Inter-school variations in the standard of examiners’ graduation-level OSCE judgements

Published in:
Medical Teacher

Document Version:
Publisher's PDF, also known as Version of record

Queen’s University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2024 the authors.
This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen’s institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date: 18. Jul. 2024
Inter-school variations in the standard of examiners' graduation-level OSCE judgements

Peter Yeates, Adriano Maluf, Gareth McCray, Ruth Kinston, Natalie Cope, Kathy Cullen, Vikki O'Neill, Aidan Cole, Ching-wa Chung, Rhian Goodfellow, Rebecca Vallender, Sue Ensaff, Rikki Goddard-Fuller & Robert McKinley

To cite this article: Peter Yeates, Adriano Maluf, Gareth McCray, Ruth Kinston, Natalie Cope, Kathy Cullen, Vikki O'Neill, Aidan Cole, Ching-wa Chung, Rhian Goodfellow, Rebecca Vallender, Sue Ensaff, Rikki Goddard-Fuller & Robert McKinley (08 Jul 2024): Inter-school variations in the standard of examiners' graduation-level OSCE judgements, Medical Teacher, DOI: 10.1080/0142159X.2024.2372087

To link to this article: https://doi.org/10.1080/0142159X.2024.2372087
Inter-school variations in the standard of examiners’ graduation-level OSCE judgements

Peter Yeatesa, Adriano Malufb, Gareth McCraya, Ruth Kinstona, Natalie Copea, Kathy Cullenb, Vikki O’Neillb, Aidan Colec, Ching-wa Chungc, Rhian Goodfellowe, Rebecca Vallendera, Sue Ensaiff, Rikki Goddard-Fullera and Robert McKinleya

aSchool of Medicine, Keele University, Keele, United Kingdom; bde Montford University, Leicester, United Kingdom; cSchool of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom; dSchool of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom; eSchool of Medicine, Cardiff University, Cardiff, United Kingdom; fChristie Education, Christie Hospitals NHS Foundation Trust, Manchester, United Kingdom

ABSTRACT

Introduction: Ensuring equivalence in high-stakes performance exams is important for patient safety and candidate fairness. We compared inter-school examiner differences within a shared OSCE and resulting impact on students’ pass/fail categorisation.

Methods: The same 6 station formative OSCE ran asynchronously in 4 medical schools, with 2 parallel circuits/school. We compared examiners’ judgements using Video-based Examiner Score Comparison and Adjustment (VESCA): examiners scored station-specific comparator videos in addition to ‘live’ student performances, enabling 1/controlled score comparisons by a/examiner-cohorts and b/schools and 2/data linkage to adjust for the influence of examiner-cohorts. We calculated score impact and change in pass/fail categorisation by school.

Results: On controlled video-based comparisons, inter-school variations in examiners’ scoring (16.3%) were nearly double within-school variations (8.8%). Students’ scores received a median adjustment of 5.26% (IQR 2.87–7.17%). The impact of adjusting for examiner differences on students’ pass/fail categorisation varied by school, with adjustment reducing failure rate from 39.13% to 8.70% (school 2) whilst increasing failure from 0.00% to 21.74% (school 4).

Discussion: Whilst the formative context may partly account for differences, these findings query whether variations may exist between medical schools in examiners’ judgements. This may benefit from systematic appraisal to safeguard equivalence. VESCA provided a viable method for comparisons.

Introduction

Assessment equivalence, or the ‘tendency for the same assessment to yield equivalent scores or decisions when administered across different institutions or cycles of testing’ is a critical component of the chain of validity when assessments are used to inform graduation or licensing decisions [1]. Poor equivalence may unfairly advantage or disadvantage particular candidates, but also threatens patient safety, as unwarranted variation in assessment contributes to variable educational outcomes, which can in turn lead to suboptimal patient care [2, 3]. Consequently, establishing the equivalence of assessments used by different institutions to graduate or award licenses to practice should be a priority.

