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Probabilistic Tube-based Control Synthesis of Stochastic Multi-Agent

Systems under Signal Temporal Logic

Eleftherios E. Vlahakis1, Lars Lindemann2, Pantelis Sopasakis3 and Dimos V. Dimarogonas1

Abstract— We consider the control design of stochastic
discrete-time linear multi-agent systems (MASs) under a global
signal temporal logic (STL) specification to be satisfied at a
predefined probability. By decomposing the dynamics into de-
terministic and error components, we construct a probabilistic
reachable tube (PRT) as the Cartesian product of reachable
sets of the individual error systems driven by disturbances
lying in confidence regions (CRs) with a fixed probability. By
bounding the PRT probability with the specification probability,
we tighten all state constraints induced by the STL specification
by solving tractable optimization problems over segments of the
PRT, and relax the underlying stochastic problem with a de-
terministic one. This approach reduces conservatism compared
to tightening guided by the STL structure. Additionally, we
propose a recursively feasible algorithm to attack the resulting
problem by decomposing it into agent-level subproblems, which
are solved iteratively according to a scheduling policy. We
demonstrate our method on a ten-agent system, where existing
approaches are impractical.

I. INTRODUCTION

Multi-agent systems (MASs) can be found in many applic-

ations, such as robotics, autonomous vehicles, and cyber-

physical systems. When these systems are stochastic, the

formal specification of system properties can be formulated

probabilistically. As the complexity in control synthesis from

temporal logic under uncertainty grows with the dimension-

ality of the overall system, existing approaches typically

focus on single-agent [1] or non-stochastic [2], [3] systems.

In this paper, we focus on signal temporal logic (STL)

[4] to formally formulate and verify specifications for a

wide range of MASs. STL employs predicates coupled with

Boolean and temporal operators, allowing precise specific-

ation of complex spatio-temporal properties in a dynamical

system. In a deterministic setting, it is possible to design

sound and complete algorithms that guarantee STL satisfac-

tion [5], based on the quantitative semantics of STL [6].

Here, we consider stochastic MASs and a stochastic optimal

control problem, where the goal is to satisfy a multi-agent

STL specification with a predefined probability.

To address stochasticity in the STL framework, the works

in [7]–[9] propose risk constraints over predicates while pre-
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serving Boolean and temporal operators. Probabilistic STL in

[10] allows one to express uncertainty by incorporating ran-

dom variables into predicates, while [11] introduces chance-

constrained temporal logic for modeling uncertainty. Similar

approaches are found in [12], [13]. Top-down approaches

imposing chance constraints on the entire specification are

explored in [1], [14], [15]. Although important, these works

focus on low-dimensional systems and lack guidance on

extending to MASs [16]. A recent extension of [1] to

stochastic MASs under STL [17] considers only a single

joint task per agent and bounded distributions.

Here, we solve a stochastic optimal control problem of a

discrete-time linear MAS subject to additive stochastic per-

turbations and a global STL specification permitting multiple

individual and joint tasks per agent. First, we decompose

the multi-agent dynamics into a deterministic system and an

error closed-loop stochastic system, for which we construct

a probabilistic reachable tube (PRT) [18] as the Cartesian

product of reachable sets of individual error systems. These

are driven by stochastic disturbances lying in confidence

regions (CRs) with a fixed probability. By assuming in-

dependence among individual disturbances, we show that

the PRT probability can be controlled by the product of

probabilities selected for each individual CR and a union-

bound argument applied over time. Thus, by lower bounding

the PRT probability by the specification probability, we can

tighten all state constraints induced by the STL specification

by solving tractable optimization problems over segments of

the PRT. For multi-agent STL specifications, this is a less

conservative alternative to tightening approaches relying on

the STL structure [1], [17]. An attainable feasible solution

to the resulting deterministic problem can then be used

to synthesize multi-agent trajectories that satisfy the STL

specification with the desired confidence level. To the best

of the authors’ knowledge, this work is the first to address

stochastic MASs under STL utilizing PRTs. Subsequently, to

enhance scalability, we decompose the resulting deterministic

problem into agent-level subproblems, which are solved iter-

atively according to a scheduling policy. We show that this

iterative procedure is recursively feasible, ensures satisfac-

tion of local tasks, and guarantees nondecreasing robustness

for joint tasks.

The remainder of the paper is organized as follows.

Preliminaries and the control problem setup are in Sec. II.

The construction of PRTs, the constraint tightening and the

distributed control synthesis, are in Sec. III. An illustrative

numerical example is in Sec. IV, whereas concluding re-

marks are discussed in Sec. V.

http://arxiv.org/abs/2405.02827v2


II. PROBLEM SETUP

A. Notation and Preliminaries

The sets of real numbers and nonnegative integers are

IR and IN, respectively. Let N ∈ IN. Then, IN[0,N ] =
{0, 1, . . . , N}. Let x1, . . . , xn be vectors. Then, x =
(x1, . . . , xn) = [x⊺1 · · · x

⊺

n]
⊺. We denote by x(a : b) =

(x(a), . . . , x(b)) an aggregate vector consisting of x(t), t ∈
IN[a,b], representing a trajectory. When it is clear from the

context, we write x(t), omitting the endpoint. When x(t), t ∈
IN[a,b], are random vectors, x(a : b) = (x(a), . . . , x(b)) is a

random process. Let xi(t), for t ∈ IN[0,N ] and i ∈ IN[1,M ].

