhang  et al. 2010; Asadieraghi and Wan 
Daud 2015) does not directly result in the production of 
advanced liquid biofuels. Instead, these are produced via a 
syngas (synthesis gas, a mixture of hydrogen, carbon diox-
ide, carbon monoxide, and methane) intermediate (Miao 
et al. 2014; Mahinpey and Gomez 2016; Maity 2015; McK-
endry 2002). Since 2001, investigations in biomass gasifi-
cation have increased in both the industrial and academic 
sectors due to its potential benefits (Sikarwar  et al. 2016), 
particularly as it is considered a more environment-friendly 
process with lower overall greenhouse effect gas emissions 
(Pauls  et al. 2016). It has also been found to be one of the 
most efficient and economically viable ways for waste ligno-
cellulosic biomass utilization (Mahinpey and Gomez 2016; 
Ellabban  et al. 2014; Sikarwar  et al. 2017). The process 
itself is defined as the production of fuel gas by thermo-
chemical conversion of biomass in a high-temperature oxy-
gen-depleted atmosphere. Apart from key product syngas, 
it also results in biochar which has been widely researched 
for several applications, including heat and power genera-
tion, carbon sequestration, fertilizing, and various adsorption 
applications (Osman  et al. 2022a; Fawzy  et al. 2021). The 
resulting syngas has a high calorific value (Higman and van 
der Burgt 2008) with a favourable hydrogen fraction and acts 
as an important source for producing power and biochemical 
fuels (Parthasarathy and Narayanan 2014). It can be used to 
produce different valuable fuels, including methanol, hydro-
gen, and diesel (Carvalho  et al. 2018a; Kruse 2009; Tij-
mensen  et al. 2002; Holmgren  et al. 2012) or burnt directly 
to generate electricity with a Brayton–Rankine combined 
cycle (Ståhl and Neergaard 1998; Kirubakaran  et al. 2009).

As a gasifying agent, air, steam, oxygen, or carbon diox-
ide can be utilized; however, the air is typically chosen due 
to its low cost, resulting in reduced lower heating value syn-
gas. By decreasing tar and char yields and increasing hydro-
gen yields, product gas quality can be enhanced through 
steam gasification (Pala  et al. 2017). The process comprises 
three main steps, viz. (a) pyrolysis, in which the biomass 
decomposes to tar, gas, and char, (b) oxidation process, in 
which large amounts of heat are released to help drive the 
endothermic processes, and (c) gasification, where syngas 
is produced (Alipour Moghadam  et al. 2014). A number of 
different catalysts are often used to enhance the gasifica-
tion reactions and suppress undesired compounds, including 
weak acid alkali metal salts such as potassium carbonate, 
sodium carbonate, potassium sulphide, and sodium sulphide. 
The primary components of syngas produced from biomass 
gasification are hydrogen and carbon monoxide, but meth-
ane, carbon dioxide, water vapour, and nitrogen with differ-
ent contaminants like ammonia, tars, and hydrogen sulphide 
are also present (Abdoulmoumine  et al. 2014). In general, 
the quality of the gasification product and contaminants is 
highly dependent on the feedstock properties, catalyst types, 
gasifying agent, and reactor conditions (Sikarwar  et al. 
2016; Farzad  et al. 2016).

Under high temperature and pressure conditions 
(250–300 °C and 5–15 MPa), and with the help of an appro-
priate catalyst, the syngas can be converted to methanol 
(Yang and Ge 2016). Methanol or methyl alcohol, or wood 
alcohol, is the simplest alcohol which is widely utilized as 
an extremely versatile chemical in different industrial appli-
cations. Methanol is one of the ‘mega’ industrial platform 
chemicals, and worldwide, about 90 methanol production 
plants produce approximately 110 million metric tons of 
methanol annually. This huge demand and low margins 
necessitate large plants to co-locate these low-cost and abun-
dant carbon resources such as coal and natural gas. How-
ever, different feedstocks like biomass, biogas, or organic 
municipal waste can be used to produce biomethanol (van 
Kasteren 2016), i.e. methanol derived from organic materi-
als. Other options would be the hydrogenation of captured 
carbon dioxide hydrogen produced from renewable energy 
(Osman  et al. 2022b). This may or may not be classified as 
biomethanol, depending on the carbon dioxide or hydrogen 
source.

Biomethanol can be utilized as a possible energy source 
and has numerous benefits, including high octane number 
(87–110) (Osman  et al. 2021c), low flammability, high 
performance, and low emissions. It is chemically indistin-
guishable from fossil-based methanol and, as such, is fully 
miscible with water, conventional methanol, petrol, and dif-
ferent organic compounds (Singh  et al. 2014). It finds its 
usefulness in several ways, viz. (a) as a substitute fuel to gas-
oline in internal combustion engines; (b) as a replacement to 
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diesel, through biodiesel or dimethyl ether production; (c) 
in methanol-fuelled vehicles or in hybrid automobiles; (d) 
for electricity generation through a gas turbine or fuel cell; 
and (e) also as a household fuel source (Morone and Cottoni 
2016; Demirbas 2008; Bergins  et al. 2016).

Dimethyl ether, which can be produced from methanol 
or syngas, is another potential future fuel (Osman and Abu-
Dahrieh 2018; Osman  et al. 2012). Dimethyl ether has a 
high cetane number (> 55), low emission, fuel flexibility; 
these factors make dimethyl ether a potential useful fuel for 
industrial and automotive applications (Osman  et al. 2017). 
Figure 1 shows an overview of different processes involved 
in a gasification-based methanol generation process. Several 
studies have been found regarding different methanol/biom-
ethanol production techniques but were seen to lack clarity 
regarding emissions, utilization and feedstock materials. 
A requirement for a review study of the techno-economic 
viability of methanol/dimethyl ether as a future generation 
fuel, different production processes with all possible feed-
stocks, dual-fuel utilization in different sectors were found.

Here we review overall methanol production and utiliza-
tion scenario in recent times. This review mainly focuses 
on the overall production processes available for produc-
ing methanol from different possible feedstocks considering 
both practical experimental and modelling studies in recent 

times. The techno-economic and environmental effects of 
production and utilization of methanol/dimethyl ether in dif-
ferent sectors were also discussed. The possibility of dual-
fuel application of methanol/dimethyl ether alongside other 
renewable energies and the emission characteristics have 
also been reviewed to minimize fossil fuel use and improve 
the environmental outcomes.

Methods of methanol production

Production of methanol by gasification

The specifications of a biomethanol generation plant are 
almost similar to that of a coal gasification-based methanol 
production. The main processes followed by fossil-based 
methanol production plant include different processes: (a) 
gasification, (b) gas cleaning, (c) hydrocarbon reforming, 
(d) water–gas shift reaction, (e) hydrogen addition and/or 
carbon dioxide removal, and (f) synthesis of methanol and 
filtration (Galindo Cifre and Badr 2007; Hamelinck and 
Faaij 2002).

Biomethanol production primarily from biomass 
sources needs raw material pretreatment (drying and chip-
ping). Then, the processed biomass is gasified to produce 

Fig. 1   Production of methanol by gasification. A gasifier can produce 
raw syngas from a variety of biomass feedstocks, including briquette, 
forest residue, wood, crop residue, and waste biomass. Raw syngas is 
passed through cyclone, cooler, and scrubber units to produce clean 
syngas, which is then passed to the methanol synthesis reactor. After 

condensation and separation of gases, methanol is synthesized from 
its elemental components. This methanol can be utilized in transpor-
tation, energy generation, industrial applications, and the production 
of additional fuels and chemicals
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syngas. To optimize the hydrogen and carbon monoxide 
formation and reduce the unwanted water and carbon diox-
ide amount, oxygen supply is limited during feedstock 
heating, which is above 700 °C. Removal of the contami-
nants and impurities is performed before passing the prod-
uct gas through several conditioning steps for composi-
tion optimization. Syngas conditioning is mainly done to 
produce syngas with at least double hydrogen molecules 
than carbon monoxide molecules. The optimal hydrogen-
to-carbon monoxide, H2/CO, ratio depends on the initial 
syngas composition and hydrogen availability. There are 
different ways to alter the concentrations of hydrogen and 
carbon monoxide as described below (Galindo Cifre and 
Badr, 2007; Mignard and Pritchard, 2008; Specht  et al. 
1999).

(1)	  If the crude syngas contains methane and other light 
hydrocarbons in small amounts, then catalytic steam 
reforming at high temperature or auto thermal reform-
ing is used to reform methane into carbon dioxide, car-
bon monoxide and hydrogen (Abdi  et al. 2017; Borole 
and Greig 2019) as shown in Eqs. (1) and (2).

(2)	  For optimal methanol synthesis, the early hydrogen 
concentration of the syngas is usually very low. Equa-
tion (3) shows the water–gas shift reaction (WGSR), 
which is used to reduce the carbon monoxide concen-
tration and increase hydrogen share, producing carbon 
dioxide and hydrogen from water and carbon monox-
ide. Carbon dioxide can also be produced directly from 
flue gases of other processes through amine chemical 
absorption. Some more carbon dioxide elimination pro-
cesses include liquid adsorption, cryogenic separation, 
and membrane permeation (Songolzadeh et al. 2014; 
Olah et al. 2009; Carvalho et al. 2018b).

(3)	  A separate hydrogen production setup, using water 
electrolysis or methane steam reforming, can supply 
the hydrogen to syngas produced. Despite the high cost 
involved, the water electrolysis process is highly effec-
tive, with the product oxygen being used for gasifica-
tion partial oxidation, replacing the necessity for air/
oxygen production from air separation. Using renew-
able electricity in the water electrolysis step makes 
the whole process more environment-friendly (Olah 
et al. 2009; Clausen et al. 2010). However, even if the 
amount of oxygen needed for gasification is provided 

(1)
CH4 + H2O ↔ CO + 3 H2 ΔH25◦C = 206 kJ∕mol

(2)
CH

4
+ 2 H

2
O ↔ CO

2
+ 4 H

2
ΔH

25
◦

C
= 165 kJ∕mol

(3)
CO + H2O ↔ CO2 + H2 ΔH25◦C = −41kJ∕mol

by water electrolysis, the cogenerated amount of hydro-
gen in the process cannot fulfil the need for optimal 
stoichiometry for methanol synthesis.

Therefore, for optimized syngas conditioning, the car-
bon dioxide removal process is needed with the water–gas 
shift reaction process (Hamelinck and Faaij, 2002). After 
completion of conditioning, through catalytic synthesis with 
catalysts like chromium oxide, zinc oxide, or copper oxide, 
the syngas is converted into methanol (Yang and Ge, 2016; 
Specht et al. 1999; Minteer 2011; Lange 2001; Mao et al. 
2009; Riaz et al. 2013), as shown by Eqs. (5) and (6). Carbon 
dioxide addition in the carbon monoxide/hydrogen feed was 
found to increase the yield of methanol (Saito et al. 1996). 
A distillation process is also used to remove water generated 
during methanol synthesis (Speight 2014).