Inter-institutional variations in assessment practices are well described internationally [4, 5], as well as inter-institutional variations in standard setting practices [6–8]. These variations can be related to variations in students’ performances on the same test with students’ average performance varying by up to 15% between different institutions [9]. Given that graduates exam scores are known to predict the subsequent outcomes of their patients [10], such variations clearly raise the potential for concern.

Despite the growth of the competency-based medical education (CBME) movement [11, 12], objective structured clinical exams (OSCEs) [13] continue to significantly inform education (CBME) movement [11, 12], objective structured clinical exams (OSCEs) [13] continue to significantly inform education programmes globally [14]. Given this, it is...
perhaps surprising that there has been comparatively little published research into the equivalence of OSCEs, whether comparing standards between different institutions within the same country or within large-scale distributed OSCEs such as those run by major testing organisations. Some prior research has examined site-related variations in distributed OSCE, indicating mixed results. Sebok et al. [15] found site related variation ranging from 2.0% to 15.3% of total variance for different competencies within a medical student graduation-level OSCE. In a controlled (video-based) comparison of simulated patient raters at different sites, Tamblyn et al. found that whilst raters within each site were fairly consistent, there was a 6.7% average difference in ratings between the study’s two sites [17] found that whilst raters within each site were fairly consistent, there was a 6.7% average difference in ratings between the study’s two sites.

Perhaps one of the reasons why this topic has received comparatively limited investigation is because examiners and students in different locations are typically ‘fully-nested’ (there is no cross-over between the students seen by examiners from different sites), which limits the capacity to make comparisons even when the same OSCE stations are used at different sites. Over recent years [18], have developed a method called Video-based Examiner Score Comparison and Adjustment (VESCA) which seeks to overcome this problem. VESCA involves: 1/filming a small volunteer subset of students on all stations in the OSCE; 2/ asking all examiners to score a common pool of videos (examiners only score the videos specific to the station they examined); and 3/using the linkage provided by the video scores to compare (and potentially adjust) for examiner effects within statistical analyses. Yeates et al. [18, 19] have reported on use of the technique twice from a single centre and once comparing two sites within the same institution [20]. Parallel work has developed approaches to using video within OSCEs [21], estimated the impact of operational parameters on the stability of resulting score adjustments [22], and examined the likely contribution of potentially biasing influences due to order or sequence effects [23]. Further (not yet published) work has used statistical simulation to estimate the likely accuracy of the adjusted scores which VESCA produces [24]. Consequently, the technique has a growing evidence base which supports its use under defined conditions.

Given both the importance of equivalence within graduation-level assessment and the available evidence which hints at the potential for sizeable variations in examiner scoring between locations, we aimed within this study to compare the scoring of multiple groups of examiners from widely distributed UK medical schools within the same OSCE. In so doing, we aimed to both explore any apparent differences within our sample, whilst also determining ‘proof-of-concept’ of VESCA’s ability to compare examiners across multiple institutions and therefore its potential for use within fully representative national comparisons.

Specifically, within this current study we used VESCA to compare the scoring of otherwise unlinked (or non-overlapping) groups of examiners (examiner-cohorts; [25] within and between four participating medical schools, and the impact of adjusting for any apparent differences on students’ scores or pass/fail categorisation within the exam. Data were gathered from the AD-Equiv study, which was a multi-centre complex intervention trial, which aimed to enhance the authenticity, diagnosticity and equivalence of assessment within a distributed OSCE run at four locations across the United Kingdom [26].

Research questions:

1. How does the standard of examiners’ judgements compare between:
 a. examiner-cohorts within schools?
 b. examiner-cohorts between medical schools?
 and what are the relative magnitudes of within and between institutional variation?

2. How much influence does adjusting for examiner-cohort effects have on students’:
 a. Overall scores?
 b. Pass/fail (or other categorical) scores within the exam?