Then, x(0 : N) = (x(0), . . . , x(N)) denotes an aggregate

trajectory when x(t) = (x1(t), . . . , xM (t)), t ∈ IN[0,N ]. The

remainder of the division of a by b is mod(a, b). A random

variable (vector) w following a distribution Dw is denoted

as w ∼ Dw, the support of Dw is supp(Dw), the expected

value of w is E(w), and the variance (covariance matrix)

of w is Var(w) (Cov(w)). The probability of event Y is

Pr{Y }. The cardinality of a set V is |V|. The Minkowski

sum and the Pontryagin set difference of S1 ⊆ IRn and

S2 ⊆ IRn are S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2} and

S1⊖S2 = {s1 ∈ S1 | s1 + s2 ∈ S1, ∀s2 ∈ S2}, respectively.

Lemma 1 (Distributivity of Minkowski sum) Let Xi,Yi
⊆ IRni , i ∈ IN[1,M ]. Then, (X1 × · · · × XM ) ⊕ (Y1 × · · · ×
YM ) = (X1 ⊕ Y1)× · · · × (XM ⊕ YM ).

Proof: It holds that (X1 × . . . × XM ) ⊕ (Y1 × . . . ×
YM ) = {(x1, . . . , xM ) + (y1, . . . yM ) | ∀xi ∈ Xi, i ∈
IN[1,M ], and ∀yi ∈ Yi, i ∈ IN[1,M ]} = {(x1 + y1, . . . , xM +
yM ) | ∀xi ∈ Xi, yi ∈ Yi, i ∈ IN[1,M ]} = (X1 ⊕ Y1)× . . .×
(XM ⊕ YM ).

We consider STL formulas with standard syntax

ϕ := ⊤ | π | ¬φ | φ1 ∧ φ2 | φ1U[t1,t2]φ2, (1)

where π := (µ(x) ≥ 0) is a predicate, µ(x) := a⊺x + b is

an affine predicate function, with a ∈ IRnx , x ∈ IRnx , and

b ∈ IR, and φ, φ1, and φ2 are STL formulas, which are built

recursively using predicates π, logical operators ¬ and ∧,

and the until temporal operator U , with [t1, t2] ≡ IN[t1,t2].

We omit ∨ (or), ♦ (eventually) and � (always) operators

from (1) and the sequel, as these may be defined by (1),

e.g., φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2), ♦[t1,t2]φ = ⊤U[t1,t2]φ, and

�[t1,t2]φ = ¬♦[t1,t2]¬φ.

Let π be a predicate and φ an STL formula. We write

π ∈ φ to indicate that π is part of the formula φ. We denote

by x(t) |= φ, t ∈ IN, the satisfaction of φ, verified over

x(t) = (x(t), x(t+1), . . .). The validity of a formula φ can

be verified using Boolean semantics: x(t) |= π ⇔ µ(x(t)) ≥
0, x(t) |= ¬φ ⇔ ¬(x(t) |= φ), x(t) |= φ1 ∧ φ2 ⇔ x(t) |=
φ1 ∧ x(t) |= φ2, x(t) |= φ1U[a,b]φ2 ⇔ ∃τ ∈ t⊕ IN[a,b], s.t.

x(τ) |= φ2∧∀τ
′ ∈ IN[t,τ ],x(τ

′) |= φ1. Based on the Boolean

semantics, the horizon of a formula is recursively defined as

[4]: Nπ = 0, N¬φ = Nφ, Nφ1∧φ2 = max(Nφ1 , Nφ2),
Nφ1 U[a,b]φ2 = b +max(Nφ1 , Nφ2).

STL is endowed with quantitative semantics [6]: A

scalar-valued function ρφ : IRn × · · · × IRn → IR

of a signal indicates how robustly a signal x(t) satis-

fies a formula φ. The robustness function is defined re-

cursively as follows: ρπ(x(t)) = µ(x(t)), ρ¬φ(x(t)) =
−ρφ(x(t)), ρφ1∧φ2(x(t)) = min(ρφ1(x(t)), ρφ2(x(t))), and

ρφ1U[a,b]φ2(x(t)) = maxτ∈t⊕IN[a,b]
(min(Y1(τ), Y2(τ

′))),

with Y1(τ) = ρφ1(x(τ)), Y2(τ
′) = minτ ′∈IN[t,τ]

ρφ2(x(τ ′)),
π being a predicate, and φ, φ1, and φ2 being STL formulas.

Definition 1 Let G = (V , E) be an undirected graph con-

taining no self-loops, with node set V , cardinality M = |V|,
and edge set E . Let also V ′ ⊆ V , with |V ′| > 1, and define

EV′ ⊆ E as the set of edges attached to nodes V ′. Then,

G′ = (V ′, EV′) is a clique [19], i.e., a complete subgraph

of G, if EV′ contains all possible edges between nodes V ′.

The set of cliques of G is defined as K = {ν ⊆ V |
(ν, Eν) is a complete subgraph of G}.

Consider a graph G = (V , E) with clique set K, a clique

ν ∈ K, with ν = (i1, . . . , i|ν|), and vectors xij (t), j ∈
IN[1,|ν|], with t ∈ IN, Then, xν(t) = (xi1 (t), . . . , xi|ν|

(t)) is

an aggregate vector. We denote by xν(t) |= φν the validity

of an STL formula defined over the aggregate trajectory

xν(t) = (xν(t), xν (t+1), . . .). If πν ∈ φν , πν := (µν(xν) ≥
0), where µν(xν) is an affine predicate function of xν , with

xν = (xi1 , . . . , xi|ν|
).