Apart from gasification, methanol can be produced from 
many different processes using different feedstocks, which 
are discussed in this section. Although every process has its 
own significance, the highest biomethanol yield was seen 
in the case of gasification (Sindhu et al. 2019;  Ganesh and 
Banerjee, 2001; Speight 2011).

Partial oxidation of methane

Partial oxidation of methane is the most commonly used 
process of methanol production, first studied by W.A Bone 
in around 1935 (Bone 1935), gaining much popularity 
thereafter.

Equation (7) shows the POM reaction carried out in high 
pressure (0.5–15 MPa) environment with catalysis for a high 
yield of desired products (Gesser et al. 1985). Gesser et al. 
(1985) and Arutyunovet al. (1996) studied the effect of dif-
ferent parameters, reaction mechanisms, and selectivity of 
methanol production through partial oxidation of methane. 
Nozaki et al. (2011) reported a 30% conversion efficiency of 
CH4 to methanol with 40% selectivity.

Photocatalytic conversion

In photocatalytic conversion, photogenerated hydroxyl radi-
cals generate methyl radicals from methane (Fig. 2), and 
these radicals produce methanol and hydrogen reacting 

(4)H2O + electricity → H2 + O2

(5)
CO + 2 H2 ↔ CH3OH ΔH25◦C = −90.5 kJ∕mol

(6)CO2 + 3 H2 ↔ CH3OH + H2O ΔH25◦C = −49.5 kJ∕mol

(7)CH4 + 0.5 O2 → CH3OH ΔHo = 128 kJ∕mol
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with additional water molecules (Yang et al. 2014). Hameed 
et al. studied the effect of impregnation of tungsten trioxide 
with silver on the methanol production from methane using 
355 mm ultraviolet light, where enhancement in hydroxyl 
radical formation, as well as improvement in conversion 
efficiency, was observed (Hameed et al. 2014). Taylor and  
Noceti studied the hydroxyl radical generation process using 
visual light at 1 MPa, and 94 °C, methanol (per g catalyst per 
hr) of 1.3 g for steady-state mode, and 43 g with hydrogen 
peroxide addition was produced (Taylor and Noceti 2000). 
López-Martín et al. investigated the photochemical methanol 
production from methane with hydrogen peroxide aqueous 
solution, which was found to have higher yields compared 
to other reported photocatalytic approaches (López-Martín 
et al. 2017) (Table 1).

Gondal et  al. used a semiconductor photocatalyst to 
produce methanol from methane by generating hydroxyl 
radicals with 355 mm ultraviolet light at room tempera-
ture (Gondal et al. 2004). They found maximum methane 
to methanol conversion selectivity of 20%, 29%, and 21% 
with nickel oxide, tungsten trioxide, and titanium dioxide, 
respectively. Adekoya et al. did a study to analyse the effect 
of process parameters in the methanol production process 
from the reduction of carbon dioxide using a photocatalytic 
process (Adekoya et al. 2019). Trudewind et al. found lower 
environmental impacts for photocatalytic methane produc-
tion compared to photocatalytic methanol production as it 
is more energy-intensive. This process was found unsuitable 

in dry regions because of the high-water consumption 
(Trudewind et al. 2014).

Biological conversion

The biological conversion of methane to methanol is 
another favourable approach to methanol production. 
Two groups of bacteria: (a) ammonia-oxidizing bacteria 
and (b) methanotrophic bacteria are only useful for car-
bon–hydrogen bond activation in methane. Ammonia is 
used by ammonia-oxidizing bacteria as a source of energy 
and produces methanol by partial oxidation of methane 
(Taher and Chandran 2013). All methanotrophic bacte-
ria use methane monooxygenase to produce methanol by 
activating methane. Methane is the sole source of energy 
and carbon for methanotrophic bacteria (Han et al. 2013).

Ge et al. discussed the mechanism, performance, and 
generic performance modification of conversion of meth-
ane into methanol by three microorganism groups (ace-
togens, methanotrophs, and ammonia-oxidizing bacteria) 
(Ge et al. 2014).  Taher and Chanadran developed a bio-
logical process utilizing the ammonia-oxidizing bacteria 
to produce methanol from methane. The metabolic flex-
ibility of this process to produce methanol from methane 
was found to be potentially advantageous for the wastewa-
ter treatment plant to reduce part of their methanol costs 
(Taher and Chandran 2013). Su et al. produced a novel 
continuous process to produce methanol from methane 

Fig. 2   Synthesis of methanol via photocatalysis and carbon dioxide 
captured from flue gas. Oxygen and hydrogen are separated from 
water through photocatalysis, and hydrogen reacts with flue gas-cap-

tured carbon dioxide to produce methanol. The methanol produced 
can be utilized in various energy and other applications
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using nitrifying activated sludge, which was efficient in 
improving wastewater treatment plan efficiency (Su et al. 
2019).

Indirect conversion

Another well-known way of methanol production is biogas 
reforming, followed by methanol synthesis. Effective use 

Table 1   Different methanol production processes need different feedstocks and possess different advantages

The table represents a comparison of different methods of methanol production and the corresponding practical parameters like methanol yield, 
emission characteristics, and catalyst types found in several pieces of literature

 Production process (Advantages) Feedstocks Practical parameters (methanol yield/ 
emission characteristics/ catalyst type)

References

Biomass gasification
(High methanol yield,
Renewable energy source,
Abundant feedstock)

Lignocellulosic biomass and wood mate-
rials, cedar bark & sawdust, bamboo, 
larch (Japanese), straw, salix, waste, 
sorghum, rice husk, forage grasses, 
trees, and crop residues

High methanol yield (55%) was found 
with wood materials & rice bran

Low methanol yield was found with rice 
straw (36%) & rice husk (39%)

Raudaskoski et al. (2009),
Singh et al. (2014),
Nakagawa et al. (2007)

Syngas Integrated gasification combined cycle 
plant methanol production

Reduction in nitrogen oxides & sulphur 
oxides

Osman et al. (2021a)

Indirect conversion
(High productivity,
High selectivity)

Biogas (from landfill, palm oil efflu-
ent, corncobs & sorghum fermenta-
tion)

Most profitable source = palm oil
Lowest methanol producing 

source = landfill

Santos et al., (2018)

Biogas (from dairy, food and animal 
wastes, wastewater sludge)

Cu/Zn/Al/Zr catalyst used
Biogas feed = 1.8 × 106 Nm3/year
Maximum methanol production = 2100 

t/day

Ghosh et al. (2019)

Biogas Increase in methanol yield by regulation 
of gas composition & hydrogen sup-
plementation

Patel et al. (2016)

Hydrogen, flue gas captured carbon 
dioxide, syngas

Novell prepared CuO/ZnO/ZrO2 catalyst 
used

Environmentally & economically 
beneficial

Jadhav et al. (2014) Raudaskoski et al. 
(2009)

Industrially captured carbon dioxide Methanol costs 2.5 times high than usual Atsonios et al. (2016)
Carbon dioxide from fossil fuel combus-

tion, renewable hydrogen
– Anicic et al. (2014), Boretti (2013)

Partial oxidation of methane
(High methanol conversion rate,
High reaction rate)

Methane – Gesser et al. (1985)
Natural gas – Arutyunov et al. (1996)
Methane Conversion efficiency = 30%,

Selectivity = 40%
Nozaki et al. (2011)

Photo-catalytic conversion
(Low input energy,
High selectivity)

Methane Increase in methyl radical with Ag+ 
impregnated tungsten trioxide

Use of ultraviolet light

Hameed et al. (2014)

Carbon dioxide captured from flue gas Low environmental impact for produc-
tion of methane than methanol

Trudewind et al. (2014)

Methane, water Maximum methanol yield = 43 g/cata-
lyst/hr,

Use of visual light

Taylor and Noceti (2000)

Methane, hydrogen peroxide High methanol yield with the use of 
ultraviolet/hydrogen peroxide

López-Martín et al. (2017)

Methane Methanol conversion selectivity with
Tungsten trioxide = 29%,
Titanium dioxide = 21% &
Nickel oxide = 20%

Gondal et al. (2004)

Biological conversion
(Low input energy,
High selectivity)

Methane Use of methanotrophs, ammonia-oxidiz-
ing bacteria, and acetogens

Ge et al. (2014)

Methane Found advantageous in wastewater treat-
ment plants

Methanol cost reduction

Taher and Chandran (2013)

Methane Use of nitrifying activated sludge
Efficient improvement in improving 

wastewater treatment plant efficiency

Geng et al. (2014)
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of various catalysts like Cu/ZnO/Al2O3, Pd/CeO2, Cu/ZrO2, 
Mo(CO)6, ZrO2/CuZnO, Cu/CeO2, and Ni/Mo for methanol 
synthesis have been found (Cai et al. 1997; Lee et al. 2019; 
van de Water et al. 2018; Barrault and Probst 1991; Jali et al. 
2011; Ma et al. 2008). Santos et al. studied methanol genera-
tion from different biogas sources: palm oil effluent, corn 
cobs, landfill, and sorghum fermentation using mathemati-
cal modelling and simulation (Santos et al. 2018). Palm oil 
biogas was the most beneficial, and the landfill gas turned 
out to be the lowest methanol-producing source (Santos 
et al. 2018). Ghosh et al. performed methanol synthesis from 
biogas produced from wastewater sludge, dairy, food, and 
animal wastes. The use of Cu/Zn/Al/Zr catalyst and steam 
reforming resulted in a highest of 2100 tons/day methanol 
production from a 1.8 × 106 Nm3/year biogas input (Ghosh 
et al. 2019).

Patel et al. also found that regulation of gas composition 
and hydrogen supplementation can increase the methanol 
production from biogas (Patel et al. 2016). Jadav et al. dis-
cussed the reaction pathway to produce methanol by cata-
lytic hydrogeneration using flue gas captured carbon dioxide 
and hydrogen from water electrolysis. CuO/ZrO2/ZnO cata-
lysts made in a novel way were found to show good perfor-
mance in methanol production (Jadhav et al. 2014). Metha-
nol production from hydrogen and carbon dioxide is seen as 
environmentally and economically beneficial when the uti-
lization of carbon dioxide is more than that of the hydrogen 
manufacturing process (Raudaskoski et al. 2009). Atsonios 
et al. studied the economic performance of the methanol pro-
duction process with various designs and operating aspects 
of industrially captured carbon dioxide. Methanol generation 
from the flue gas captured carbon dioxide technique (Fig. 2) 
was about 2.5 times more than the conventional price (Atso-
nios et al. 2016).

