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Two-Stage Reinforcement Learning for
MIMO-NOMA with Hard-Latency Constraints

Luyuan Zhang, An Liu, Senior Member, IEEE, Xiaoxia Xu,
Xidong Mu, Member, IEEE, and Yuanwei Liu, Fellow, IEEE

Abstract—A novel hard-latency guaranteed cluster-free
multiple-input multiple-output non-orthogonal multiple access
(MIMO-NOMA) framework is proposed to deal with burst
traffics that commonly occur in real-world scenarios. The hard-
latency constrained effective throughput (HLC-ET) maximization
problem is formulated, which jointly optimizes the beamforming
and cluster-free success interference cancellation (SIC) opera-
tions. To address the resultant problem, a two-stage reinforce-
ment learning (RL)-based algorithm is developed to capture
system uncertainty, where the large-dimension optimization is
decoupled into two stages to reduce the action space and fasten
convergence of RL. In the long-term stage, we aim to maximize
the HLC-ET, and a hybrid RL algorithm with policy reuse is
adoped to control the priority weights to construct the weighted
sum rate (WSR) function of users. In the short-term stage, a
branch-and-bound (BB) based algorithm is further developed to
obtain the optimal solution of the WSR maximization problem.
The BB-based algorithm is proved to guarantee the convergence
to an ϵ-optimal solution of the WSR maximization problem
within a finite number of steps. To accelerate computation in the
short-term stage, a channel correlation based two-loop greedy
(CC-TLG) algorithm is proposed to significantly reduce the
complexity with almost no performance loss compared to the BB-
based algorithm. Finally, simulations demonstrate the advantages
of the proposed two-stage RL based joint beamforming and
SIC optimization (TSRL-JBSO) algorithm over conventional RL-
based and non-RL based algorithms.

Index Terms—– Beamforming, hard latency, non-orthogonal
multiple access (NOMA), reinforcement learning.

I. INTRODUCTION

One of critical performance targets of sixth-generation (6G)
wireless systems is that the spectral efficiency (SE) and energy
efficiency (EE) have to be 5-10 and 10-100 times higher
than for 5G, respectively. With the increasing demand for
large capacity in wireless networks, the conventional multi-
ple access schemes cannot fully meet the SE target in 6G.
Non-orthogonal multiple access (NOMA) [1] is a promising
technique, which adopts the non-orthogonal principle to enable
multiple users to share time domain, frequency domain or code
domain resources. Superposition coding (SC) and successive
interference cancellation (SIC) are two key technologies in
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NOMA for achieving the non-orthogonal use of radio re-
sources and interference management. Therefore, NOMA can
achieve high SE and better user fairness [2], [3] compared to
orthogonal multiple access (OMA). To employ NOMA with
multiple antenna technologies, two categories of beamforming
strategies have been proposed, namely, beamformer-based
MIMO-NOMA (BB-NOMA) and cluster-based NOMA (CB-
NOMA), but their effectiveness relies on specific scenarios
[4]. Therefore, a unified cluster-free NOMA framework was
proposed in [5], which enables SIC to be flexibly implemented,
thus breaking the shortcoming of the existing approaches.

Another important target of 6G is strict latency constraint.
Ultra-reliable and low latency communications (URLLC), has
always been a key requirement for many applications such
as public safety, telemedicine and etc [6], [7], [8] in fifth-
generation (5G). However, previous research on conventional
5G URLLC use cases has primarily focused on short packet
transmission, which fails to meet the comprehensive require-
ments of future wireless communication systems. Extend
reality (XR), which is an umbrella term for different types of
realities such as virtual reality (VR), augmented reality (AR),
and mixed reality (MR), has been regarded as an emerging
application for URLLC in 6G with new traffic characteristics
and more stringent requirements. Different from short-packet
transmissions in conventional URLLC, XR frame has a much
larger size and requires multiple timeslots to complete the
transmission, which makes resource scheduling more difficult
to meet the hard delay constraints [9].