B. Multi-agent system

1) Dynamics: We consider M agents with dynamics

xi(t+ 1) = Aixi(t) +Biui(t) + wi(t), (2)

where xi(t) ∈ Xi ⊆ IRni , ui ∈ Ui ⊆ IRmi , and wi(t) ∈
Wi ⊆ IRni are the state, input and disturbance vectors,

respectively, the initial condition, xi(0), is known, (Ai, Bi)
is a stabilizable pair, with Ai ∈ IRni×ni , Bi ∈ IRni×mi ,

i ∈ IN[1,M ], and t ∈ IN. By collecting individual state, input,

and disturbance vectors, as x(t) = (x1(t), . . . , xM (t)) ∈
X ⊆ IRn, u(t) = (u1(t), . . . , uM (t)) ∈ U ⊆ IRm, and

w(t) = (w1(t), . . . , wM (t)) ∈ W ⊆ IRn, respectively, we

write the dynamics of the entire MAS as

x(t+ 1) = Ax(t) +Bu(t) + w(t), (3)

where A = diag(A1, . . . , AM ), B = diag(B1, . . . , BM ),
and the state, input, and disturbance sets are X = X1 ×
· · · × XM , U = U1 × · · · × UM , and W =W1 × · · · ×WM ,

respectively.

2) Disturbance: We assume that the uncertain sequence

wi(0) = (wi(0), wi(1), . . .), with i ∈ IN[1,M ], is an in-

dependent and identically distributed random process, and

that wi(t) is a random vector with mean E(wi(t)) = 0
and positive definite covariance matrix Cov(wi(t)) = Qi,
which is known, for all t ∈ IN. We also assume that wi(t),
i ∈ IN[1,M ], are independent for t ∈ IN. We denote by Dwi

the distribution of the disturbance wi(t) ∈ Wi, where Wi is

its support, which may be unbounded. We also may write

that w(t) ∼ Dw, with supp(Dw) = W = W1 × · · · × WM ,

E(w(t)) = 0, Cov(w(t)) = diag(Q1, . . . , QM ) = Q.



3) STL specification: Let V = {1, . . . ,M} be the set

collecting the indices of all agents. The MAS is subject to

a conjunctive STL formula φ with syntax as in (1), where

each conjunct is either a local subformula φi involving agent

i ∈ V , or a joint subformula φν involving a subset of agents

ν ⊆ V , where ν is a clique. By collecting all cliques ν in

Kφ, the global STL task is

φ =
∧

i∈V

φi ∧
∧

ν∈Kφ

φν . (4)

The structure of φ in (4) induces an interaction graph G =
(V , E), where V is the set of nodes, and E = {(νi, νj) |
νi, νj ∈ ν, i 6= j, ν ∈ Kφ} is the set of edges. Let π :=
(µ(y) ≥ 0) be a predicate in φ, where µ(y) = a⊺y + b,
with a, y ∈ IRny and b ∈ IR. The vector y ∈ IRny represents

either an individual state vector, xi ∈ IRni , i ∈ IN[1,M ], or an

aggregate vector, xν ∈ IRnν , collecting the states of agents

in the clique ν ∈ Kφ. Formula φ can specify tasks between

subsets of agents, by representing their entirety as cliques.

C. Problem statement

We wish to solve the stochastic optimal control problem

Min.
u(0),
x(0)

E

[

M
∑

i=1

(

N−1
∑

t=0

(ℓi(xi(t), ui(t))) + Vf,i(xi(N))
)

]

(5a)

s.t. x(t + 1) = Ax(t) +Bu(t) + w(t), t ∈ IN[0,N), (5b)

Pr{x(0) |= φ} ≥ θ, with x(0) = x0, (5c)

where ℓi : IRni × IRmi → IR, Vf,i : IRni → IR, the

optimization variables are u(0) = (u(0), . . . , u(N − 1)),
x(0) = (x(0), . . . , x(N)), φ is a multi-agent STL formula,

with structure as in (4) and syntax as in (1), to be satisfied

by x(0) with a probability θ ∈ (0, 1), x0 is a known initial

condition of the MAS, and N is the horizon of φ. Solving

the problem directly is challenging due to the probabilistic

constraint, the expectation operator in the cost function, and

uncertain dynamics. To handle complexity, especially for a

large number of agents and complex φ, we relax it with a

deterministic problem, which subsequently, we decompose

into smaller agent-level subproblems. Additionally, we make

the following assumption.

Assumption 1 For x(0) = x0 and given θ ∈ (0, 1), Problem

(5) is feasible.

III. MAIN RESULTS

A. Error dynamics and construction of probabilistic tubes

Due to the linearity in (2), the state of each agent can

be decomposed into a deterministic part, zi(t), and an error,

ei(t), i.e., xi(t) = zi(t) + ei(t). Consider the causal control

law ui(t) = Kiei(t) + vi(t), where Ki ∈ IRmi×ni is a

stabilizing state-feedback gain for the pair (Ai, Bi). Then,

zi(t+ 1) = Aizi(t) +Bivi(t), (6a)

ei(t+ 1) = Āiei(t) + wi(t), (6b)

where zi(0) = xi(0), ei(0) = 0, and Āi = Ai + BiKi.

The above choice of ui(t) will allow us to control the

size of the reachable sets of (6b), in light of the probab-

ilistic constraint in (5c). Define now the aggregate vectors

z(t) = (z1(t), . . . , zM (t)), e(t) = (e1(t), . . . , eM (t)), and

v(t) = (v1(t), . . . , vM (t)), the block-diagonal state-feedback

gain K = diag(K1, . . . ,KM ) ∈ IRm×n, and the block-

diagonal closed-loop matrix Ā = diag(Ā1, . . . , ĀM ). Then,

we decompose (3) into

z(t+ 1) = Az(t) +Bv(t), (7a)

e(t+ 1) = Āe(t) + w(t). (7b)

Given a particular state feedback gain K , the error system

(7b) can be analyzed independently of (7a). As a closed-loop

system driven by the random vector w(t), we can predict

its trajectory e(0) = (e(0), . . . , e(N)), with e(0) = 0, by

calculating its reachable sets probabilistically. Probabilistic

reachable sets and tubes for system (7b) are defined next.

Definition 2 A set E(t) ⊆ IRn, t ∈ IN[0,N ], is called a t-step

probabilistic reachable set (t-PRS) for (7b) at probability

level θ̂t ∈ [0, 1], if Pr{e(t) ∈ E(t) | e(0) = 0} ≥ θ̂t.