Anicic et al. performed an economically and energy-effi-
ciency analysis on two methanol production technologies, 
using carbon dioxide and hydrogen as basic feedstock. The 
former technology produces methanol from direct carbon 
dioxide synthesis, and the latter technology involves two 
steps: (a) carbon monoxide production from carbon diox-
ide (reverse water–gas shift reaction) and (b) methanol 
production (Anicic et al. 2014). Boretti studied the carbon 
dioxide recycling process produced from fossil fuel com-
bustion using renewable hydrogen into methanol (Boretti 
2013). Gupta et al. studied the reduction in sulphur oxide 
and nitrogen oxide emissions with the methanol production 
in integrated gasification combined cycle plant. Chemical 
production of hydrogen, ethanol, methanol, and dimethyl 
ether can also be produced from synthetic gas composed of 
hydrogen and carbon monoxide (Gupta et al. 2010). Figure 3 
shows the methanol production through catalytic conversion 
by both the traditional route and catalytic hydrogenation.

This section explains the two available methanol pro-
duction processes, including their parameters and benefits. 
Various studies were discovered discussing various positive 
outcomes in methanol production using these various meth-
ods. All of the variables that influence methanol produc-
tion have also been discussed. Gasification can be used to 
produce methanol from both renewable and nonrenewable 
feedstocks, despite the difficulty of determining which pro-
cess is superior. Gasification has several advantages over 
other methods.

Fig. 3   A Methanol production 
via the conventional syngas and 
a Cu/ZnO catalyst. At 850 °C, 
methane from natural gas and 
water molecules are reacted 
over a Ni/Al2O3 catalyst. Then, 
carbon monoxide (CO) and 
water react under high pres-
sure with a Cu/ZnO catalyst to 
produce methanol. B Produc-
tion of methanol by catalytic 
hydrogenation of carbon dioxide 
over a Pd/Zn catalyst. Carbon 
dioxide and water undergo a 
low-temperature, low-pressure 
reaction with a Pd/Zn catalyst to 
produce methanol
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Biomethanol production

Biomethanol was generated with many biomass feedstocks 
through thermochemical and biochemical pathways. As dis-
cussed in the previous section, high carbon materials such 
as waste, biomass, coal, or even carbon dioxide can be used 
as raw materials for methanol production.

Shamsul et al. studied different types of biomass feed-
stocks and thermochemical processes used to produce biom-
ethanol: including pyrolysis, gasification, and liquefaction, 

among which lignocellulosic biomass was found to be one of 
the effective sources for gasification as well as biomethanol 
production (Shamsul et al. 2014). Sikarwar et al. discussed 
the effectiveness of biomass gasification with forest biomass 
because of their high cellulose and lignocellulosic contents 
(Sikarwar et al. 2016). Table 2 depicts different biomasses 
which can be used for biomethanol production with their 
respective cellulose hemicellulose and lignin contents. This 
also gives an idea about the status of different lignocellulosic 
biomass used so far for the methanol production study.

Table 2   Lignocellulosic 
biomass feedstocks for methanol 
production (Zhang et al. 2011; 
Sikarwar et al. 2016; Kumar 
et al. 2020)

The % cellulose, % hemicellulose, and %  lignin content of different biomass suitable for gasification are 
mentioned in this table, along with their application status in research. The lignocellulosic biomass was 
found suitable for producing high-quality syngas, thereby converting the syngas to methanol

Biomass %Cellulose % Hemicellulose % Lignin Status

Softwood 41 24 28 –
Hardwood 39 35 20 –
Wheat straw 40 28 17 Study reported
Rice straw 30 25 12 Study reported
Barley straw 31–35 24–29.60 14–16 –
Oat straw 30–37 23–29 16–19.50 –
Rye straw 33–35.40 27–30.50 17–19 –
Bagasse 38 39 20 Study reported
Willow plant 50 19 25 Study reported
Larch plant 26 27 35 Study reported
Deciduous plant 42 25 21.5 –
Coniferous plant 42 26 30 –
Oak wood 34.5 18.6 28 –
Birch wood 35.7 25.1 19.3 –
Pine wood 42.1 17.7 25 Study reported
Spruce wood 41.1 20.9 28 –
Sunflower seed hull 26.7 18.4 27 –
Coconut shell 24.2 24.7 34.9 –
Almond shell 24.7 27 27.2 –
Poultry litter 27 17.8 11.3 Study reported
Stored refuse 59.66 20.34 20 Study reported
Corn Stover 28.10 35.40 15.5–21.5 –
Hazelnut shell 28.70 29.30 42 –
Corncob 42–50 30–32 14–16 Study reported
Tea waste 30.21 19.92 40.10 –
Bamboo 25–43 15–27 20–31 Study reported
Paper 87–98.67 0 0–14 –
Walnut shell 25.57 22.69 52.28 –
Almond shell 50.67 28.88 20.34 –
Sunflower shell 48.43 33.90 16.99 –
Nut shell 26–30 25–31 31–39 –
Jute fibre 43–53 18–22 21–28 –
Cotton seed hairs 80–95 5–20 0–0.40 Study reported
Grasses 24–41 35–50 10–30 Study reported
Switch grass 31–51 10–40 5–20 –
Coastal Bermuda grass 25.50 35.20 6.40 –
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Some potential energy crops for biomethanol production 
are maize, beets, sugarcane, sweet sorghum or yam (Singh 
et al. 2014). Nakagawa et al. discussed the use of different 
biomass resources like Japanese cedar bark and sawdust, 
salix, waste wood, sorghum, chipped Japanese larch, straw, 
forage grasses, rice husk, bamboo, trees, and crop residues to 
produce biomethanol and found that lignocellulosic biomass 
resources like wood materials and rice bran can provide a 
55% methanol production. However, a much lower yield of 
36% and 39% was found with rice straw and rice husks, 
respectively (Nakagawa et al. 2007). Many Nigerian biofuels 
projects utilized 1st-generation biomass feedstocks, mainly 
food crops. Ben-Iwo et al. discussed the potential of using 
the agricultural, urban, forest, and other wastes as biomass 
resources available in Nigeria to fulfil its biofuel demand 
and for maximizing the use of its natural assets (Ben-Iwo 
et al. 2016).

Carvalho et al. studied the techno-economic feasibility 
and advantages of catalytic synthesis of methanol via gasi-
fication of lignin and forest residues (Carvalho et al. 2017). 
Suntana et al. found a possibility of 86% of Indonesian vil-
lage electrification with the help of methanol production 
from forest biomass, thereby using it in a fuel cell (Suntana 
et al. 2009). Xiao et al. performed an analytical study of the 
energy, environmental and economic performance of biome-
thanol production with rice straw in China (Xiao et al. 2009). 
According to Kumar et al., India has surplus biomass avail-
ability of about 500 million metric tons/year with a power 
generation capacity is 17,500 megawatts. They predicted a 
50% growth in biomass power production by 2023 and an 
increase of up to 55 gigawatt electricity of installed bio-
mass power capacity by 2020 (Kumar et al. 2015). Methanol 
production from biogas as a primary feedstock with steam 
reforming and catalytic synthesis processes was also found 
in many pieces of literature (Santos et al. 2018; Ghosh et al. 
2019; Patel et al. 2016; Vita et al. 2018).

Several studies used Aspen Plus modelling and discussed 
the production of methanol from syngas through the metha-
nol synthesis process (Arteaga-Pérez et al. 2016; Liu et al. 
2016; Puig-Gamero et al. 2018; Yin et al. 2005). A techno-
economic Aspen Plus modelling-based study of methanol 
production with a biomass feed of 15 kg/s was found to give 
good methanol yield results (Bai et al. 2015). Yang et al. 
used biomass as the main feedstock to design and model 
a theoretical, highly efficient biomass-to-methanol process 
(Yang et al. 2018). Similarly, AlNouss et al. discussed a 
novel poly-generation system for producing power, high-
quality urea, methanol, and Fisher–Tropsch liquids consid-
ering Qatar’s different biomass feedstock (AlNouss et al. 
2019). Carvalho et al. used an Aspen Plus simulation model 
with a thermodynamic equilibrium model to study the down-
stream production process of biomethanol from catalytic 

biomass gasification of various solid feedstocks (Carvalho 
et al. 2017).

Methanol production based on carbon capture and utili-
zation was considered in many different studies (Bonfim-
Rocha et al. 2018; Van-Dal and Bouallou, 2013). Rodionova 
et al. studied the production of biomethanol from microal-
gae such as Spirulina sp. by gasification (Rodionova et al. 
2017). Using 50% nonrecycled plastics with 50% biomass 
as a feedstock, Citua et al. produced a syngas mixture with 
a 1.21 hydrogen-to-carbon ratio and 219.1 Btu/cf higher 
heating value. The methanol yield from 50% biomass-50% 
nonrecycled plastics as feedstock was 1.44 times compared 
to 100% biomass (Ciuta et al. 2018). AlNouss et al. used 
sewage sludge, date pits, and manure as feedstocks to opti-
mize the gasification process for biomethanol production 
(AlNouss et al. 2020).

This section discusses various feedstocks used to pro-
duce biomethanol, as well as the parameters and processes 
employed. Gasification was the most important process for 
producing syngas from various biomass feedstocks. The 
ratio of hydrogen to carbon and the temperature of the pro-
duced syngas significantly affects the quality of biometha-
nol. Comparisons have also been made between the charac-
teristics of various feedstocks and their respective methanol 
yields and regions of study (Table 3).

Parametric evaluation of methanol 
production

The techno-economic viability of the methanol production, 
yield, and production efficiency largely depends on the 
optimization of different process parameters discussed in 
this section. Shamsul et al. (2014) discussed the potential 
of biomethanol as a renewable energy source by consider-
ing the world demand, power density, economic assessment, 
and possible applications. Effects of different process param-
eters, like heating rate, temperature, catalyst types, particle 
size, main conversion process, and residence time for high 
yield of biomethanol, were also studied. They mentioned 
that improvements in methanol synthesis were possible 
by improving the efficiency of electrolysis and renewable 
electricity.

Manenti et al. studied the thermal conversion ways of lig-
nocellulosic residuals into biosyngas and then into biometha-
nol (heterogeneously catalysed synthesis) with the help of 
mathematical modelling. They also graphically represented 
the water-cooled/gas-cooled length ratio and shell temperature 
effect on total biomethanol yield. The optimum length ratio 
was 1.121, with a shell temperature of 247 °C and additional 
biomethanol synthesis of 0.4 mol % (Manenti et al. 2015). 
Kasmuri et al. analysed the influence of various proportions 
of biomass raw materials (i.e. moisture content, volatile matter 
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content, ash and fixed carbon content) for higher biometha-
nol yield. They discussed the effects of proximate analysis, 
particle sizes and energy efficiency for the maximum yield 
of biomethanol. Sugarcane bagasse of particle size range of 
5–10 mm was selected as feedstock for the pyrolysis process 
and achieved 2.41 weight % of biomethanol yield was achieved 
with 6% of energy (Kasmuri et al. 2016). Citua et al. men-
tioned a 44% increase in methanol production by increasing 
the nonrecycled plastics from  15–50% because of an increase 
in the hydrogen-to-carbon ratio in the feedstock (Ciuta et al. 
2018). Anicic et al. found that the electricity cost had the high-
est impact on methanol production as hydrogen was generated 
from water electrolysis (Anicic et al. 2014). Direct methanol 
synthesis was found to have higher energy and economic effi-
ciency. The carbon dioxide capture-unit location influenced 
the inlet gas production and the final methanol price (Atsonios 
et al. 2016).