In addition to the quasi-periodical traffic in XR, burst traffic
with both large frame size and random arrivals in some real
world low latency communication scenarios has become the
leading cause of network congestion or even collapse [10].
There have been many works apply NOMA to URLLC [11]
and XR/VR networks [12] to improve SE as well as to
reduce latency. However, to the best of our knowledge, existing
works in the literature have not considered NOMA for hard-
latency transmission under burst traffic, which still face various
technical challenges to be addressed.

A. Related Works
1) Studies on NOMA : In the past few years, extensive ef-

forts have been devoted to the development of MIMO-NOMA.
Existing MIMO-NOMA systems can be broadly classified into
beamformer-based NOMA and cluster-based NOMA, which
exploit different beamforming and SIC operation designs.
Beamformer-based NOMA directly serves users through dif-
ferent beamforming vectors, and meanwhile reduce the spatial
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interference by carrying out SIC between the multiplexed users
[13], [14], [15]. The authors of [14] investigated the optimal
power allocation in a two-user downlink MIMO-NOMA,
which can achieve the capacity region of the MIMO broadcast
channel under the derived channel state information (CSI)
condition. Different from beamformer-based NOMA, cluster-
based NOMA [16], [17], [18] partitions the highly channel
correlated users into the same cluster, and allows each cluster
to share the same beamforming vector. The authors of [19]
proposed a distributed user grouping, beamforming and power
control algorithm for power consumption minimization. It can
be observed that both beamformer-based NOMA and cluster-
based NOMA adopt scenario-centric SIC operation designs
[4], since the former assigns all users to a single cluster for SIC
decoding, while the latter assumes that the users in the same
cluster have high channel correlations. To overcome non-ideal
clustering, the authors of [5] proposed a novel generalized
downlink NOMA transmission framework with the concept
of cluster-free SIC, and it provides a generalized modeling,
which unifies the existing approaches.

2) Studies on NOMA-URLLC Systems: URLLC has always
been a key requirement for a number of applications such as
public safety, telemedicine and etc, and several works have
applied NOMA to URLLC since NOMA is able to reduce
the transmission delay for each user by providing additional
access in the power domain [20]. As URLLC uses finite
blocklength (FBL) transmissions, the well-known Shannnon
capacity is no longer the accurate approximation of data
rates [21]. The authors of [22] proposed a downlink MIMO-
NOMA framework for the URLLC networks, which focus on
a two-user case and can be extended to multi-user scenarios
to enhance the connectivity. In [23], the authors proposed a
static multi-user NOMA-URLLC framework based on hybrid
automatic repeat request re-transmissions. The authors of
[24] proposed three multi-agent deep reinforcement learning
(MADRL) based frameworks to maximize energy efficiency
while satisfying URLLC requirements in an uplink URLLC-
NOMA system. However, all of these works consider short-
packet communications (SPC), which are not suitable for com-
munications with large packets, e.g., VR/XR transmissions.

3) Studies on NOMA-XR/VR Systems: XR/VR has been
regarded as an emerging application for URLLC in 6G with
new traffic characteristics and more stringent requirements,
whose frame has a much larger size and requires multiple
timeslots to complete the transmission. NOMA has been
leveraged in XR/VR to improve SE of transmitting XR/VR
content as well as to reduce transmission latency. The authors
of [12] considered a NOMA assisted VR content transmission
network, and formulated an optimization problem to minimize
the sum of weighted total energy consumption and VR content
distortion with the delay constraint. The authors of [25]
constructed a multi-user uplink NOMA system to address
the challenges brought by XR devices such as ultra-massive
access, real-time synchronization, and applied an exact linear
search based algorithm for finding the optimal policy. A
cooperative NOMA (Co-NOMA) scheme was introduced in
[26], to strike a trade-off between the throughput and fairness
between XR devices.