It is worth noting that for a probability level θ̂t a t-PRS E(t),
t ∈ IN[0,N ], for (7b) is not unique.

Definition 3 Let e(0) = (e(0), . . . , e(N)) be a trajectory of

(7b). Then, E ⊆ IRn × · · · × IRn is called a probabilistic

reachable tube (PRT) for (7b) at probability level Θ ∈ [0, 1],
if Pr{e(0) ∈ E} ≥ Θ.

Definition 4 Let w ∼ Dw, with supp(Dw) = W . We call

Eθ(Dw) ⊆ W a confidence region (CR) for w ∈ W at

probability level θ, if Pr{w ∈ Eθ(Dw)} ≥ θ.

CRs for wi(t), i ∈ IN[1,M ], can be approximated via Monte

Carlo methods or computed analytically using concentration

inequalities depending on the properties of Dw. Here, since

E(wi(t)) = 0 and Cov(wi(t)) = Qi > 0, for t ∈ IN and

i ∈ IN[1,M ], we construct ellipsoidal CRs at probability level

θi as Eθi(Dwi
) = {wi ∈ IRni | w⊺

i Q
−1
i wi ≤ ni/θi}, by the

multivariate Chebyshev’s inequality. Next, we construct a CR

for the aggregate random vector w(t) = (w1(t), . . . , wM (t)).

Lemma 2 Let Eθi(Dwi
) be a CR for wi(t) ∈ Wi, i ∈

IN[1,M ], at probability level θi, for all t ∈ IN. Then,

E
θ̂
(Dw) = Eθ1(Dw1)× · · · × EθM (DwM

), is a CR of w(t) ∈

W at probability level θ̂ for all t ∈ IN, where θ̂ ≥ ΠMi=1θi.

Proof: Without loss of generality let M = 2. Then,

Pr{w(t) ∈ E
θ̂
(Dw)} ≥ Pr{(w1(t) ∈ Eθ1(Dw1)) ∧

(w2(t) ∈ Eθ2(Dw2))} = Pr{w1(t) ∈ Eθ1(Dw1)}Pr{w2(t) ∈
Eθ2(Dw2)} ≥ θ1θ2, which is true due to independence of

w1(t), w2(t), for all t ∈ IN.

Based on the CR construction of the disturbance w(t), we

construct t-PRSs at certain probability levels for the multi-

agent error system (7b) as follows.



Proposition 1 Let E
θ̂
(Dw) = Eθ1(Dw1)× · · · × EθM (DwM

)
be a CR for w(t), where Eθi(Dwi

) is an ellipsoidal CR for

wi(t) at probability level θi, i ∈ IN[1,M ]. Then, the sets

E(t) ⊆ IRn, t ∈ IN[0,N ], which are recursively defined as

E(t+1) = ĀE(t)⊕E
θ̂
(Dw), with E(0) = {0}× · · · × {0},

are t-PRSs for (7b) at probability level θ̂ ≥ ΠMi=1θi, and

E(t) = E1(t)× · · · × EM (t), t ∈ IN[0,N ], where Ei(t) is a

t-PRS for (6b) at probability level θi, with i ∈ IN[1,M ].

Proof: Since E(0) = {0} × · · · × {0}, we may write

E(0) = E1(0)×· · ·×EM (0), with Ei(0) = {0}, i ∈ IN[1,M ],

from which we compute E(1) = ĀE(0) ⊕ E
θ̂
(Dw) =

(diag(Ā1, . . . , ĀM )E1(0)×· · ·×EM (0))⊕(Eθ1(Dw1)×· · ·×
EθM (DwM

)) = (Ā1E1(0)×· · ·×ĀMEM (0))⊕(Eθ1(Dw1)×
· · · × EθM (DwM

)), which from Lemma 1 results in E(1) =
Ā1E1(0)⊕ Eθ1(Dw1)× · · · × ĀMEM (0)⊕ EθM (DwM

), that

is, E(1) = E1(1)× · · · × EM (1), with Ei(1) = ĀiEi(0)⊕
Eθi(Dwi

), i ∈ IN[1,M ]. Following the recursion, one can

show that Ei(t+1) = ĀiEi(t)⊕Eθi(Dwi
), for t ∈ IN[0,N−1],

and E(t) = E1(t)× · · · × EM (t), for t ∈ IN[0,N ].

Let now Dei(t) be the distribution of ei(t), and Eθi(Dei(t))
be a CR for ei(t) at probability θi. Since, Eθi(Dei(0)) ⊆
Ei(0) = {0}, we have ĀiEθi(De(0)) ⊕ Eθi(Dwi

) ⊆
ĀiEi(0) ⊕ Eθi(Dwi

) = Ei(1), so Eθi(Dei(1)) ⊆ Ei(1), as

Eθi(Dei(t+1)) ⊆ ĀiEθi(Dei(t)) ⊕ Eθi(Dwi
) for all t ∈ IN,

since Eθi(Dwi
) is an ellipsoidal region by [18, Cor. 4].

Inductively we show that Eθi(Dei(t)) ⊆ Ei(t), i ∈ IN[1,M ],

for all t ∈ IN. The latter implies that Pr{ei(t) ∈ Ei(t)} ≥ θi,
i ∈ IN[1,M ], from which we have Pr{e(t) ∈ E(t)} =
Pr{(e1(t) ∈ E1(t))∧· · ·∧(eM (t) ∈ EM (t))} = Pr{(e1(t) ∈
E1(t))} · · ·Pr{(eM (t) ∈ EM (t))} ≥ θ1θ2 · · · θM , which

follows from the independence of Ei(t), i ∈ IN[1,M ].

Prop. 1 leads to the following PRT result.