Materials and methods

Overview

Data was collected within the AD-Equiv trial [26]. We ran the same 6-station OSCE in each of four medical schools, with two parallel circuits in each school. The OSCE was voluntary, formative, and additional to usual assessments. We used VESCA [19] to compare examiners’ scoring between schools. We then adjusted students’ scores for examiner differences to illustrate the potential impact of examiner-variations.

Population, sampling and recruitment

The study population was final and penultimate years medical students and their examiners. Our sample included one school from each of the four UK nations (England, Northern Ireland, Scotland, and Wales) including a mix of old and new medical schools. Recruitment was performed by schools, with each aiming to recruit 24 students and 12 examiners to enable detection of a 5% scoring difference between schools.

OSCE conduct

Students and examiners were allocated to one of the two parallel circuits in their school. The OSCE comprised 6 × 13.5-min stations, with reading time between stations of between 90s and 4 min based on each school’s usual procedures. Station content was based on the typical work of new doctors (see [27] and blueprinted to the UK GMC CPSA requirements. Performances were scored by examiners using the GeCoS domain-based rating scale [28] which gives each station a rating between 6 and 27 points. Examiners received online training prior to the OSCE, which included scoring a (generic) practice video and comparing their scores with expert benchmarks. Station and scoring formats, blueprinting, examiner and SP training are described in detail in Appendix 1.

We administered the OSCEs sequentially at the four participating medical schools, with the lead site going first in December 2021 and then subsequent schools in January, February, and March of 2022. Students, examiners, and
simulated patients participated in their usual school without any crossover between schools.

VESCA procedures

We videoed 8 volunteer students from the lead institution on all stations in the OSCE, using the filming principles established by [21]. This involved placing two cameras in each station at positions and heights selected by the research team to capture the detail of the station. Where a single camera view was sufficient, this was selected; otherwise, pictures from both cameras were merged to provide examiners with the required views to judge performances. For each station, we selected the first three videos with adequate sound and picture for use in the remainder of the study.

All examiners were asked to score the 3 specific videos for their station via a secure web survey within 4 weeks of the OSCE (as per prior uses of VESCA; [19]). The website provided examiners with the same examiner information and scoring rubric as the live OSCE.

Analyses

Analysis had two broad components: firstly, we compared examiners scoring within and between schools; and secondly, we adjusted students’ scores based on examiner differences to illustrate the potential impact of examiner variations.

Research Question 1: Controlled comparison of examiners’ scores by examiner-cohorts and schools.

For this research question, we examined the scores which groups of examiners (‘examiner-cohorts’) gave to videos of students’ performances because this enabled a controlled comparison of the scores which different groups of examiners gave to the same performances. We used Generalized Linear Modelling in SPSS [29]. In the first analysis we used a dependent variable of score and (fixed) main effects of 1/video, 2/station, and 3/examiner-cohort. To address the second part of the question, we then substituted ‘school’ for ‘examiner-cohort’ in the second analysis. Reported mean values and ninety-five percent confidence intervals were supplied by the respective models.

Research Question 2: Modelling the impact of adjusting for examiner variability on students’ scores.

For this research question, we used all score data from the live OSCE in each school and the scores examiners gave to videos, merged into one dataset. As the examiners from all schools had scored the same videos, data were partially crossed. This enabled the model to extrapolate from the crossed portion of data to adjust all students’ scores for the influence of the examiner-cohort they encountered. Data was structured so that scores allocated to videos by examiners were used to model examiner-cohort effects but did not feed directly into the adjusted scores of the students in the videos. This ensured that videoed students’ scores were adjusted in the same way as non-videoed students, based on the influence of the examiner-cohort they had encountered. Data was structured so that scores allocated to videos by examiners were used to model examiner-cohort effects but did not feed directly into the adjusted scores of the students in the videos. This ensured that videoed students’ scores were adjusted in the same way as non-videoed students, based on the influence of the examiner-cohort they had encountered.