B. Motivations and Contributions

In this paper, we aim to solve the hard-latency constrained
transmission problem in the generalized cluster-free NOMA
framework under burst traffic. Different from the short packet
in URLLC that can be transmitted in one timeslot and the
quasi-periodical traffic in XR, the packets in the considered
burst traffic have both large frame size and random arrivals.
Packets with large frame size need multiple timeslots trans-
mission and can only be viewed transmitted successfully at
the final timeslot. Therefore, in order to capture the trans-
mission state of packets, we define a hard-latency constrained
effective throughput (HLC-ET), which only considers packets
which have been successfully delivered before the hard delay
constraints. To get rid of the unrealistic assumptions on
traffic/channel statistics, e.g., simple and known traffic/channel
stastistics, we adapt reinforcement learning (RL) method to
tackle long-term latency constraints. However, the problem
is rather challenging due to two main reasons: On the one
hand, our objective is to maximize the HLC-ET, which is a
non-convex problem, and the sparse reward brought by large
packets that need multi-timeslots transmission as well as the
large state space make the algorithm harder to converge. On
the other hand, different from some works in the literature
[11] [27] where the clustering is either neglected or addressed
separately from beamforming, this paper jointly optimizes the
beamforming and SIC operations for a cluster-free NOMA
network, which introduces both integer and continuous vari-
ables. Therefore, directly assgning all decision variables, i.e.,
beamforming, SIC operations, and priority weights as RL
agent’s action will lead to a large-dimension action space and
slow convergence. To overcome this challenge, we propose a
novel two-stage reinforcement learning based joint beamform-
ing and SIC optimization (TSRL-JBSO) algorithm. The main
contributions of this work are:

• A two-stage RL based hard-latency constrained
NOMA framework: To handle both the environment
uncertainty and the large-dimension optimization vari-
ables, we propose a novel latency-guaranteed transmis-
sion framework, which consists of two stages in different
time scales. In the long-term stage, the priority weights
for weighted sum rate (WSR) of users are determined by
RL, which ensures hard latency constraints by solving
the Markov Decision Process (MDP) problem. Using the
assigned priority weights, the short-term stage (i.e., each
iteration of the long-term stage) further maximizes the
WSR by jointly optimizes the beamforming and SIC
operations. The proposed framework significantly fastens
the RL convergence speed by reducing the action space
and adopting a hybrid RL algorithm with policy reuse.

• The optimal solution of WSR maximization for joint
beamforming and cluster-free SIC: The joint beam-
forming and cluster-free SIC optimization problem for
WSR maximization in the short-term stage is a chal-
lenging mixed-integer nonlinear programming (MINLP)
problem. The globally optimal solution for this coupled
NP-hard problem is still unexplored currently. In this
paper, we develop a global optimization algorithm based
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on branch-and-bound (BB) to address this challenge. The
developed BB can find the global optimum solution of the
MINLP problem by successively branching the feasible
solution space and solving the convex relaxation problem
to evaluate its bounding.

• A low-complexity and near-optimal algorithm for
WSR maximization: Although the BB-based algorithm
can find the optimal solution of the MINLP problem,
it requires many iterations to converge and has high
complexity, which is not suitable to be applied in each
iteration of the RL algorithm. Therefore, to accelerate
computation on each iteration, we propose a channel
correlation based two-loop greedy (CC-TLG) algorithm
to significantly reduce the complexity of solving the
MINLP with almost no performance loss compared to
the BB-based algorithm. CC-TLG maximizes the WSR of
users based on the user channel correlation coefficients,
where the outer loop add users one by one based on the
WSR in a greedy manner, and the inner loop generates
a near-optimal SIC operation based on both the channel
correlation coefficients and WSR in a greedy way.

• Convergence analysis and performance evaluation: We
prove that the BB-based algorithm in the short-term stage
can guarantee the convergence to an ϵ-optimal solution of
the WSR maximization problem within a finite number of
steps. The convergence of the RL algorithm in the long-
term stage is also established. Simulations show that the
proposed low-complexity algorithm is able to solve the
MINLP with almost no performance loss and much lower
complexity compared to the BB algorithm, and that the
proposed TSRL-JBSO achieves higher HLC-ET as well
as lower packet loss probability compared to the baseline.