Theorem 1 Let E
θ̂
(Dw) = Eθ1(Dw1) × · · · × EθM (DwM

)
be a CR for w(t), and define t-PRSs, E(t), t ∈ IN[0,N ] for

system (7b) at probability level θ̂ ≥ ΠMi=1θi, where θi is the

confidence level of the region Eθi(Dwi
), i ∈ IN[1,M ], as in

Prop. 1. Then, i) Ei = Ei(0) × · · · × Ei(N) is a PRT for

(6b) at probability level Θi ≥ 1 −N(1 − θi), where Ei(t),
t ∈ IN[0,N ], is a t-PRS for (6b) at probability level θi. ii)

E = E(0) × · · · × E(N) is a PRT for (7b) at probability

level Θ = ΠMi=1Θi. iii) Let eν(t + 1) = Āνeν(t) + wν(t)
be the aggregate system collecting individual error systems

from the clique ν ∈ Kφ, where ν = (i1, . . . , i|ν|), eν(t) =
(ei1(t), . . . , ei|ν|

(t)), wν(t) = (wi1 (t), . . . , wi|ν|
(t)), and

Āν = diag(Āi1 , . . . , Āi|ν|
), and let Eν(t) = Ei1(t) × · · · ×

Ei|ν|
(t), t ∈ IN[0,N ], be its t-PRSs, with Eij (t), being t-PRS

for (6b) at probability level θij , with j ∈ IN[1,|ν|]. Then,

Eν = Eν(0) × · · · × Eν(N) is a PRT at probability level

Θ = Π
|ν|
j=1Θij .

Proof: i) From Prop. 1, we have that

E(t) = E1(t)×· · ·×EM (t), where Ei(t) is a t-PRS for (6b)

at probability level θi. Let ei(0) = (ei(0), . . . , ei(N)) be

a trajectory of (6b). Then, Pr{ei(0) ∈ Ei} = Pr{(ei(0) ∈
Ei(0)) ∧ · · · ∧ (ei(N) ∈ Ei(N))} = 1 − Pr{(ei(0) /∈

Ei(0)) ∨ · · · ∨ (ei(N) /∈ Ei(N))} ≥ 1 −
∑N

t=0 Pr{ei(t) /∈
Ei(t)} = 1 − N(1 − θi), where we use Boole’s inequality,

that Ei(t), t ∈ IN[0,N ], is a t-PRS at probability level θi,
and Pr(ei(0) /∈ Ei(0)} = 0. ii) It holds that Pr{e(0) ∈
E} = Pr{((e1(0) ∈ E1(0)) ∧ · · · ∧ (eM (0) ∈ EM (0))) ∧
· · · ∧ ((e1(N) ∈ E1(N)) ∧ · · · ∧ (eM (N) ∈ EM (N)))} =
Pr{((e1(0) ∈ E1(0)) ∧ · · · ∧ (e1(N) ∈ E1(N))) ∧ · · · ∧
((eM (0) ∈ EM (0)) ∧ · · · ∧ (eM (N) ∈ EM (N)))}, which is

Pr{(e1(0) ∈ E1) ∧ · · · ∧ (eM (0) ∈ EM )} = Pr{e1(0) ∈
E1} · · ·Pr{eM (0) ∈ EM} = ΠMi=1Θi, by the independence

of the PRTs Ei, i ∈ IN[1,M ]. iii) By setting M = |ν| the

result follows from Prop. 1 and item ii) herein.

Remark 1 Note that our PRT construction reduces conser-

vatism for a large number of agents, while utilizing the

union-bound argument only over time. This may require

conservative choices for the probability levels, θi, for the

CRs of wi(t), i ∈ IN[1,M ], for large horizons. To construct,

e.g., a PRT for (7b) at probability level Θ, one may select

uniform probability levels for the CRs as θi ≥ 1 − 1−Θ
1
M

N
,

where θi → 1 for large N , regardless of Θ.

B. Constraint tightening

We aim to design a trajectory for the deterministic system

(7a) that satisfies an STL formula derived from φ, incorpor-

ating tighter predicates. The following proposition underpins

this approach.

Proposition 2 Let x(0) = z(0) + e(0), with x(0) =
(x(0), . . . , x(N)), z(0) = (z(0), . . . , z(N)) and e(0) =
(e(0), . . . , e(N)). Suppose that Pr{e(0) ∈ E} ≥ θ, for

some E = E(0)× · · · × E(N), with E(t) ⊆ IRn, t ∈ IN. If

z(0)+e(0) |= φ for all e(0) ∈ E, then Pr{x(0) |= φ} ≥ θ.

Proof: Define events Yx := x(0) |= φ, Ye :=
e(0) ∈ E, and Y ′

e := e(0) /∈ E. From the law of

total probability, we have Pr{Yx} = Pr{Yx|Ye}Pr{Ye} +
Pr{Yx|Y

′
e}Pr{Y

′
e} ≥ θ, since by assumption, Pr{Yx|Ye} =

1 and Pr{Ye} ≥ θ, and Pr{Yx|Y
′
e}Pr{Y

′
e} ≥ 0.

Let E be a PRT for (7b) at probability level Θ. Next,

we construct a formula ψ such that z(0) |= ψ implies that

z(0)+e(0) |= φ, for all e(0) ∈ E, that is, Pr{x(0) |= φ} ≥
θ, by Prop. 2. Formula ψ has identical Boolean and temporal

operators with φ in (4), and retains its multi-agent structure:

ψ =
∧

i∈V

ψi ∧
∧

ν∈Kφ

ψν . (8)

Let π := (a⊺y + b ≥ 0) be a predicate, with a, y ∈ IRny ,

b ∈ IR. We denote by τ(π) the tighter version of π, where

τ(π) ∈ ψ if π ∈ φ, and ¬τ(π) ∈ ψ if ¬π ∈ φ, with

τ(π) := (a⊺y + b+min
g∈G

a⊺g ≥ 0), if τ(π) ∈ ψ, (9a)

τ(π) := (a⊺y + b+max
g∈G

a⊺g ≥ 0), if ¬τ(π) ∈ ψ. (9b)

Here, G =
⋃N

t=1 Ei(t) if y = xi(t), for some i ∈ V ,

or G =
⋃N

t=1Eν(t) if y = xν(t) for some ν ∈ Kφ.