Liu et al. (2016) studied the influence of process parameters 
like biomass particle size, steam-to-biomass ratio, gasifica-
tion temperature and equivalence ratio on methanol yield. It 
was observed that a higher equivalence ratio corresponds to a 
lower yield of methanol and higher temperature contributes to 
higher methanol yield. Yang et al. found 18.5 mol/kg dry bio-
mass improvement in the yield of methanol by adding carbon 
dioxide and steam into the gasification process and applying 
a slurry phase synthesis reactor. The steam-to-biomass ratio 
mentioned in their study was 0.35–0.45 with 0.45–0.55 carbon 
dioxide-to-biomass ratio (Yang et al. 2018). Yin et al. men-
tioned that the operating parameters affected the selectivity 
and yield of methanol produced from biosyngas. Methanol 
yield was dependent on the hydrogen-to-the carbon dioxide-
to-carbon monoxide ratio, more influenced by (carbon monox-
ide + carbon dioxide) ratio and methanol selectivity. The yield 
of methanol from catalytic gasification was more than the air 
steam gasification, but in the case of selectivity of methanol, 
it was found to be the reverse. Partial carbon dioxide removal 
was found to improve methanol yield and selectivity (Yin et al. 
2005). Zhang et al. observed a maximum yield of methanol of 
12.19 mol/(kg biomass (dry and ash-free)) with 750 °C operat-
ing gasification temperature and pressure approaching ambient 
value, maintaining a steam-to-biomass ratio of 0.4–0.5. The 
use of interconnected fluidized bed technology also increased 
the methanol yield by increasing steam/biomass ratio, gasi-
fier temperature, and hydrogen content and decreasing carbon 
dioxide and carbon monoxide (Zhang et al. 2009).

This section attempts to summarize the literature con-
cerning the biomethanol production process's various 
parameters. The characteristics of the biomass feedstock 
were found to have a significant effect on the final biom-
ethanol yield. Forest biomass with a high cellulose and 
hemicellulose content was found to be ideal for gasifica-
tion-based biomethanol production (Sikarwar et al. 2016). 

The steam-to-biomass ratio in the production process also 
affected the biomethanol yield.

Techno‑economic analysis of methanol 
utilization

Modelling‑based approach

Regarding the production of biomethanol, different research-
ers used modelling-based analysis techniques to determine 
the possible outcomes with different resources and param-
eters. The techno-economic analysis of production and uti-
lization of biomethanol was mainly done with Aspen Plus 
model simulations, thereby comparing the results with other 
available literature. Table 4 shows the parameters associated 
with different modelling analyses of the methanol produc-
tion process.

The use of Aspen Plus for analysis of the thermo-eco-
nomic performance of a proposed solar-driven biomass gasi-
fication polygeneration process for generating electricity and 
methanol was reported by Bai et al. Biomass gasification 
was conducted in a temperature range of 727–1227 °C. The 
syngas' ideal hydrogen-to-carbon monoxide molar ratio for 
the methanol synthesis was 1.43–1.89. The proposed system 
achieved the highest energy and exergy efficiency of 56.09% 
and 54.86%, respectively (Bai et al. 2015). Arteaga-Pérez 
et al. developed a comprehensive simulation modelling to 
show that synthesis gas can produce synthetic natural gas 
and methanol with a gasification temperature of 800–850 °C 
and an equivalence ratio of 0.25. The gasifier's energy effi-
ciency was 74%, and the overall methanol and synthetic 
natural gas production was reported as 0.59 kg methanol/
kg dry biomass and 0.33 kg synthetic natural gas/kg dry 
biomass, respectively (Arteaga-Pérez et al. 2016). Liu et al. 
also discussed the production of methanol from biosyngas 
using Aspen Plus model. For better accuracy of the results, 
they divided the circulating fluidized bed gasifier reactor axi-
ally into two parts: a dilute upper region and a lower density 
region. The model prediction results were also observed to 
be in good agreement compared with other literature (Liu 
et al. 2016).

Yin et al. performed a methanol synthesis process from 
biosyngas in a microreactor under high pressure using Cu/
ZnO/Al2O3 catalyst. They configured and studied four dif-
ferent biosyngas models with various ratios of H2/CO/CO2/
N2. They conducted a series of experiments under various 
pressures of 4.6, 3.6, and 2.6 MPa, within a 215–270 °C 
temperature range and with 4000–12,000 /h space velocity 
(Yin et al. 2005). Puig-Gamero et al. developed a simulation 
model to study the syngas–methanol synthesis obtained from 
the gasification of pine biomass. A temperature of 900 °C 
and a steam-to-biomass ratio of 0.9 were the best operational 
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conditions for producing methanol. For the decomposition 
of tar use of dolomite as a catalyst was mentioned. They 
used a pressure swing adsorption process by which about 
80% of the carbon dioxide and 95% of the methane were iso-
lated. Moreover, for optimal methanol synthesis, a pressure 
of 55 atm and a temperature of 220 °C was found best. 30% 
reduction in the required carbon to burn was also achieved 
by recycling the waste stream to the combustion chamber 
(Puig-Gamero et al. 2018).

Ramachandran et al. developed a simulation model to 
produce biomethanol by replacing part of natural gas with 
pure glycerol (up to ∼54%) through syngas production at 
900 °C temperature with steam-to-carbon ratio ∼3. The 
prices of the overall capital investment and feedstock (glyc-
erol and natural gas) influenced the biomethanol production 
cost. They found biomethanol from a hybrid steam reform-
ing process to be more economically attractive with natural 
gas of more than 0.5 USD/Nm3 or glycerol price of less 
than 100 USD/tonne (Balegedde Ramachandran et al. 2013). 
Bassani et al. proposed a novel methanol production process 
from coal gasification. They used Aspen HYSYS® for the 
process simulation and GASDS for the simulation of the 
coal gasifier. Their novel approach resulted in 388.54 kmol/h 
syngas production with 181.78 kmol/h methanol production, 
which was increased by 1.7% for both cases compared to 
the traditional process. The carbon dioxide emission was 
found to be 116.49 kmol/h which was about 2.5% lower than 
the traditional methanol production (Bassani et al. 2017). 
Milani et al. developed a natural gas-based methanol syn-
thesis model with the help of an Aspen Plus V8.4 model 
to integrate carbon dioxide in a methanol synthesis plant 
based on natural gas. They mixed syngas with the carbon 
dioxide-rich stream (265.9 t/h) collected from a 660 MWel 
base power plant carbon capture process. This integration 
was advantageous in reducing methane uptake by 25.6% 
(reducing 116.1 mtons/h of methane consumption) and 
decreasing the overall carbon dioxide emissions by 21.9% 
(1783.4 t

CO2
∕h ) for both plants. The methanol production 

rate was 766 t/h with a methanol-to-methane equivalent ratio 
of 2.27 (Milani et al. 2015).

Qatar’s different biomass feedstock properties were stud-
ied by AlNouss et al. for producing power, high-quality urea, 
methanol, and Fisher–Tropsch liquids using the Aspen Plus 
model of a novel poly-generation system (AlNouss et al. 
2019). The methanol production technique with a profit 
of 0.035 USD/kg input biomass was found to be the most 
economically feasible process pathway, while with a carbon 
dioxide reduction potential of 0.71 kg carbon dioxide/kg bio-
mass feed, the urea process pathway was observed to have 
the lowest environmental effect. AlNouss et al. optimized the 
gasification process for different biomass feedstock (sewage 
sludge, date pits and manure), developing an Aspen Plus 
simulation model. The syngas was found to have maximum Ta
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hydrogen content at around 850 °C and 1 bar, with a modi-
fied of 2.5 and an air-stream ratio of 0.6 (AlNouss et al. 
2020). A highly efficient biomass-to-methanol process over-
all biomass consumption of 1.99 t/t methanol was found for 
their system with an exergy efficiency of 70% (Yang et al. 
2018). The biomass-to-methanol process is more utilization 
efficient and environment-friendly as its water consumption 
and carbon dioxide emission were only 5.88 t/t methanol 
and 1.46 t/t methanol produced, respectively, which were 
found to be much smaller than the coal-to-methanol process. 
Pellegrini et al. (2011) studied the economic viability of a 
proposed combined energy-methanol plant using the Aspen 
HYSYS® process simulator. Although the combined pro-
duction requires high capital cost, the payback period was 
less than 5 years.

Xiao et al. conducted a life cycle assessment to determine 
the effect of pollutant emissions in biomethanol production 
with an Aspen Plus simulation model of methanol produc-
tion through fluidized bed gasification. The methanol yield 
was 0.308 kg/(kg rice straw) with a 42.7% energy efficiency. 
Considering a biomethanol plant with 50,000 tons of annual 
production, the total production cost of biomethanol was 387 
USD/t, out of which 338.35 USD/t is the economic cost and 
38.65 USD/t is the environmental cost. From the life cycle 
assessment, rice straw as a material for methanol produc-
tion was found favourable for agricultural waste utilization 
and environmental improvization (Xiao et al. 2009). Zhang 
et al. studied the effects of process parameters, like steam/
biomass ratio, gasification pressure and temperature, and 
temperature and pressure for liquefaction, on the methanol 
yield for calcium carbonate catalysis. The product gas was 
found to have a maximum hydrogen content of 82.14% at 
700 °C gasification temperature by adding calcium carbon-
ate to the biomass gasification process (Zhang et al. 2009).

Carvalho et al. studied the effect of catalysts on gasifica-
tion reactions by determining methanol yields (on an energy 
basis), economic performance, energy efficiency and over-
all systems efficiency. Large-scale biomass gasification via 
alkali aided entrained flow process for methanol produc-
tion (for a 99,423.75 USD/MWh selling price) was cost-
competitive for other biofuels. The addition of lignin was 
also found beneficial but was economically viable for lignin 
prices below 27.58 USD/MWh (Carvalho et al. 2017). Phil-
lips et al. studied the zeolite catalyst (ZSM-5) 's feasibility 
in producing gasoline from methanol using Aspen Plus. A 
metric tonne of dry biomass produced 229.9 L and 38.8 L 
of gasoline and liquefied petroleum gas, respectively, with a 
final price of 15.73 USD/GJ for gasoline and liquefied petro-
leum gas together. The gasoline and liquefied petroleum gas 
cost were found to be 0.52 USD/L and 0.40 USD/L, respec-
tively (Phillips et al. 2011).