C. Organization and Notation

The rest of the paper is organized as follows. In Section
II, we illustrate the system model considered in this paper. In
Section III, the resource scheduling problem in the cluster-free
NOMA with hard-latency constraint is formulated as a two-
stage RL problem. In Section IV, a two-stage reinforcement
learning based joint beamforming and beamforming optimiza-
tion algorithm is proposed. In Section V, a low-complexity
method to solve the MINLP problem in the short-term stage is
proposed. Section VI showcases the simulation results. Finally,
we conclude this paper in Section VII.

Notation: Vectors and matrics are denoted by bold-face
letters. ||x|| denotes the Euclidean norm of a vector x. xT and
xH denote the transpose and Hermitian conjugate of vector x.
IN×N indicates an identity matrix of size N . 1N×N denotes
an M ×N all ones matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a downlink cluster-free
MIMO NOMA system, which is a generalized downlink
NOMA transmission framework with the concept of cluster-
free SIC. It consists a base station (BS) which is equipped
with NT antennas, and a set of K users K = {1, ...,K}
which is equipped with NR antennas (NT > NR). For

clarify, we consider single-stream transmission mode where
each user only transmits a single stream using maximum ratio
combining (MRC) at the receiver. In this case, each user can
be equivalently viewed as a single-antenna user, and we denote
the equivalent channel of user i after MRC as hi. In contrast
to cluster-based NOMA which assigns a single beamforming
vector for each cluster, each user k is assigned a dedicated
transmit beamforming vector wk ∈ CNT×1 in the considered
cluster-free system.

A. Signal Model

For each user, the BS utilizes NOMA superposition and
beamforming simultaneously. Let W (t) = [wk]k∈K ∈
CNT×K , where [wk] denotes the transmit beamforming matrix
for user k. Let sk denote the transmitted data symbol for user
k, then the received signal at user k is expressed as

yk = hHk wksk +
∑
k′ ̸=k h

H
k wk′sk′ + nk,∀k ∈ K, (1)

where nk ∼ CN
(
0, δ2

)
indicates the additive white Gaussian

noise (AWGN) at user k with zero mean and variance δ2.
Note that the time slot index t is omitted for concise. The
data symbols are normalized, i.e., E

[
|sk|2

]
= 1. The first

item of (1) denotes the desired signal, and the second item
denotes the multi-user interference.

B. SIC Procedure

To efficiently mitigate the multi-user interference, cluster-
free SIC is flexibly implemented between any two channel-
correlated users without the pre-defined user clusters. Denote
αm,k ∈ {0, 1},∀m, k ∈ K as the indicator which specifies
whether the SIC operation is carried out at user i to decode the
signal of user k. Specifically, αm,k = 1 indicates that user m
will first employ the SIC to decode the signal of user k before
decoding its own signal for eliminating interference from user
k, and αm,k = 0 otherwise. As it is generally impossible to
mutually implement the SIC decoding at both users, we have

αm,k + αk,m ≤ 1, ∀m, k ∈ K,m ̸= k. (2)

Given α and the corresponding ascending-channel-gain
decoding order (such decoding order is shown to be near-
optimal in [28]), user m will sequentially decode the signals
of each user k that satisfies αm,k = 1. Once user k’s signal
is decoded, user m can remove the interference from user k
when decoding the remaining users’ signals. In other words,
the users in the cluster-free NOMA framework are able to
decode and subtract the interference of all weaker users. When
αm,k = 1, to successfully implement SIC for interference
elimination, the following SIC decoding constraint should be
satisfied

Rm→k ≥ αm,kRk→k, ∀m, k ∈ K,m ̸= k (3)

where Rm→k is the achievable rate for user m to decode user
k’s signal, and Rk→k denotes the achievable rate for user k to
decode its own signal. The SIC decoding constraint indicates
that the achievable rate Rm→k for decoding user k’s signal
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Figure 1. The cluster-free NOMA system and illustration of the queue dynamic model.

at user m should be maintained at a sufficiently high level to
successfully eliminate the interfering signal from user k.