We remark that the optimizations in (9) are tractable since



the domain G is the union of finitely many convex and

compact sets by the construction of t-PRSs, Ei(t), Eν(t),
t ∈ IN[1,N ], in Prop. 1 and Thm. 1. Practically, the tightening

in (9) can be retrieved by solving a convex optimization

by taking the convex hull of G, or, better, by solving N
convex optimization problems, one for every Ei(t), Eν(t),
t ∈ IN[1,N ], and selecting the worst-case (minimum for (9a)

and maximum for (9b)) solution among them. We are now

ready to state the following result.

Theorem 2 Let ψ be the STL formula resulting from φ
according to (8)-(9), and assume that the deterministic

problem:

Minim.
v(0),
z(0)

M
∑

i=1

(

N−1
∑

t=0

(ℓi(zi(t), vi(t))) + Vf,i(zi(N))

)

(10a)

s.t. z(t+ 1) = Az(t) +Bv(t), t ∈ IN[0,N), (10b)

z(0) |= ψ, with z(0) = x0, (10c)

has a feasible solution v(0) = (v(0), . . . , v(N − 1)), with

v(t) ∈ U ⊖KE(t), t ∈ IN[0,N−1], where K is a stabilising

gain for (A,B) in (7b), and E(t) = E1(t) × · · · × EM (t),
Ei(t), i ∈ IN[1,M ], being t-PRS for (6b), at probability

level θi, such that ΠMi=1 (1−N(1− θi)) ≥ θ. Let e(0) =
(e(0), . . . , e(N)) be a trajectory of (7b). Then, u(0) =
diag(K, . . . ,K)e(0) + v(0) is a feasible solution for (5).

Proof: By Thm. 1, E = E(0)× · · · ×E(N) is a PRT

for (7b) at probability level Θ ≥ θ, that is, Pr{e(0) ∈ E} ≥
θ. Let z(0) |= ψ be a trajectory resulting from the input

trajectory v(0) starting from z(0) = x0. By the tightening in

(9), we have that for all π ∈ φ and τ(π) ∈ ψ, if z(0) |= τ(π),
then z(0) + e(0) |= π ∀e(0) ∈ E, and for all ¬π′ ∈ φ
and ¬τ(π′) ∈ ψ, if z(0) |= ¬τ(π′), then z(0) + e(0) |=
¬π′ ∀e(0) ∈ E. Since φ and ψ differ only in predicates, it

follows that if z(0) |= ψ, then z(0)+ e(0) |= φ ∀e(0) ∈ E.

Since u(0) = diag(K, . . . ,K)e(0)+v(0) is a feasible input

trajectory for (3) ∀e(0) ∈ E, the resulting state trajectory of

(3), x(0) = z(0)+e(0), ensures that x(0) |= φ ∀e(0) ∈ E.

The result follows by Prop. 2 since Pr{e(0) ∈ E} ≥ θ.

The gain K affects the feasible domain of (10) and the

volume of E. Its construction will be addressed in future

work. By selecting ‖ · ‖1-based costs, problem (10) can

be formulated as a mixed-integer linear program (MILP)

[5]. Next, we decompose (10) into individual agent-level

problems to address its complexity.

C. Distributed control synthesis

We propose an iterative procedure that handles the com-

plexity of (10). First, we assume the following.

Assumption 2 The optimization (10) has a feasible solution

v(0) = (v(0), . . . , v(N − 1)), z(0) = (z(0), . . . , z(N)),
where v(t) ∈ U ⊖ KE(t), t ∈ IN[0,N), with the gain K
and the t-PRSs E(t), t ∈ IN[0,N ], being as in Thm. 2.

1) Decomposition of STL formula ψ: For a node i parti-

cipating in at least one clique, i.e., i ∈ ν, with ν ∈ Kφ, we

define Ti by the set of cliques containing i excluding i, i.e.,

Ti = {ν \ i : ν ∈ cl(i)}, (11)

where cl(i) = {ν ∈ Kφ, ν ∋ i} is the set of cliques

that contain i. Let j ∈ Ti, with j = (i1, . . . , i|j|). Let a

trajectory zij(0) = (zij(0), . . . , zij(N)), where zij(t) =
(zi1(t), . . . , zi(t), . . . , zi|j| (t)), with t ∈ IN[0,N ], and the

order i1 < . . . < i < . . . < i|j| being specified by the

lexicographic ordering of the node set V = IN[1,M ]. Using

(11), an equivalent formula to the tighter formula (8)-(9), ψ,

is defined as ψ̂ =
∧

i∈V ψ̂i, where

ψ̂i = ψi ∧
∧

j∈Ti

ψij . (12)