To summarise the potential impact of examiner variations on students’ scores, we calculated the difference between each student’s adjusted average score and their raw (unadjusted) average score. As some values were positive and some were negative, we converted these to mean absolute differences (MAD) and termed these values the ‘score adjustment’ and ‘absolute score adjustment’ respectively. We then calculated descriptive statistics.

To illustrate the potential impact of examiner variations on students’ pass/fail categorisation, we determined a cut score for the test by calculating a borderline regression [33] for each station, combining these and then adding one standard error of measurement (SEM) [34]. This was done using the unadjusted scores from all schools, rather than on a school-by-school basis. To ensure consistent comparisons, we used the same cut score (calculated from unadjusted scores) to categorise both raw (unadjusted) and adjusted scores. To enable alignment with students adjusted average scores, we expressed this as an average score and then compared each student’s raw (unadjusted) score and adjusted average score with the cut score. For both score adjustments and pass/fail categorisation, we calculated descriptive statistics, and compared the results by school.

Additional analyses

These analyses provided a number of additional observations which, whilst not directly relevant to the research questions, aid contextualization of the results and therefore may be of interest to some readers. These are presented along with relevant methods in appendices 2 & 3. They include comparison of performance of student cohorts in the raw (unadjusted) and adjusted data and estimates of examiner-cohort influences from the whole (linked) dataset rather than the controlled comparisons provided by the video scores.

Ethics

All participants (students, simulated patients and examiners) participated voluntarily, provided consent and had the right to withdraw without consequences. All data were treated as confidential. The study received approval from Keele University research ethics committee (ref: MH-210209).

Results

Eighty-seven students completed the OSCE. Student participation rates varied by school, ranging from 17 students (1 school) to 23 students (2 schools) to 24 students (1 school). Students raw (unadjusted) average scores were normally
distributed, with a mean of 18.86 out of max 27 (61.24%) and SD of 2.18 (10.38%), ranging from 12.50 (30.95%) to 23.33 out of 27 (82.52%).

In three of the schools, twelve examiners participated. In the remaining school, one examiner had to leave the OSCE and was replaced, meaning that 13 examiners participated. Both the original and replacement examiners completed video scoring and were included in the analysis.

Eighteen videos were selected for use in video scoring (3 for each of the 6 stations). Six different students featured in the videos which were selected and had overall average scores ranging from 14.80 (41.90%) to 21.87 (75.57%), with an average of 18.00 (57.14%) and standard deviation of 2.48 (11.81%). As a result, students in the videos spanned 65.3% of the total range of student ability. Scores given to individual video performances ranged from 7 out of 27 (4.76%) to 27 out of 27 (100%), with a mean of 18.14 (57.81%) and a standard deviation of 4.81 (22.9%), thereby comprising a representative range of performances. One examiner from one school did not score their videos; all other examiners completed video scoring.

Comparing video scores by examiner-cohorts and by schools

Scores allocated to video performances varied by examiner-cohort, ranging from 16.16 (95% CIs 14.37–17.95) for examiner-cohort 3 (in school 2), to 20.24 (18.56–21.93) for examiner-cohort 8 (School 4), Wald ChiSq = 21.48(df = 7), p = 0.003. The observed differences between the two examiner-cohorts within the same school ranged from 0.59 marks (2.8%) in School 2 to 1.86 marks (8.8%) in School 1, although none of these differences achieved statistical significance. Notably, as examiners from all examiner cohorts scored the same pool of videos, these represent controlled comparisons of the relative influence of examiners’ stringency between these examiner-cohorts. These data are illustrated in Figure 1.