The signal-to-interference-plus-noise ratio (SINR)
SINRk→k for user k to decode its own signal can be
given by

SINRk→k =
|hHk wk|2∑

m ̸=k (1− αk,m) |hHk wm|2 + σ2
,

∀k ∈ K. (4)

For ease of expression, we sort users according to the
ascending-channel-gain ordering method, which is a com-
monly adopted ordering method and has been demonstrated
to be a rational and effective predefined decoding order [29],
i.e., ||hm||2 ≤ ||hk||2,∀m < k. Then the SINR for user m to
decode user k’s signal SINRm→k can be given by

SINRm→k = |hHmwk|2(
∑
u<k

(1− αm,u + αm,uαu,k)

|hHmwu|2 +
∑
u>k

(1− αm,uαk,u) |hHmwu|2

+ σ2)−1, ∀m, k ∈ K,m ̸= k. (5)

As a result, the achievable data rate Rk→k for user k
to decode its own signal can be expressed as Rk→k =
log2 (1 + SINRk→k),∀k ∈ K. The achievable rate Rm→k

for decoding user k’s signal at user m can be given by
Rm→k = log2 (1 + SINRm→k) ,∀m, k ∈ K,m ̸= k.

C. Traffic and Queue Dynamic Model

We assume that the data packets only arrive at the start of
each timeslot. Specifically, at the t-th timeslot, a batch of ςi,t
data packets {ωbi,t} of length Q̄bi,t arrives at the queue of user
i with a probability PAi. The length of arrived data is random
with E

(
Q̄bi,t

)
= λi.

The delay constraint for user i is Di, which means that if
a packet arrives at user i’s queue at the t-th timeslot, and at
the (t+Di)-th timeslot it has not been successfully delivered,
then it would be dropped out of the queue at this timeslot.
Apparently, there are at most Di batches of packets in the

queue of user i. To better capture the state of each packet in the
queue, we denote Qbi,t as the remaining data size of the packet
ωbi,t, and B

(
ωbi,t

)
=

∑Di−1
t′=1

∑ς
i,t−t

′

b′=1 Qb
′

i,t−t′ +
∑b−1
b′=1Q

b′

i,t as
the length of the packet backlog in front of ωbi,t. The arrived
data packets are served according to the first-come-first-served
(FCFS) protocol. Thus, the packet ωbi,t will not be served until
B
(
ωbi,t

)
= 0. In hard-latency constrained transmissions, we

focus on the following two crucial cases:
• Packet being dropped: Packets failed to be delivered

before their deadlines would be dropped. Specifically, at
the t-th time slot, the packet ωbi,t−Di

in the queue of user
i would be dropped if Qbi,t−Di

> Ri (t− 1) τ .
• Packet being successfully delivered: We define a binary

functions Ii,t
(
ωbi,t′

)
, ∀i, t, to indicate whether the packet

ωbi,t′ is successfully delivered at the t-th time slot:

Ii,t
(
ωbi,t′

)
=

{
1, if B

(
ωbi,t′

)
+Qbi,t′ ≤ Ri (t) τ,

0, otherwise.
(6)

For ease of understanding, we show a possible state of the
data queues in Fig. 1, and we assume ςi,t = 1. As shown in
Fig. 1, packet ω1

1,1 arrived at user 1’s queue at the 1st timeslots
ago, and at the 3rd timeslot, packet ω1

1,1 has been successfully
delivered to user 1. At the 2nd timeslot, user K’s packet ω1

K,1

has not been delivered before delay constraint so it is dropped.

D. Problem Formulation

In this paper, we focus on optimizing the hard-latency con-
strained effective throughout (HLC-ET) of users. Specifically,
at the t-th time slot, the instantaneous HLC-ET of users can
be defined as

1

τ

K∑
i=1

Di−1∑
t′=0

ςi,t−t′∑
b′=1

Ii,t
(
ωb

′

i,t−t′
)
Q̄b

′

i,t−t′ , (7)

where τ is the duration of each timeslot, ωb
′

i,t−t′ is the b′-th
packet in the batch that arrived at user i’s queue at (t− t′)-th
timeslot, and Q

b′

i,t−t′ is the original length of packet ωb
′

i,t−t′ .
The delay constraint of user i is Di, so at the t-th timeslot, the
oldest packet in user i’s queue is ω1

i,t−(Di−1). The indication
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function Ii,t
(
ωb