2) Iterative algorithm: For simplicity, we drop the time

argument and introduce an iteration index as a superscript

in the trajectory notation, e.g., zki (zkij) indicates a trajectory

zi(0) (zij(0)) that is retrieved at the kth iteration of the

following procedure. To initialize the procedure, we generate

initial guesses on the agents’ trajectories by solving

Minimize
v
0
i ,z

0
i

N−1
∑

t=0

(ℓi(z
0
i (t), v

0
i (t))) + Vf,i(z

0
i (N)) (13a)

s.t. z0i (t+ 1) = Aiz
0
i (t) +Biv

0
i (t), t ∈ IN[0,N), (13b)

z
0
i |= ψi, with z

0
i (0) = x0,i, (13c)

at k = 0 for i ∈ IN[1,M ]. After solving problem (13), which

is feasible by Assumption 2, at iteration k ≥ 1, only a

subset of agents, denoted by Ok⊂V , are allowed to update

their input sequences by performing an optimization. The

remaining agents retrieve their input sequences from the

previous iteration k − 1 ≥ 0. Roughly, the set Ok ⊂ V
is constructed so that any combination of its elements does

not belong to a clique ν ∈ Kφ. Due to space limitations,

we simply construct Ok as a singleton, which only affects

the number of agents’ trajectories that can be optimized

in parallel per iteration. For the graph G = (V , E), with

V = IN[1,M ], Ok = mod(Ok−1,M) + 1, for k > 1, with

O1 = 1. We refer readers to [20, Sec. V.B] for a more

efficient construction of Ok enabling parallel computations

at each iteration (see Sec. IV for a numerical example).

At the kth iteration, with k ≥ 1, if i /∈ Ok, then, zki =
z
k−1
i and v

k
i = v

k−1
i . Otherwise, the input sequence of the

ith agent is updated by solving

Minim.
v
k
i ,z

k
i

N−1
∑

t=0

(ℓi(z
k
i (t), v

k
i (t))) + Vf,i(z

k
i (N))− µkijk (14a)

s.t. zki (t+ 1) = Aiz
k
i (t) +Biv

k
i (t), t ∈ IN[0,N), (14b)

z
k
i |= ψi, with zi(0) = x0,i, (14c)

ρψijk (zkijk ) ≥ µ
k
ijk
, jk = argmin

j∈Ti

{ρψij(zk−1
ij )}, (14d)

µkijk ≥ min
(

0, ρψijk (zk−1
ijk

)
)

, (14e)

ρψij (zkij) ≥ min
(

0, ρψij (zk−1
ij )

)

, ∀j ∈ Ti \ jk, (14f)



where ρψij (zkij) is the robustness function of the formula

ψij evaluated over the trajectory z
k
ij . Agent-i, with i ∈ Ok,

by solving (14), retrieves an input sequence that guarantees

1) the satisfaction of the individual task ψi (see constraint

(14c)), 2) the improvement of the most violating (or least

robust) joint task ψijk (see constraints (14d)-(14e)), and 3)

either improvement on or non-violation of the remaining

joint tasks (see constraint (14f)). The inclusion of the min
operator in the constraints (14e)-(14f) relaxes the satisfaction

of joint tasks that have already been found to be satisfiable in

previous iterations. This allows the algorithm to emphasize

the satisfaction of joint tasks with the smallest robustness

function. The algorithm may terminate if it exceeds a max-

imum number of iterations, denoted as kmax and defined by

the designer, yielding a minimally violating solution. Altern-

atively, termination occurs when verifying the satisfiability

of all joint tasks, i.e., when µkij ≥ 0 for all i ∈ V , j ∈ Ti,
and some k ≤ kmax, returning a feasible solution to (10).

The overall iterative procedure is summarized in Alg. 1, the

integrity of which relies on the following result.

Theorem 3 At each iteration k ≥ 1, the optimization

problem (14) is feasible for all i ∈ Ok.

Proof: Let k = 1. The lower bounds in (14d)-(14f) are

defined over trajectories, z0
i , i∈O1, obtained by solving (13)

at k=0. Thus z
0
i satisfies the constraints in (14d)-(14f) for

all i∈O1 ⊂ V . Moreover, the constraint in (14c) is satisfied

by z
0
i , since (13) is feasible. Hence, u1

i = u
0
i is a feasible

solution of (14) at iteration k = 1. Now, let k>1. The lower

bounds in (14d)-(14f) are defined over trajectories, z
k−1
i ,

obtained by the solutions u
k−1
i , i∈Ok, at iteration k − 1.

Thus, z
k−1
i , i∈Ok, satisfy the constraints in (14d)-(14f).

Additionally, the constraint in (14c) is satisfied by z
k−1
i ,

i ∈ Ok, since it is retrieved by u
k−1
i , which is obtained

by solving (14) or (13) at some iteration κ ≤ k − 1. Thus,

u
k
i=u

k−1
i is a feasible solution of (14) for all k ≥ 1.

Algorithm 1 Iterative procedure for solving (10)

1: Compute Ti (11) and construct ψ̂i (12), for i ∈ IN[1,M ]

2: Solve (13) and store v
0
i , z0

i , for i ∈ IN[1,M ]

3: Construct Ok, for k ∈ IN[1,kmax]

4: for k in 1 : kmax do

5: for i in 1 :M do

6: if i ∈ Ok, solve (14), and store (vki , z
k
i )

7: if i /∈ Ok, update v
k
i ← v

k−1
i and z

k
i ← z

k−1
i

8: Construct (v(0), z(0)) from (vki , z
k
i ), i ∈ IN[1,M ]

9: if ρψ(z(0)) ≥ 0 go to 10

10: return (v(0), z(0))

IV. EXAMPLE

We consider ten agents with aggregate dynamics given

by x(t + 1) = x(t) + u(t) + w(t), where x(t) =
(x1(t), ..., x10(t)) ∈ IR20, u(t) = (u1(t), ..., u10(t)) ∈ IR20,

and w(t) = (w1(t), ..., w10(t)) ∈ IR20. States xi(t) ∈ X ,

2 3 4 7 8 10

1 5 6 9

φ123

φ34

φ15 φ56

φ47 φ78

φ 6
8

φ69

φ8 10

φ 9
10

φ
4
5

Fig. 1: The ten agents of the MAS and the cliques Kφ in φ.

where X is the workspace confined by the dashed border

in Fig. 2. Individual inputs are constrained by ‖ui(t)‖∞ ≤
0.8, and disturbances, wi(t), are Gaussian random vectors,

independent time- and agent-wise, with zero mean and

covariance, Qi = 0.05I2, for all t ∈ IN and i ∈ IN[1,10]. The

MAS is assigned a specification φ =
∧10
i=1 φi ∧

∧

ν∈Kφ
φν ,

with horizon N = 100, where Kφ is the set of cliques

shown in Fig. 1, and φi, φν , are tasks assigned to agent

i, and the agents in ν ∈ Kφ, respectively. In (5), we

select ℓi(xi(t), ui(t)) = ‖ui(t)‖1, Vf,i(xi(100)) = 0, for

all i ∈ IN[1,10], and set θ = 0.70.