Scores allocated to videos by examiners also varied between schools: School 1, 18.55 (95% CIs 17.62–19.48); School 2, 16.52 (15.52–17.52); School 3: 17.67 (16.70–18.64); School 4: 19.96 (18.94–20.97), Wald Chi Sq 23.87(df 3), p < 0.001. Consequently, there was a difference of 19.96–16.52 = 3.44 marks (16.3%) between the video scores in the highest and lowest scoring schools. As a result, differences between schools were approaching double the magnitude of the observed (insignificant) differences between examiner-cohorts within schools. These data are illustrated in Figure 2.

Linking video and live data to compare examiner effects and adjust students’ scores

Details of examiner-cohort estimates can be found in Appendix 2. The pooled standard error for examiner-cohorts was 0.59 scale points (2.81%), giving 95% confidence intervals for the adjusted scores of ±1.16 scale points (±5.51%). Adjustments to students’ scores (i.e. the adjusted average score minus the raw (unadjusted) average value for each student) ranged from −1.86 marks (−8.86%) to +2.40 (11.42%). The median absolute score adjustment (i.e. ignoring whether score increased or decreased) was 1.10 marks (5.26%), with an interquartile range of 0.90 (4.30%) from a 1st quartile of 0.60 marks (2.87%) to a 3rd quartile of 1.50 marks (7.17%). A boxplot of score adjustments by examiner cohorts is depicted in Figure 3. Consistent with the observed variation in examiners’ scoring by school, score adjustments also varied by school: School 1 had a median score adjustment of −0.53 marks.
(-2.55%), IQR: −0.98 (-4.65%) to þ0.12 marks (+0.59%);
School 2 median adjustment +1.49 marks (+7.08%), IQR: +1.09 marks (+5.19%) to +1.76 marks (+8.38%);
School 3 median adjustment +0.67 marks (+3.19%), IQR 0.36 marks (1.74%) to +1.27 marks (+6.06%); School 4 median −1.15 marks (-5.48%), IQR −1.52 marks (-7.24%) to −1.05 marks (-5.00%).

Impact of score adjustment on students’ pass/fail

The standard setting procedure produced a cut score of 16.62 marks out of 27 (50.58%). The total student failure rate in raw (unadjusted) scores was 13 out of 87 students (14.94%), rising to 14 out of 87 (16.09%) for students’ adjusted scores. Eight students (9.20%) changed their classification from a fail to a pass, whereas nine students (10.34%) changed their categorisation from a pass to a fail (see Figure 4). The impact of these changes in students’ categorisation varied between schools. Percentage failure rates by school for unadjusted (raw) and adjusted scores were: school 1 unadjusted (raw) score failure rate 1 student (4.16%), adjusted score failure rate 5 students (20.83%); school 2 unadjusted (raw) score failure rate 9 students (39.13%), adjusted score failure rate 2 students (8.70%); school 3 unadjusted (raw) score failure rate 3 students (17.65%) failure rate, adjusted score failure rate 2 students (11.76%); school 4 unadjusted (raw) score failure rate 0 students (0.00%), adjusted score failure rate 5 students (21.74%). See Table 1 for these data.

Discussion

Summary of results

In controlled comparisons of video-based scores, examiners’ scoring varied between schools by up to 16.3% of the scale. Variations between schools were nearly double those within schools (8.8%). Adjusting students’ scores to indicate the potential impact of these examiner variations produced a median change in students’ score failure rate of ±5.39%, ranging from adjustments of −8.86% to +11.42%. Score adjustment substantially altered the pass/fail categorisation rate by school, ranging from a raw (unadjusted) score failure rate of 39.1% of students to an adjusted score failure rate of 8.70% in school 2, to a raw (unadjusted) score student failure rate of 0.0% to an adjusted score failure rate of 21.73% in school 4.