′

i,t−t′
)

= 1 means that ωb
′

i,t−t′ with the

original packet length Q̄b
′

i,t−t′ is successfully delivered at the
t-th timeslot, which contributes to the HLC-ET with the term
1
τ Q̄

b′

i,t−t′ . Without loss of generality, we set τ = 1. When
packet ωb

′

i,t−t′ is delivered successfully at the t-th time slot,
the original data size Q̄b

′

i,t−t′ would be included in the HLC-
ET. To simplify the presentation, we define vectors Q (t) =[
{Qb1,t−D1+1}, ..., {Qb1,t}, ..., {QbK,t−DK+1}, ..., {QbK,t}

]T ∈
R

∑K
i=1 ςi,tDi and Q̄ (t) =[

{Q̄b1,t−D1+1}, ..., {Q̄b1,t}, ..., {Q̄bK,t−DK+1}, ..., {Q̄bK,t}
]T ∈

R
∑K

i=1 ςi,tDi .
Our objective is to maximize the HLC-ET by jointly de-

signing the beamforming and SIC operation:

max
W ,α

K∑
i=1

Di−1∑
t′=0

ςi,t−t′∑
b′=1

Ii,t
(
ωb

′

i,t−t′
)
· Q̄b

′

i,t−t′ (8a)

s.t. αm,k ∈ {0, 1} , ∀m, k ∈ K,m ̸= k, (8b)

αm,k + αk,m ≤ 1, ∀m, k ∈ K,m ̸= k, (8c)∑
k

||wk||22 ≤ Pmax, (8d)

Rm→k (α,K) ≥ αm,kRk→k (α,K) ,∀m, k ∈ K,m ̸= k.
(8e)

However, it is hard to converge if we directly use the
beamforming and SIC operation as the action and apply a RL
algorithm, due to the large action space and the complicated
constraints. To address this issue, we proposed a two-stage RL
framework, with details to be presented in Section III.

III. TWO-STAGE RL FRAMEWORK

A. Motivation and Outline of Two-Stage RL Framework

Some previous works applying the RL algorithm to solve
user clustering and SIC operation problem have chosen dis-
crete actions, e.g., the author in [11] adopted deep Q-network
(DQN) to solve the mean error minimization problem to
handle URLLC constraints in a NOMA-aided uplink URLLC
system with short data blocks. However, since the values of the
state, e.g., the channel state information (CSI), are continuous,
applying discrete actions may degrade the performance of RL.
On the other hand, the action space would be extremely large
when all of the variables are considered in the action.

In this paper, we design a two-stage RL algorithm which
controls the priority weights of users in the long-term stage
based on a hybrid RL algorithm, and optimizes the beamform-
ing and the SIC operation in the short-term stage based on
maximizing the WSR using an iterative algorithm. The WSR
maximization algorithm in the short-term stage is viewed as
part of the environment for the hybrid RL algorithm in the
long-term stage. As illustrated in Fig. 2, at the t-th iteration,
in the short-term stage, based on the action at =

{
βt

}
generated by the agent, the environment aims to maximize
the WSR; In the long-term stage, the agent’s policy is updated
according to past experiences to maximize the long-term HLC-
ET, achieving the hard-latency constraint. Such a two-stage
RL formulation can significantly reduce the action space and

Long-term stage optimization Short-term stage optimization

Priority weight

BB

Global 
optimum

Channel state information Ht

Original packet size

Remaining data size

State

Beamforming & SIC operations

Maximize HLC-ET

Maximize WSR

Environment 
update

CC-TLG

Near 
optimal

Action at

Figure 2. Illustration of the two-stage RL algorithm.

the resulting RL algorithm converges much faster than the
conventional single-stage RL formulation that controls all of
the variables (i.e., the beamforming and the SIC operation)
directly based on RL. Moreover, different from the common
one-timescale RL algorithm which can only consider long-
term constraints, the WSR optimization algorithm in the short-
term stage guarantees the instantaneous constraints in each
time slot. In the following, we first formulate the WSR maxi-
mization problem (optimization problem for the beamforming
and SIC operation) in the shot-term stage as a MINLP prob-
lem. Then we formulate the problem of controlling the priority
weight as a MDP. Finally, we discuss the optimality of two-
stage RL problem formulation compared to the conventional
single-stage RL formulation.