Gasoline and butanol production by using methanol from 
sugarcane bagasse gasification was discussed by Michailos 

et al. They performed a thermo-economic and environmental 
analysis using Aspen Plus and MATLAB software. They 
found that gasoline from methanol was economically more 
viable, while low carbon dioxide emissions were seen for 
butanol productions (Michailos et al. 2016). Li et al. devel-
oped an Aspen Plus process simulator model to optimize 
hydrogen-to-carbon monoxide ratio production of methanol, 
which resulted in a reduction of 9% material input for co-
feeding of natural gas and biomass compared to the individ-
ual system. With natural gas/biomass feed of 2, the highest 
value of 10% energy saving ratio was achieved. The meth-
anol-to-power output ratio was 1.5 to 2.1 (Li et al. 2010). 
Iaquaniello et al. studied the environmental and economic 
feasibility of the waste-to-methanol process. They simulated 
the process using the PROII process simulator. The process 
involved high-temperature mixing refuse-derived fuels with 
oxygen for syngas and methanol production. For a waste-
to-methanol production plant with a 300 t/d plant with a 
29% return on investment, the estimated cost of production 
of biomethanol from refuse-derived fuels was about 122.5 
USD/t. The waste-to-methanol process was found to produce 
methanol with a reduction in greenhouse gas emissions of 
about 40% and 30–35% compared to fossil–methanol and 
biomethanol, respectively (Iaquaniello et al. 2017).

Bonfim-Rocha et al. discussed the technical and economic 
performance of a new proposed biomethanol production sce-
nario in Brazil using carbon dioxide from ethanol production 
plants. They developed an Aspen Plus® industrial methanol 
plant model and optimized it using MATLAB®. They found 
that 1136–1988 t/year methanol production was found pos-
sible with the cost of production (0.51–0.62) USD/kg with 
a carbon dioxide reduction potential of (−2198 to −1814) 
t/year (Bonfim-Rocha et al. 2018). Similarly, the methanol 
production process by flue gas carbon dioxide capture and 
absorption with the help of Aspen Plus was also reported by 
E. S. Van-Dal and C. Bouallou. The methanol plant provided 
36% of the total thermal energy required for carbon dioxide 
capture. They found that carbon dioxide reduction potential 
of 1.6 t/t of methanol production (Van-Dal and Bouallou, 
2013).

Zhang et al. discussed the influence of pressure (1–5 atm), 
temperature (400–1200 °C) and the ratio of methane-to-flue 
gas (0.4–1.0) on the quality of syngas production using an 
Aspen Plus model of the tri-reforming methanol production 
process. The optimum condition for maximum methanol 
production was 1 atm, 850 °C, with a methane-to-flue gas 
ratio of 0.4. 99% conversion of carbon dioxide and hydro-
gen-to-carbon dioxide ratio of 2 was achieved under the 
optimum condition (Zhang et al. 2013). Luu et al. studied 
methanol production based on carbon capture and utiliza-
tion from a 265.9 t/h power plant. They proposed different 
methodologies for a comparative study of different param-
eters like: (A) energy intensity, (B) intensity of methane 
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production, (C) intensity of carbon dioxide feed, and (D) 
intensity of carbon dioxide emission with an Aspen Plus 
model (Luu et al. 2015).

Soni et  al. performed a simulation using AVL FIRE 
CFD software on a one-cylinder diesel engine (TV1 model) 
undertaking a two-stage emissions control strategy. Initially, 
low load mathematical simulation was done to find the ‘opti-
mum blend’. In the second stage, where the influence of 
exhaust gas recirculation variation (10% and 20%), initial 
swirl ratio (1.0, 1.3, 1.6, and 2) and water addition (5%, 10%, 
and 15%) (under the same operating condition) in case of the 
optimum blend were studied for emission characteristics. 
They also tried to find the best emission reduction method 
by analysing the brake-specific fuel consumption (BSFC) 
and brake thermal efficiency for pure diesel, diesel–methanol 
fuel. D + M30 was considered as the optimum blend with a 
30% increase in methanol, with a maximum carbon mon-
oxide, hydrocarbon, and nitric oxide emission reduction of 
58%, 65%, and 27%, respectively, achieved compared to pure 
diesel (Soni and Gupta 2016).

Zhou et al. studied the combustion emission characteristics 
and performance of a methanol–biodiesel dual-fuel reactivity-
controlled compression ignition engine using three-dimen-
sional numerical simulation. A good agreement was found 
for ignition delay, heat release rate, and cylinder pressure in 
and when the predictions of the developed mechanisms were 
compared with that of experimental results. At a 20% interval, 
the methanol input amount varied between 0 and 80%. With 
the increase of methanol, no tangible change was observed in 
nitrogen oxide emission under medium and high loads. How-
ever, emission was found to decrease remarkably at 10% load. 
They concluded that induction of premixed methanol resulted 
in stronger engine performance under medium and full loads, 
simultaneously reducing the ringing intensity and avoiding 
engine knocking (Zhou et al. 2015).

Rivera-Tinoco et al. studied a power-to-methanol tech-
nology's technical and economic feasibility with Aspen Plus 
V8.0 simulation model. It was found that the influence of 
life-span and capital expenditure on the methanol production 
cost was higher for the solid oxide electrolyser cell methanol 
process. Again, for the proton exchange membrane/methanol 
process, the predominance of operating expenditure on the 
methanol cost was observed. The production cost of methanol 
was 546.583 USD/tonne in the case of SOEC/methanol and 
89.2115 USD/tonne for the proton exchange membrane/metha-
nol process, which were 1.5 and 2.5 times that of the methanol 
market price, respectively (Rivera-Tinoco et al. 2016).

Experimental investigation

Different experimental studies have also been reported 
regarding the techno-economic feasibility of methanol 

production. This section contains studies related to techno-
economic production utilization of methanol mainly via 
gasification (using biomass, black liquor, pyrolysis oil), 
pyrolysis, integrated biomass pyrolysis–gasification, and 
methanol synthesis (IBPGM) which have been discussed. In 
Table 4, different parameters related to the study of methanol 
production have also been summarized. The environmental 
concern and different mixed ways of methanol utilization 
can also be found in other works of the literature which are 
also discussed below.

Brigagão et al. investigated the technical and economic 
feasibility of three energy generation pathways using corn-
cob: (a) GASIF (methanol production via gasification), 
(b) PYROL (bio-oil production via fast pyrolysis), and (c) 
COMB (electricity production via combustion). Results 
showed that 79% of energy recovery in its products could 
be achieved with PYROL, 38.4% for production of bio-
oil, and 40.6% in the case of biochar, which is higher than 
methanol production via GASIF (53%). Reduction in car-
bon dioxide emission for PYROL and GASIF is 73.7% and 
35.4%, respectively. They found that all three alternatives are 
economically feasible for low biomass prices (less than 75.5 
USD/t) (Brigagão et al. 2019). Again, the techno-economic 
prospects to produce methanol using a Mitsubishi metha-
nol converter (super converter) from syngas obtained from 
the absorption enhanced reforming process were studied 
and discussed by Amigun et al. Capital investments were 
termed as the major factor in determining the methanol pro-
duction cost. From the results, the overall production cost 
of methanol was found to decrease to about 2.89 R/l in the 
case of a 2000 MWth methanol plant, from about 10.66 R/l 
(Rand/litre) in the case of a 10 MWth plant, with intermedi-
ate values of 6.44 R/l (for 60 MWth Plant) and 3.95 R/l (for 
400 MWth plant) (Amigun et al. 2010).

McFarlan studied the techno-economic feasibility of 
replacing diesel with clean biofuels (methanol and dime-
thyl ether) for electricity generation in Canada (McFarlan 
2018). The overall cost of electricity production with diesel 
for the three different sites was found to vary with the annual 
demand for electricity of 660 USD/MWh (for 3300 MWh 
plant), 890 USD/MWh (for 1500 MWh plant), and 1460 
USD/MWh (for 1400 MWh plant), respectively. The full 
cost of electricity was found to rise by 46 USD/MWh, 85 
USD/MWh, and 66 USD/MWh when methanol was used, 
and a rise of 40 USD/MWh, 110 USD/MWh, and 44 USD/
MWh was found for dimethyl ether. Diesel power generation 
also had an additional carbon dioxide penalty of 80 USD/
MWh (30 USD/ton carbon dioxide), which is not present 
for biofuel-based electricity generation (McFarlan 2018).

The technical aspects and economic analysis of co-gas-
ification of black liquor and pyrolysis oil to produce meth-
anol were discussed by Andersson et al. by changing the 
blending ratio and mill capacity. Pure black liquor and up 
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to 50% pyrolysis oil-black liquor blends gasification were 
found to lower the production costs significantly compared 
to unblended pyrolysis oil gasification. With an internal rate 
of return of 20%, the cost of methanol produced was lowered 
below 110.35 USD/MW for plant capacities between 200 
and 800 MW (Andersson et al. 2016).

Techno-economic performance and feasibility of metha-
nol synthesis with a bio-oil integrated gasification process 
using rapeseed oil, miscanthus seed, and wood as raw mate-
rials were designed and discussed by Ng and Sadhukhan (Ng 
and Sadhukhan 2011). Kempegowda et al. (2012) discussed 
the techno-economic performance of a combined heat and 
power process for biomethanol production using raw biofuel, 
waste biomass, and waste glycerol. The hydrogen-rich gas 
produced in the methanol synthesis process is sent to the 
pyrolysis/gasification reactor for recycling to enhance over-
all efficiency. The initial investment cost for a small-scale 
biomethanol production plant of 2 t/h capacity in combina-
tion with a 2 MWe combined heat and power plant was men-
tioned as 170.5 million USD. This process of biomethanol 
production produced a positive net present value (minimum 
600 USD/t) and internal rate of return (Kempegowda et al. 
2012). Moellenbruck et al. performed an economic analysis 
considering the investment costs, carbon dioxide emission 
costs, and the market price of electricity, methanol, and 
oxygen. The developed thermodynamic model reduced the 
emission of 150,000 t carbon dioxide/year, generating addi-
tional revenue of 5.74 million USD per year (Moellenbruck 
et al. 2018).

Zakaria et  al. (2016) studied different processes and 
related technologies associated with the methanol produc-
tion from methane. They discussed the process influencing 
factors, their properties, challenges, and recent advancement 
in different conversion processes, like photocatalytic conver-
sion, biological conversion process, plasma technology, and 
conventional catalytic conversion process. Zhang et al. per-
formed a comparative study, and investigation of solid oxide 
electrolyser cell (SOEC) integrated with entrained flow gas-
ification-based methanol production system (SOEC case) 
is with the traditional methanol production from biomass 
conversion system, integrated with water–gas shift reaction 
(base case). With a fixed methanol mass yield (both cases) 
of around 69.4 t/hr, the energy efficiency for the SOEC case 
(59.1%) was found to be higher than the Base case (47.95%). 
The biomass consumption for the SOEC case was 51% of 
the Base case. Integration of SOEC was also found to store 
renewable electricity of 3.09 kW/kg of methanol produced 
(Zhang et al. 2019). Häggström et al. successfully synthe-
sized methanol from syngas obtained from black liquor 
gasification. The reactor was run for 45 h under a pressure 
of 2.5 MPa and 0.16–0.19 g methanol/g catalyst/h was gen-
erated (Häggström et al. 2012). The power-to-methanol 
concept for Greece was discussed by considering two cases 

related to investment in power to methanol: a) owner case 
and b) investor case. Methanol cost for the owner case was 
estimated at 464.58 USD/t, 40% less than the estimated 
methanol cost for other cases (640 USD/t) (Kourkoumpas 
et al. 2016).