Let φi =
(

�[0,100](ϕ
X
i ∧ ¬ϕ

O1

i ∧ ¬ϕ
O2

i ∧ ¬ϕ
O3

i )
)

∧
(

♦[10,50]ϕ
Ti

i

)

∧
(

♦[70,100]ϕ
Gi

i

)

be an individual task, which

requires agent-i, starting from xi(0) to pass through Ti and

Gi within the intervals IN[10,50] and IN[70,100], respectively,

while always staying within X and avoiding O1, O2, O3.

Regions Ti, Gi, i ∈ IN[1,10], and obstacles O1, O2, O3,

are in Fig. 2. Note that xi(t) |= ϕY
i if xi(t) ∈ Y , Y =

{X , O1, O2, O3, T1, . . . , T10, G1, . . . , G10}, for t ∈ IN[0,100].

Let φν = ♦[0,100] (‖Cνxν(t)‖∞ ≤ 1), where Cν = [I −I]

if |ν| = 2 or Cν =
[

I −I 0
0 I −I

I 0 −I

]

if |ν| = 3, be a joint task

requiring agents in ν ∈ Kφ (see Fig. 1) to approach one

another at least once within the horizon.

To formulate the deterministic problem (10), we proceed

as follows: First, we select closed-loop matrices Āi =
I2 + Ki, with Ki = −0.5I2, i ∈ IN[1,10], and construct

t-PRSs, Ei(t), t ∈ IN[0,100], for (6b), by the recursion

Ei(t + 1) = ĀiEi(t) ⊕ Eθi(Dwi
), with Ei(0) = {0}, at

probability levels θi = 1 − 1−0.7
1
10

100 = 0.9996, i ∈ IN[1,10],

such that Π10
i=1 (1− 100(1− θi)) ≥ 0.7, and Eθi(Dwi

) =
{wi|w

⊺

i Q
−1
i wi ≤ χ

2
2(θi)}, where χ2

2 is the chi-squared distri-

bution of degree 2. Last, given that E = E(0)×· · ·×E(100),
with E(t) = E1(t)×· · ·×E10(t), t ∈ IN[0,100], is a PRT for

(7b) at probability level Θ = 0.7, by Thm. 1, we perform

the optimizations in (9), derive the tighter formula ψ as in

(8), and formulate (10) as an MILP. We have attempted to

solve (10) in a centralized manner using the GUROBI solver

[21], which produces a solution after running for 2.5 hours,

with its feasibility iteration limit set to a maximum of ten.

To obtain a solution faster, we first decompose ψ according

to (12), based on the sets T1 = {(2, 3), 5}, T2 = {(1, 3)},
T3 = {(1, 2), 4}, T4 = {3, 5}, T5 = {1, 4, 6}, T6 = {5, 8, 9},
T7 = {4, 8}, T8 = {6, 7, 10}, T9 = {6, 10}, and T10 =
{8, 9}. By selecting sets Ok, k ≥ 1, as O1 = {1, 4, 6, 10},
O2 = {3, 5, 7, 9}, O3 = {8, 9, 2, 5}, O4 = O1, O5 = O2,

O6 = O3, O7 = O1, and so on, we run Alg. 1, which



terminates in less than six minutes returning a multi-agent

trajectory, illustrated in Fig. 2, that satisfies the global STL

task ψ. Fig. 3 shows the computational overhead of Alg. 1 vs.

the centralized solution for varying agent numbers, using a

log scale to highlight the different runtime magnitudes. Note

that the runtime of Alg. 1 can further be improved if agent-

level subproblems, (13), (14), can be solved in parallel. By

evaluating the robustness function of φ for numerous noisy

realizations, we see that φ is violated in less than 30% of

the time, verifying Thm. 2.
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Fig. 2: Nominal trajectories (solid lines) by Alg. 1, with

initial states marked by crosses. Tubes (transparent covers)

around trajectories, at probability levels Θi = 0.965.
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Fig. 3: Compute times (log scale) for solving (10) via Alg.

1 and a centralized approach for varying agent numbers.

V. CONCLUSION

We have considered stochastic linear multi-agent systems

under STL specifications formulated probabilistically. Lever-

aging linearity, we construct a PRT at the specification

probability level and relax the underlying stochastic control

problem with a deterministic one with tighter constraints.

Our PRT-based tightening reduces conservatism compared

to approaches relying on the STL specification structure.

To enhance scalability, we propose an algorithm, where the

multi-agent problem is decomposed into agent-level subprob-

lems that can be solved iteratively. Although our method

fits large-scale MAS settings, the conservatism introduced

by the construction of PRTs increases with the specification

horizon. Future work will address this via efficient, data-

driven approaches, avoiding union-bound arguments.
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geneous multi-agent systems under signal temporal logic specifications
with integral predicates,” IEEE Rob. and Autom. Letters, vol. 6, no. 2,
pp. 1375–1382, 2021.

[4] O. Maler and D. Nickovic, “Monitoring Temporal Properties of
Continuous Signals,” in Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[5] V. Raman, M. Maasoumy, A. Donze, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proceedings of the IEEE Conf. on

Decis. and Cont. IEEE, 2014, pp. 81–87.
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