B. Weighted Sum-Rate Maximization Problem in the Short-
term Stage

In each iteration, the beamforming and SIC operation are in-
directly determined by maximizing the WSR based on a given
priority weight βt and we denote variable α = {αmk}∀m,k∈K.
Suppose that at the t-th time slot, the priority weight vector
is obtained by the policy based on the current state, then the
joint design of the beamforming and SIC operation is obtained
by maximizing the WSR of users under practical constraints,
which can be formulated as a MINLP problem:

P0 : max
W ,α

∑
k∈K

βkRk→k (α,W ) (9a)

s.t. αm,k ∈ {0, 1} , ∀m, k ∈ K,m ̸= k, (9b)

αm,k + αk,m ≤ 1, ∀m, k ∈ K,m ̸= k, (9c)∑
k

||wk||22 ≤ Pmax (9d)

Rm→k (α,K) ≥ αm,kRk→k (α,K) , ∀m, k ∈ K,m ̸= k,
(9e)

where Constraint (9b) indicates the binary variable constraint.
(9c) indicates that user m and user k, m ̸= k, cannot mutually
implement the SIC decoding1 and Constraint (9d) is the
total transmission power constraint. Constraint (9e) represents
the SIC decoding conditions. Note that {βk} satisfies that∑
k∈K βk = 1.

1Considering the fact that each user would always decode its own signal,
we directly set diag(α) = {αi,i} = 1K×1.
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However, it is challenging to solve P0 because of several
reasons. Firstly, the design of SIC operation introduces the
binary constraint. Secondly, the variables are highly coupled
with each other in the objective function as well as rate terms.
Therefore, P0 is a non-convex and highly coupled MINLP
problem that is NP-hard.

C. MDP Problem Formulation in the Long-term Stage

A MDP is denoted as a tuple (S,A, R, P ) , where S is the
state space, A is the action space, R : S × A → R is the
reward function. P : S × A× S → [0, 1] is the transition
probability function, and P (s′ | s,a) denotes the transition
probability from state s to state s′ under action a. A policy
π : S → P (A) is a map from states to probability distributions
over actions, and π (a | s) denotes the probability of choosing
action a in state s. Due to the curse of dimensionality, mod-
ern RL algorithms, e.g., deep reinforcement learning (DRL)-
based algorithms, usually parameterize the policy by function
approximations with high representation capability, e.g., DNN.
In this paper, we denote πθ as the policy parameterized by θ.

• State space S: S is a composite space consisting of the
queue state space and the channel state space, i.e., the
current state information at the t-th time slot is denoted
as st =

{
Q (t) , Q̄ (t) ,H (t)

}
, where H (t) ∈ CK×NT

is channel matrix formed by merging the channels of all
users.

• Action space A: the priority weight vector space con-
stitute the action space A, i.e., the action at the t-th
time slot is at =

{
βt

}
, where βt is the priority weight

vector. Specifically, the action at is sampled according
to a policy πθ : S → P (A).

• Transition probability function P : the function P :
S ×A×S → [0, 1] is an unknown transition probability
function related to the statistics of the unknown statistics
of environment model, where P (st+1 | st,at) denotes
the probability of transition to state st+1 from state st ∈
S with an action at. The transition probability P and
policy πθ together determine the probability distribution
of the trajectory {s0,a0, s1, . . .}.

• Reward function R: at each timeslot t, the instantaneous
HLC-ET of users is set to be the reward, i.e., R (st,at) =∑K
i=1

∑Di−1
t′=0 Ii,t (ωi,t−t′) · Q̄i,t−t′ .