A techno-environmental feasibility study of the IBPGM 
process using rice straw was performed by Im-orb et al. 
where an increase in carbon dioxide recycle fraction 
improved the production rate of methanol, but a decrease 
in total consumed energy and efficiency were seen. The 
IBPGM process achieved the best results, with a bio-oil and 
methanol production rate of 0.09 and 0.23 kmol/h, respec-
tively, and a carbon dioxide recycles fraction of 0.2. Biomass 
input of 1 kmol/h resulted in a 60.7% energy efficiency of the 
process (Im-orb and Arpornwichanop 2019). Brynolf et al. 
did a comparative analysis to study the environmental per-
formance of four different fuel sources: (a) biomethanol, (b) 
liquefied natural gas, (c) liquefied biogas, and (d) methanol. 
Using biomethanol and liquefied biogas were found to have 
more positive environmental impacts (Brynolf et al. 2014). 
Kumabe et al. studied the economic and environmental fea-
sibility of a biomethanol production process concerning 
carbon dioxide emission. They found a 31% energy recov-
ery rate in the biomass to the methanol production process, 
much higher than the conventional wood-based power plant 
efficiency (Kumabe et al. 2008).

Environmental analysis of using renewable methanol 
as a fuel instead of conventional fossil fuels in the ship-
ping industry was performed by Svanberg et al. Renewable 
methanol was found to be technically viable with no major 
challenges in potential supply chain management to reduce 
emissions from marine shipping. Marine engines were also 
found suitable for using methanol at a lower purity level 
than the presently available level (Svanberg et al. 2018). 
Hasegawa et al. studied and compared carbon dioxide miti-
gation for the synthesis of methanol and fermentation of 
ethanol fermentation. According to their study, bioethanol 
is more preferred as a substitution for gasoline in the short-
term perspective, but in the long run, biomethanol was found 
to have advantages in terms of carbon capture, energy pro-
duction, and emission reduction. The carbon dioxide emis-
sion reduction in the case of biomethanol-operated fuel 
cell vehicles was found to be 60% larger than that of the 
other biofuel-employed internal combustion engine cases 
(Hasegawa et al. 2010).

Using carbon dioxide captured from flue gases to produce 
methanol is advantageous for the reduction in environmental 
impacts as well as gaining much popularity in recent pieces 
of literature. Luu et al. studied and analysed the carbon diox-
ide utilization process related to methanol production by 
integrating the geosequestration process and the enhanced 
gas recovery system. They analysed the methanol synthesis 
process based on five process flowsheet configurations: (a) 
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productivity of methanol, (b) intensity of carbon dioxide, 
(c) intensity of thermal energy, (d) intensity of methane, and 
(e) flexibility of carbon dioxide consumption. They found 
that integrating the new processes was favourable for higher 
methanol production with less carbon dioxide emission (Luu 
et al. 2016).

Ribeiro et al. used pressure swing adsorption technology 
to perform stoichiometric adjustments of the biosyngas and 
carbon dioxide capture. The process resulted in recovering 
99.7% carbon dioxide and 99.5% hydrogen with a purity 
above 95% by consuming a total power of 0.841 MW. Pro-
cess optimization was beneficial for reducing 30% power 
consumption but resulted in a little decrease in % recovery 
(Ribeiro et al. 2010). A novel approach to producing bio-
syngas with high carbon monoxide amount with the help of 
catalytic (Ni/Al2O3) conversion and biochar during the bio-
oil to biomethanol conversion process was developed by Xu 
et al. According to the results, 99% selectivity and the high-
est methanol yield of 1.32 kg/h/kg catalyst were achieved. 
Carbon monoxide production from carbon dioxide is highly 
influenced by the thermal electrons and nickel present in the 
Ni/Al2O3 catalyst. After the biosyngas conditioning process, 
the carbon dioxide-to-carbon monoxide ratio decreased from 
6.33 to 0.01–0.28 (Xu 2011).

This section discusses the techno-economic analysis of 
methanol utilization in different ways. In both modelling 
and experimental approaches, methanol was widely used as 
an alternative source of energy and power. Different model-
ling studies discussed different biomass-based gasification 
processes to produce methanol using modelling software 
like Aspen Plus, MATLAB, and Aspen HYSYS. Similarly, 
in experimental studies, the production and utilization of 
methanol were studied in different regions of the world using 
different processes. The efficiency of the processes and eco-
nomic feasibility were also discussed. Using methanol as a 
fuel source positively impacted both environment and pro-
duction cost.

Hybrid energy generation with methanol

Dual‑fuel application

Blending methanol with other liquid fuels like diesel/bio-
diesel (Qi et al. 2010; Duraisamy et al. 2020; Sayin, 2010), 
dimethyl ether, and natural gas (Wang et al. 2019) (Chen 
et  al. 2019a) has evolved as a promising way of using 
methanol for reducing carbon dioxide and nitrogen oxide 
emissions diesel and spark ignition engines. In this section, 
experimental studies related to methanol-based dual-fuel 
engine performance have been discussed. Table 5 summa-
rizes the key findings related to the dual-fuel application 
studies reported.

The feasibility of methanol in spark ignition engine and 
other fuels in dual-fuel mode has been studied in various 
ways by researchers. The performance of a novel dual-fuel 
methanol-natural gas spark ignition (M/N DFSI) engine 
with methanol port-injection modification was studied by 
Chen et al. under three load conditions: light, medium, and 
heavy (brake mean effective pressures of 0.387, 0.775, and 
1.163 MPa, respectively), with a relative air–fuel ratio of 
1.3 and keeping the engine speed constant at 1600 rpm. 
Flame development and propagation period were found 
lower with higher methanol substitution. An increase in 
peak cylinder pressure and temperature, brake thermal effi-
ciency, and heat release rate was also found with higher 
methanol addition; however, brake-specific fuel consump-
tion decreased (Chen et al. 2019a). The influence of the 
injection timings and injection amount/cycle for metha-
nol–liquefied petroleum gas mixture on emissions, com-
bustion, and cold start firing for a dual-fuel methanol–liq-
uefied petroleum gas spark ignition engine was studied by 
Gong et al. experimentally. The engine's maximum tran-
sient speed and maximum cylinder pressure were found 
to increase with the injection amount/cycle increase for 
methanol and liquefied petroleum gas. With the minimum 
injected amount, more reliable engine firing was found in 
the case of liquefied petroleum gas compared to methanol 
under low ambient temperature conditions (Gong et al. 
2019).

Liu et al. tried to improve the fuel economy and reduce 
particle number emission through an experimental inves-
tigation on a methanol gasoline dual-fuel spark ignition 
engine. The intake port was used to inject methanol into the 
engine to reduce particle number emissions and enhance fuel 
economy. The stoichiometric air–fuel ratio was maintained 
throughout the experimentation. According to the results, 
an increase in methanol addition improved fuel economy 
by reducing brake-specific fuel consumption. Moreover, the 
total particle number of the engine was found to reduce to a 
minimum of 5 × 104 N/ml, with a 99.6% reduction compared 
to that of baseline (Liu et al. 2015a).

The effects of the compression ratio, ignition system, and 
injector configuration on the combustion characteristics and 
brake thermal efficiency of a methanol spark ignition engine 
(high-compression direct-injection) under light load opera-
tion were investigated experimentally by Gong et al. The 
methanol engine was found to have 25% more brake thermal 
efficiency than that of one using single spark ignition system 
at a 0.11–0.29 MPa brake mean effective pressure with an 
engine speed of 1600 rpm. Reducing the compression ratio 
from 16:1 to 14:1, the brake thermal efficiency increased 
and decreased under low and high loads, respectively (Gong 
et al. 2011). Another study of analysis of combustion perfor-
mance of a natural gas engine under the addition of ethanol, 
n-butanol and methanol was performed by Chen et al. The 
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experiments were performed using a dual-fuel engine under 
a light load with stoichiometric equivalent air–fuel ratio, 
maintaining a constant speed at 1600 rpm, with 0.387 MPa 
brake mean effective pressure. Four different alcohol fuel 
energy substitution ratios, viz. 0% (pure natural gas), 19%, 
44%, and 60%, were used to analyse the engine performance 
and found that pure natural gas combustion has the slowest 
burning rate. Flame development and propagation time, and 
nitrogen oxide emissions, were found to get reduced with 
increasing alcohol fuel energy substitution ratios (Chen et al. 
2019b).

Studies related to the use of methanol with diesel have 
recently gained high popularity for the reduction of diesel 
in the industrial and transport sectors. Duraisamy et al. dis-
cussed the effect of methanol-diesel and methanol-polyox-
ymethylene dimethyl ether (PODE) fuel mix in reactivity-
controlled compression ignition (RCCI) combustion using 
a 3-cylinder turbocharged diesel engine at 1500 rpm under a 
brake mean effective pressure of 0.34 MPa. Results showed 
that RCCI combustion with low-methanol-high-PODE fuel 
mix improved the brake thermal efficiency, ignition lag, and 
the combustion time compared to diesel-methanol dual-fuel 
(DMDF) RCCI combustion. The soot, hydrocarbon, and car-
bon monoxide emissions were found under control using 
highly reactive PODE as fuel. However, the nitric oxide 
emissions were higher for methanol-PODE RCCI combus-
tion than DMDF RCCI combustion as PODE has intermo-
lecular oxygen (Duraisamy et al. 2020).

In a similar study, using a turbo-charged, heavy-duty, 
6-cylinder modified M/N DFSI engine under excess air–fuel 
ratio and addition of methanol, the combustion performance, 
characteristics, and emissions results were analysed by Wang 
et al. Experiments were performed with low engine load, at 
a 0.387 MPa brake mean effective pressure, maintaining a 
fixed 1600 rpm engine speed. In this case, methanol addi-
tion also helped decrease the flame development and propa-
gation period, thereby improving brake thermal efficiency 
and lowering equivalent BSFC along with total hydrocar-
bon emission. With increasing air–fuel ratio, the brake ther-
mal efficiency and total hydrocarbon emissions increased, 
while natural gas burning rate and nitric oxide emissions 
decreased. The burning rate of natural gas increased by add-
ing methanol at air–fuel ratios = 1.5 and 1.6 (Wang et al. 
2019). Wei et al. performed an experimental analysis to 
study the emission and combustion behaviour of a 6-cyl-
inder DMDF engine with a high methanol premixed ratio. 
Experiments were performed with a maximum methanol 
premixed ratio of over 70%. Through the intake port, meth-
anol was injected, and ignition was achieved by injecting 
diesel directly into the cylinder. They found that with high 
methanol premixed ratio, shorter combustion duration was 
achieved with increased ignition delay and increased carbon 
monoxide, hydrocarbon, and formaldehyde emissions. With 

increasing methanol premixed ratio, the nitrogen oxide emis-
sion and dry soot emission decreased, but nitrogen dioxide 
emission increased (Wei et al. 2015).