Theoretical implications

Interpretation of these results depends on both the extent to which they are indicative of wider variations in examiners’ judgements between medical schools in the UK (or not) and assumptions about the implications of any such variations. Our data were collected in a formative setting from volunteer students and examiners who performed an additional OSCE for research and may therefore not implicitly generalise to judgements in mandatory summative assessments. As a result, our findings may not reflect the wider examiner population in each school. Nonetheless, larger variations (up to 25%) have previously been observed between UK medical schools in their standard setting for knowledge testing items [6]. Moreover, examiner variability in OSCEs has previously been shown to be capable of influencing pass-fail outcomes in a similar manner to that which we have observed [35]. Consequently, whilst further research will be required to determine whether this finding replicates in summative contexts, we suggest that the 16.3% difference observed here is enough to at least indicate the potential for important differences between examiners’ judgements in different UK medical schools which therefore warrants further investigation.

Next is whether if such variations do occur, they present a meaningful challenge to assessment validity. Medical schools set their own curricula and assessment strategies so students from different schools may plausibly have some differences in ability depending on the emphasis of their curriculum. Equally, elite schools may consider it their prerogative to set standards which are more stringent than are strictly required. Notably, prior work comparing the interaction of student performance and standard setting has suggested that applying the standards of elite schools to lower attaining schools could dramatically alter the failure rate in knowledge tests [9]. Nonetheless, the UK’s regulatory framework (the GMC’s Clinical and Professionals Skills Assessment (CPSA) [36] exists to ensure that all new medical graduates meet a common threshold prior to entering practice. As the stations used in this OSCE were all based
on tasks which are typical of the work of new doctors, our findings may potentially indicate that examiners in different medical schools hold different expectations of new medical graduates. If confirmed, this might then challenge whether a common threshold is being applied.

Theoretically, it is interesting to consider how differences in conceptions of competence might arise between medical schools. Competence is a social construct, which emerges from the shared expectations of a community [37]. Ideas of professionalism have been shown to vary between regions [38] and so it is plausible that conceptions of competence could show similar variation. Recent research has estimated large differences (Cohen’s $d = 0.94–1.92$) in the skills and abilities of newly graduated doctors between the most and least popular training regions of the UK [39], apparently through the differential influence of selection. Students in UK schools differ in their performance both on knowledge tests [9], and long-term outcomes such as postgraduate examination pass rates [40]. This is important as prior research has suggested that assessors’ expectations of competence are influenced by the typical performance of the cohort of junior doctors with whom they work [8]. Consequently, if examiners conceptions of competence align to the normative performance of new doctors with whom they work, this could plausibly lead to variations in graduation-level expectations between examiners in different regions.

Practical implications

In practical terms, if replicated through further research, these findings could potentially pose some challenge to the equivalence of assessments. As the UK’s regulatory framework values equivalence, it would be desirable to reduce inter-institutional examiner variation. In broad terms, this could be achieved through examiner calibration/faculty development prior to OSCEs or through post hoc score adjustment after OSCEs. Generally, faculty development is considered preferable [41] as part of a general focus on OSCE quality. Despite this, prior research has generally found limited benefits to examiner training [42], although more recently [43], have shown moderate benefit from faculty development. Conversely, less research has considered the potential for score adjustment. Our recent (submitted, unpublished) research has shown that when the average standard of examiners in different locations varies by 10–20%, score adjustment using VESCA is likely to make 80—90% of students’ scores more accurate, although the remainder of students’ scores (10–20%) may become less accurate [24]. This work suggested that whilst score adjustments in similar scenarios will reduce overall error in the
assessment considerably, not all students’ scores will be made more accurate. Consequently, the preferred approach may be to focus on faculty development, monitor variation between locations as part of quality assurance, whilst reserving the right to adjust scores if sufficient variation between sites or locations occurs. Alternatively, in view of the limitations of adjusted scores, assessment committees may prefer to use them as a means to illustrate the impact of examiner variability even if they don’t wish to adopt them as the basis for assessment decisions. Whilst this position may seem prudent, it ignores the degree of error which is inherent in raw (unadjusted) scores such as we have demonstrated. VESCA appears to offer a useful method of comparing examiners’ judgements between locations, but (within the UK context) would require alignment of some or all stations between schools in order to be viable in practice.