Yusaf et  al. also observed higher torque and power 
output in the case of the diesel–methanol fuel blend com-
pared to the pure diesel fuel. There is higher temperature 
of the exhaust gas and BSFC for pure diesel mode. Adding 
10% methanol to the pure diesel was found to have a high 
influence on the engine's performance (Yusaf et al. 2013). 
Ma et al. reported improved brake thermal efficiency and 
reduced replacement ratio (SR) of diesel–methanol dual-
fuel combustion by increasing intake air temperature (Ti) up 
to 65 °C from 35 °C and rising cooling water temperature. 
Again at 65–100 °C range, SR decreased, but thermal brake 
efficiency was seen as constant. More cooling loss was seen 
in the case of diesel–methanol dual-fuel combustion in every 
case than pure diesel combustion (Ma et al. 2019).

Liu et al. found lower indicated mean effective pressure 
(IMEP) at low injection pressure for diesel–methanol dual-
fuel mode compared to pure diesel (D) mode. With increas-
ing injection pressure, the BSFC in the diesel–methanol 
dual-fuel mode decreases; however, BSFC mostly is larger 
than in the diesel combustion mode. Diesel–methanol dual-
fuel mode was found to have an ignition delay compared to 
D combustion mode. Smoke and nitrogen oxide emissions 
for diesel–methanol dual-fuel mode were lower than the D 
mode over all test conditions, but nitrogen dioxide emissions 
increased. Again, compared to the D mode, diesel–methanol 
dual-fuel mode was found to have higher hydrocarbon and 
carbon monoxide emissions but lower carbon dioxide emis-
sions (Liu et al. 2015b).

Although diesel–methanol dual-fuel mode of operation 
was found to have several advantages compared to the pure 
diesel mode of operation, some mixed results can also be 
seen in different works of the literature. Pan et al. also con-
ducted testing operations using an intercooled heavy-duty 
turbocharged diesel engine with 6-cylinder at a fixed load 
and maintaining a 1500 rpm engine speed. In diesel–meth-
anol dual-fuel mode of operation, reduction in intake air 
temperature made the exhaust gas's thermal efficiency (indi-
cated) and temperature fall. With a large amount of methanol 
addition in the fuel blend, a decrease in nitrogen oxides, 
nitric oxide, and smoke emissions is seen, but formalde-
hyde, nitrogen dioxide, total hydrocarbon, carbon monoxide, 
and methanol emissions were found to get higher (Pan et al. 
2015).

Intake charge temperature was found to be the most 
influencing parameter for HCCI methanol combustion on 
a 4-stroke, 2-cylinder diesel engine, CT2100Q by Zhang 
et al. Increasing intake temperature was found to increase the 
cylinder pressure, air–fuel ratio, heat release rate and engine 
speed. With an increase in the ignition timings, the equiva-
lence ratio was found to increase with the short duration 
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of combustion. The experimental setup was obtained maxi-
mum thermal efficiency when CA50 (Crank angle at 50% 
accumulated heat release rate) locates near 7.5o crank angle 
with a combustion duration not more than 110o crank angle 
(Zhang and Wu, 2016). C. Sayin (Sayin, 2010) performed 
an experimental study on a 4-stroke diesel engine with a 
single cylinder to analyse the effects of various fuel blends 
(M5, M10 as methanol-diesel and E5, E10 as ethanol–diesel) 
on the exhaust and combustion performance. The operating 
torque of the engine was 30 Nm, with engine speed chang-
ing between 1000 and 1800 rpm. The BSFC and nitrogen 
oxide emissions were found to get increased while smoke 
opacity, brake thermal efficiency, total hydrocarbon, and 
carbon monoxide emissions were found to decrease with 
all fuel blends.

In a similar study, Pranshant et al. (2016) experimentally 
investigated the relationship between different operating 
parameters like a) ignition delay, b) pressure change rate, 
c) heat rate, and d) temperature profile with 20% and 40% 
methanol blend fuel under 10%, 20%, and 40% load condi-
tions using a 62.5kW, 4-cylinder turbocharged diesel engine. 
A rise of 3.1%, 14.6%, and 19.5% in the rate of pressure rise 
was seen under the three different load conditions, respec-
tively. The lowest and highest overall heat release value of 
35.93 kJ and 78.07 kJ (at 40% and 10% load conditions) was 
observed with a 40% methanol blend.

Utilization of methanol with renewable energy 
sources

The use of renewable sources such as solar, wind, or hydro-
energy has seen much popularity recently. To produce biom-
ethanol, the use of renewable sources of energy can increase 
the overall efficiency and decrease the environmental impact 
of the whole process. Studies of biomethanol production 
using renewable sources have been found in different regions 
mentioned in this section.

Use of concentrating solar power (CSP) for the conver-
sion of methanol-dimethyl ether was reported. A multi-
complex model got developed to study the effectiveness of 
the gasification process with low-temperature solar-powered 
steam (400–410 °C) produced from the concentrating solar 
power plant (Ravaghi-Ardebili and Manenti, 2015). A sim-
ilar study of cotton stalk biomass gasification for syngas 
production using solar energy with a beam-down optical 
configuration was performed by Bai et al. Their system had 
a maximum biomass consumption rate of 100 ktons/year 
and power capacity of 32.7 MWe with 51.89% and 51.23% 
of maximum (on-design) energy efficiency and the system 
exergy efficiency, respectively. The annual electricity and 
methanol production (off-design) was 50.85 GWh and 54.80 
ktons, respectively. The cost of methanol was 361.88 USD/

ton, with a 27.33% reduction in biomass consumption rate 
(Bai et al. 2019).

Kim et al. studied the techno-economic performance of a 
novel solar-based methanol production process where solar 
energy is utilized to convert carbon dioxide into carbon 
monoxide, and then with WGSR, methanol synthesis is per-
formed. According to the results, a system efficiency of 7.1% 
was found for methanol production with the sole primary 
energy source of solar energy. The economic analysis shows 
that for the profitable outcome of this methanol production 
method, the methanol selling price should not be less than 
1.22 USD/kg (Kim et al. 2011). Another solar energy-based 
and methanol-powered hybrid combined cycle (CC) power 
system integrated with carbon dioxide capture mechanism- 
solar-driven methanol-reforming (RFM) and solar-driven 
methanol decomposition (DCP) process was analysed and 
proposed by Li et al. The modelling results showed 55% pos-
sible exergy efficiency and fuel reduction ratio of 30% with 
a 20% share of the solar thermal energy. The specific carbon 
dioxide emissions were reduced to 25 g/kWh, which was 
36.8% less compared to a conventional CC (with a carbon 
dioxide capture process). The primary thermal efficiency 
for DCP and RFM systems was found to be 28.8% and 28%, 
respectively. The systems were advantageous for achieving 
high methanol conversion rates by utilizing the solar heat at 
only 200–300 °C (Li et al. 2015).

Chen et al. studied the environmental and techno-eco-
nomic performance of three different process cases: (a) 
methanol production from coal (Baseline Case), (b) coal-to-
methanol conversion with solar energy integration (Case-1), 
and (c) hybrid solar-biomass route of methanol production 
from carbon dioxide hydrogenation (Case-2). 45.7% and 
57.5% lower environmental effects were found for Case-1 
and Case-2, respectively, compared to the baseline case. 
The production cost of methanol for Case-2 and Case-1 was 
about 5 × and 3 × times the Baseline Case cost (229.71 USD/
ton) (Chen et al. 2019c). With carbon dioxide capture inte-
grated bio-IGCC system for Case-2, negative greenhouse gas 
emission of (− 1092.1 kgCO2eq) was found in comparison to 
Case-1 emission (927.8 kgCO2eq) and Baseline case (3607 
kgCO2eq). The Case-1 route was found as economically fea-
sible, considering the average carbon tax level (72.08 USD/
ton CO2eq) (Chen et al. 2019c). Murray and Furlonge (2020) 
developed a methanol to power chain integrated model 
to assess the overall economic viability in the Caribbean 
region. They estimated that a reduction of up to about 0.10 
USD per KWh is possible to achieve, with 6000 MW annual 
power production through methanol.

Wind energy-based methanol synthesis process using  
Aspen  Plus simulation was reported by Matzen et  al. 
(Matzen et al. 2015), where 97.01 mt of daily methanol 
production was found to be possible with 138.37 mt CO2/
day and 18.56 mt hydrogen/day. Overall energy efficiency 
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for the whole process was around 58%. The plant reduced 
emissions by − 1.05 CO2e/kg methanol (Matzen et al. 2015). 
Techno-economic analysis of a solar wind integrated power 
and methanol production process was studied by Firman-
syah et al. (2018). Because of the high initial cost of solar 
and wind systems, the proposed system could not compete 
economically with conventional power plants. The initial 
investment, solar radiation, or wind potential and interest 
rate were the key factors for the variation in the techno-
economic performance of the systems for different locations. 
Among the three different test locations considered in the 
study, Beijing (China) was found to perform better economi-
cally compared to Denver (US) and Gotland (Sweden) (Fir-
mansyah et al. 2018).

Rivarolo et al. (2016) analysed the use of renewable 
energy (wind, hydro, and solar) for the methanol synthesis 
and studied the effects of different electricity costs (0.033-
0.044-0.055 USD/kWh) as well as methanol market prices 
(441.40-551.75-662.10 USD/ton). Hydroelectric source 
utilization for methanol production was found to be eco-
nomically more beneficial with higher numbers of equiva-
lent hours (3000) than comparison with the wind (1300) 
and solar (1100). They found the process profitable with 
carbon dioxide purchasing and low-cost electricity (0.033 
USD/kWh) only with hydroelectric source utilization. 
They also found that the system's economic performance 
was enhanced by reducing carbon dioxide emissions (about 
33,105.15 USD/year). A study on potential greenhouse gas 
emissions reduction by producing replacements (hydrogen, 
methane and methanol) for conventional fossil fuels by using 
renewable surplus electricity for electrolysis was reported by 
Uusitalo et al. (2017) studied the. According to the results, 
reductions in greenhouse gas emissions by using 1 MJ of 
renewable electricity were 20 g of CO2eq for methane, 60 g 
of CO2eq for hydrogen, and 40 g of CO2eq for methanol.

The preceding discussion demonstrates that using renew-
able energy sources to power methanol synthesis is benefi-
cial for reducing global environmental emissions. However, 
due to the substantial initial investment required for this 
type of plant, the cost of producing methanol is significantly 
higher than the current market price.