Limitations

Our study has some limitations. Firstly, it was conducted in a formative setting. This may have affected both the level of preparation and effort students exerted, so their performances may have been submaximal. The study recruited a comparatively small volunteer sample of students and examiners in each school, who may therefore not have fully represented the wider populations from which they were drawn. The OSCE used a novel station format, which may have affected both students’ performances and examiners’ judgements. The marking format (GeCos) was not previously familiar to examiners in all schools prior to the study. This limitation was mitigated through video-based training for examiners (including practice scoring using the GeCos marking format) and on-line orientation for students. Whilst these limitations reduce the degree to which our findings implicitly generalise to the wider population, they are not expected to reduce the internal validity of our observations. We performed video-based training to align simulated patients in different schools, and whilst most aspects of the OSCE conduct were stipulated, we allowed small local variations to align with the context in each school. We can’t definitively exclude the possibility that these differences could have produced some degree of confounding, however, the observation that examiners scoring differed between schools on the controlled video-based comparisons makes this unlikely. The linear mixed model which we used to make score adjustments accounted for differences in the stringency of examiner-cohorts, but not differences in the spread of scores, which may have further enhanced the accuracy of modelling. Whilst recent work by [35] has modelled similar effects in other contexts, we note that this required a much larger dataset than we collected in order to produce reliable estimates and that these effects accounted for a smaller proportion of variance than examiner stringency. Nonetheless, future work could seek to model such effects between examiner-cohorts using either linear mixed modelling or three parameter item response theory.

Future research

Given the potential implications of our findings, we recommend that larger scale comparisons of examiners’ scoring of graduation level performances in a summative context should seek to determine the replicability of our findings.

Conclusion

Within this formative, voluntary multi-school OSCE, examiners’ scoring of the same OSCE performances varied between different schools by up to 16.3%. Whilst these findings warrant replication in larger summative contexts, they could have significant implications for the equivalence of graduation-level performance assessment within the UK. VESCA offered a useful method to compare examiners’ judgements between schools, which could either inform quality assurance and faculty development or potentially be used to adjust students’ scores.

Note

1. As the assessment scale ranged from a minimum of 6 to a maximum of 27 points (range = 27 – 6 = 21 points), percentages of absolute scores were calculated by subtracting 6 points, then dividing by 21, before multiplying the result by 100 (Percentage score = (score-6)/21 x 100). Percentage differences between numbers were calculated by simply dividing the difference between the two scores by 21 and multiplying by 100 (relative percentage = (score A – score B)/21 x 100).

Acknowledgements

We would like to thank all of the students, examiners and simulated patients who took part in the study; the assessment and clinical skills staff in each of the four participating schools for their work in the pragmatics of delivering the shared OSCE; and the IT and AV teams at the lead site for their work in facilitating the video filming and preparation for use in the study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Peter Yeates was funded through a National Institute for Health and Care Research (NIHR) Clinician Scientist award. The study constitutes independent research and does not represent the views of the NIHR, the NHS or the Department of Health and Social Care.

Notes on contributors

Peter Yeates, Keele University, School of Medicine, p.yeates@keele.ac.uk

Adriano Maluf, de Montford University, adriano.maluf@dmu.ac.uk

Gareth McCray, Keele University, School of Medicine. g.mccray@keele.ac.uk

Ruth Kinston, Keele University, School of Medicine. r.kinston@keele.ac.uk

Natalie Cope, Keele University, School of Medicine. n.a.cope@keele.ac.uk

Kathy Cullen, Queens University Belfast, School of Medicine, Dentistry and Biomedical Sciences k.cullen@qub.ac.uk

Vikki O’Neill, Queens University Belfast, School of Medicine, Dentistry and Biomedical Sciences Vikki vikki.oneill@qub.ac.uk
Data availability statement

Anonymous score data are available from the authors based on reasonable request.

References