Production and utilization of dimethyl ether 
as a fuel with methanol

Dimethyl ether, also known as methoxymethane with the 
chemical formula CH3OCH3, is chemical fuel which has 
the potential to be used as a future generation replacement 
for diesel fuel. Dimethyl ether can be produced from the 
gasification of different raw materials (like coal, natural gas, 
biomass, and waste materials). Dimethyl ether has several 
benefits to be the potential replacement for diesel, such as 
(a) high cetane number (> 55), (b) low emission, (c) efficient 
combustion, and d) less smoke formation, along with others 
(Akhoondi et al. 2021). The production and utilization of 
dimethyl ether are shown in Fig. 4.

The combustion and engine performance character-
istics of methanol- dimethyl ether fuel blend with diesel 
fuel can be found in different studies. Use of different fuel 
blends of D80M20, D60M10DME30, D50M30DME20, 
and D70M20DME10 with different percentages of exhaust 
gas recirculation was studied by Taghavifar et al. Blend-
ing diesel with 30% of methanol and 20% of dimethyl ether 
(D50M30DME20) at 1400 rpm was found to produce high 
pressure and accumulated heat with the best mechanical effi-
ciency of 35%, whereas D80M20 blend at 2000 rpm with 
a 20% exhaust gas recirculation results in poor engine effi-
ciency with defective combustive performance(Taghavifar 
et al. 2019).

Fig. 4   Production and uti-
lization of dimethyl ether, 
CH3OCH3. Syngas can be 
produced through gasifica-
tion from coal, natural gas, 
biomass, or waste materials. 
Dimethyl ether can be produced 
from syngas in two different 
ways: (a) through methanol 
(CH3OH) synthesis reaction, 2 
CH3OH → CH3OCH3 + H2O, 
and (b) direct syngas-to-dime-
thyl ether synthesis, 3 CO+ 3 
H2 → CH3OCH3 + CO2. Dime-
thyl ether can be used as fuel in 
transport, chemical processes, 
industrial applications, and 
power generation
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Wattanavichien et al. mentioned a modified dimethyl 
ether fuelled diesel engine, which achieved 50% of the 
diesel performance with a reduction in BSFC (Wattanavi-
chien 2009). A similar study is related to dimethyl ether 
combustion, exhaust gas emissions, and dimethyl ether 
feasibility in a common rail diesel engine with a single-
cylinder was reported by Theinnoi et al. where dimethyl 
ether was blended to diesel (0–90%) by adding through 
the engine intake manifold (Theinnoi et al. 2017). Exhaust 
gas emissions and thermal efficiency were found to get 
improved in the case of dimethyl ether diesel combustion 
in comparison to pure diesel combustion (Theinnoi et al. 
2017). With 30% dimethyl ether blending, nitric oxide 
and smoke reductions were also observed. Brake thermal 
efficiency improvement was found by reducing diesel fuel 
consumption by 22.36% (Theinnoi et al. 2017). Evaluation 
of emission control methods for dimethyl ether combus-
tion in CI engines for meeting the emission norms in the 
near future was also found (Thomas et al. 2014).

Thomas et al. mainly studied the future concerns about 
the emission characteristics of dimethyl ether combustion 
and particle matter emission (Thomas et al. 2014). Park 
et al. also analysed the emission characteristics and com-
bustion performance of biogas–dimethyl ether mix using 
a high-speed diesel engine. With an increase in biogas/
dimethyl ether mixing ratio, ignition timing, nitrogen 
oxide emission, peak pressure during combustion, and 
heat release rate were seen to decrease, whereas hydrocar-
bon and carbon monoxide emission was found to increase 
(Park et al. 2014).

Kim and Park studied the optimization of operating 
parameters, start of injection (SOI), fuel injection angle, 
and pressure for a diesel engine with diesel–dimethyl ether 
mode. Reduction in nitrogen oxide emissions and fuel con-
sumption was found in diesel-dimethyl ether mode compared 
to the pure diesel combustion mode. The optimum values for 
the dimethyl ether combustion process parameters are: start 
of injection = BTDC 10°, equivalence ratio = 0.7, injection 
pressure = 110 MPa, and injection angle = 90° (Kim and Park 
2016). An optimum configuration with a 0.6% net indicated 
efficiency improvement and 1% reduction in nitrogen oxide 
values compared to that of the original case is also found by 
Benajes et al. for heavy-duty diesel engine combustion using 
dimethyl ether. An increased net indicated efficiency was 
seen with exhaust gas recirculation with nitrogen oxide and 
soot emission control (Benajes et al. 2018). Problems related 
to the combustion of dimethyl ether in spark ignition engines 
like leakage in the fuel system, engine wear and cavity were 
discussed by KRUCZYŃKI et al. Nitrogen oxides, total 
hydrocarbon, and particle matter emission with the dimethyl 
ether-fuelled spark ignition engine were found to be 1.19, 
0.22, and 0.015 g/kWh, respectively. The requirement of fuel 

system improvement and the use of additives were suggested 
for using dimethyl ether in engines (Kruczyński 2017).

This section describes the production and utilization of 
dimethyl ether alongside methanol, which has a huge poten-
tial to be a future generation fuel source. Although dimethyl 
ether has numerous advantages, issues such as its reduced 
lower calorific value, low density, and low viscosity may 
prevent its use in diesel engines. Future research in fuel 
injection modification can be advantageous for utilizing this 
potential fuel in existing engines as a replacement for diesel.

Bibliometric mapping

Research in the area of methanol and biomethanol is increas-
ing. A co-occurrence analysis using the keywords “methanol 
production”, “biomethanol”, and ‘bio-methanol’ on “Web of 
Science” for the period between 2018 and 2022 highlights 
that the keywords most associated with methanol over the 
last 5 years include its production and use as a biofuel for 
energy production including its use in biodiesel.

Researchers, whether they are specialists in the subject or 
fresh to the study topic, can use the bibliometric mapping 
as a visual help. The clusters/family trees of research words 
depict how the entire research domain is split or subdivided 
into separate areas/research subjects on the visualization 
map. The more closely the clusters appear to be connected 
or are truly connected, the more direct the link and overlap 
between the subtopics and study areas relevant to methanol 
production. The larger and thicker circles signify the phrases' 
perceived effect or the frequency with which they appear in 
the literature. Furthermore, the fact that they are coloured 
differently suggests that they are linked to distinctive clusters 
and trees with off branching words in the relevant literature.

The bibliometric mapping was performed using the 
following methodology, which is shown in Fig. 5 Search 
keywords: 'methanol production'  (title)  or  biometha-
nol (title) or bio-methanol (title).

The database used: Web of science.
Time period: 2018–2022 (publication years).
Figure 5a, b shows the bibliometric mapping analysis uti-

lizing network and density visualizations. Using the search 
methods mentioned above, the bibliometric mapping study 
yielded 760 results from the Web of Science. The analy-
sis was carried out by binary counting of co-occurrences 
or terms that featured at least four times in papers pub-
lished between 2018 and 2022. Figure 5a shows that the 
terms methanol, production, methanol production, hydro-
gen, catalyst, performance, biomass, application are par-
ticularly prominent. Figure 5b simultaneously shows these 
keywords with a high recurrence frequency in vivid yellow 
in the density visualization map. It can be seen that topics 
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Fig. 5   Bibliometric mapping of the methanol production over the past five years, from 2018 to 2022, based on 691 Web of Science publications. 
(a) depicts the research network visualization for methanol production. (b) illustrates density visualization for methanol production research
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like biomethanol production and dimethyl ether have rela-
tively low occurrence, implying that these need more focus 
in research.

These keywords are not surprising given the improved 
environmental performance by mitigating the harmful effects 
of current rapid carbon dioxide emission (Olah 2005; Ekman 
et al. 2013). Compared to conventional fossil fuels, renew-
able methanol combustion reduces nitrogen oxide emission 
(up to 80%), reduces carbon dioxide emissions (up to 95%), 
and eliminates sulphur oxide and other particulate matter 
(Hobson 2018; Pozzo et al. 2015). A 9–38% reduction in 
total carbon emission per year was found possible by the 
generation of electricity using biomethanol-fuel cells (Sun-
tana et al. 2009). However, methanol utilization also has sev-
eral disadvantages. The production cost for biomethanol is 
reported to be 1.5–4 times more than traditional natural gas-
sourced methanol (Broeren 2013). Methanol being electri-
cally conductive accelerates corrosion (Verhelst et al. 2019). 
Moreover, methanol possesses a low flash point (9–12 °C), 
necessitating explosion-proof storage (Kumabe et al. 2008; 
Murray and Furlonge, 2020), and also has a very low cetane 
number (≤ 5) which makes autoignition difficult (Popa et al. 
2001).

This section mainly shows the ongoing research in metha-
nol production and how it relates to other industries. Fig-
ure 2a and b illustrates that methanol research has expanded 
over the past five years. In this review, we examine metha-
nol's efficiency as a fuel for the next generation and as a 
potential replacement for the use of fossil fuels and energy 
production.

Conclusion

This review critically assesses the literature concerning 
methanol's production, utilization, and techno-economic 
viability as a fuel for the next generation. Various production 
processes and feedstocks for methanol production were ana-
lysed and discussed. Gasification of lignocellulosic biomass 
was found to be the most effective technology for biometha-
nol production in the current scenario.

Herein we examine methanol as one of the potential 
fuels to mitigate the problems associated with greenhouse 
gas emissions and fuel scarcity by using the modelling and 
analytical studies to determine the fuel's techno-economic 
viability. The biomethanol yield and production cost are pri-
marily influenced by feedstock characteristics, initial invest-
ment, and plant location.

The use of biomethanol as a fuel in various sectors, 
including in dual-fuel mode with other fuels such as diesel, 
natural gas, and dimethyl ether, was found to be beneficial 
in terms of fuel economy, brake thermal efficiency, and 
greenhouse gas emissions reduction. The use of renewable 

sources in the production process increased the overall posi-
tive environmental impact and process efficiency, although 
at a higher cost.

The hydrogen production facility from the electrolysis of 
water requires a very large investment, and for this reason, 
the use of renewable energy was also mentioned in numer-
ous studies to reduce both the biomethanol production cost 
and the overall environmental impact. In contrast with fos-
sil fuels, biomethanol has the potential to meet the energy 
needs of future generations and has much lower environ-
mental impacts, reducing nitrogen oxide, sulphur oxide, and 
soot emissions.

Countries with excess forest biomass, such as India, 
China, and Brazil, should focus on producing and utilizing 
biomethanol to reduce fossil fuel use for energy generation 
and transportation. Additionally, biomethanol will positively 
impact global greenhouse gas emissions and climate change. 
However, there is still a need for research regarding the 
entire methanol production and utilization process for large-
scale production, considering different biomass resources 
available in various regions. Conversion of methanol to 
dimethyl ether and subsequent use of dimethyl ether as fuel 
was also considered a possibility; however, further research 
and development of the fuel injection modification will be 
more effective in using dimethyl ether alongside methanol 
as dual-fuel blends.
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