The objective of long-term optimization stage is to maxi-
mize the long-term hard-latency constrained effective through-
put, by optimizing the parameter of the DNN policy:

min
θ∈Θ

J (θ) ≜ lim
T→∞

1

T
Eps∼πθ

[−
T−1∑
t=0

K∑
i=1

Di−1∑
t′=0

ςi,t−t′∑
b′=1

Ii,t
(
ωb

′

i,t−t′
)
·

(10)

Q̄b
′

i,t−t′ ], (11)

where ps ∼ πθ denote the probability distribution of the
trajectory under policy πθ. Note that there is no need to add
an explicit constraint for the probability of violating the hard
delay constraint due to the following reason. When all of
the packets have the same size and delay constraint Dmax,
the average HLC-ET is equal to the product of the packet

Figure 3. Illustration of a strongly convex rate region.

arrival rate and the successful transmission probability, i.e.
A ∗ (1− Pr (D > Dmax)), where A is the packet arrival rate.
Therefore, maximizing the HLC-ET is equivalent to mini-
mizing the probability of violating the hard delay constraint
Pr (D > Dmax).

By such a two-timescale design, the RL algorithm only
needs to consider the simple continuous action and optimize
a MDP problem with a small action space. Otherwise, the
common one-timescale RL algorithms has a extremely large
action space (considering all variables), and cannot obtain any
reward until the action satisfies the strict constraints in each
iteration, making it almost impossible to converge.

D. Optimality of the Two-stage RL Problem Formulation

When the data rate region is strongly convex, using the
priority weights as the control action and maximizing the WSR
will not lose any optimality compared to directly controlling
all of the variables. The reason is that because if the rate
region is strongly convex, with a given weight, the unique
WSR maximization rate point is the tangent point of the plane
determined by the weight and the rate region, as shown in
Fig. 3. This means that any Pareto rate point on the boundary
of the rate region can be achieved by maximizing the WSR
with a proper weight vector. Since the the optimal solution
for maximizing the average effective throughput must achieve
a certain Pareto rate point of the rate region (otherwise, we
can find a better solution that achieves a strictly higher rate
vector to further improve the effective throughput), and we
can always achieve the same Pareto rate point by controlling
the weight vector, directly controlling the weight vector will
not lose any optimality.

It is well-known that the capacity region of Gaussian MIMO
broadcast channel (BC) is strongly convex under a total power
constraint. Thus directly controlling the priority weights will
not lose any optimality for capacity achieving physical layer
schemes (such as dirty paper coding [30]). Simulations show
that directly controlling the priority weights is still very
efficient under other sub-optimal but more practical physical
layer scheme such as NOMA beamforming, even when the rate
region is not strongly convex in this case. As such, we adopt
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this method in our framework since it significantly reduce the
action space and can achieve a near optimal solution.

IV. THE PROPOSED TWO-STAGE REINFORCEMENT
LEARNING BASED JOINT BEAMFORMING AND SIC

OPTIMIZATION ALGORITHM

In this section, we first outline the two-stage RL-based al-
gorithm. Then, the BB-based algorithm in the short-term stage
is proposed. Finally, we illustrate the hybrid RL algorithm in
the long-term stage.

A. Outline of the Two-Stage RL based Algorithm

The proposed TSRL-JBSO algorithm chooses the priority
weights as the action to maximize the HLC-ET of users,
breaking the entire optimization problem into two timescales.
In the long-term stage, the priority weights are controlled by
the RL algorithm to achieve the hard latency constraints by
solving the MDP problem (11), which aims to maximize the
long term HLC-ET of users. The short-term stage (i.e., each
iteration of the long-term stage) aims to solve the MINLP
problem (9a), where the objective is to maximize the WSR of
users based on the given priority weight. For the RL algorithm
in the long-term stage, the WSR maximization in the short-
term stage can be viewed as part of the environment. The
details of the proposed algorithm in the short-term stage and
the long-term stage would be illustrated in the following.

B. The BB-based Algorithm in the Short-term Stage

During each iteration, with a given priority weight, the
optimization of the beamforming and SIC operation under
practical constraints is a non-convex MINLP which is NP-
hard. In particular, the application of the BB method to the
MINLPs has shown promising results [31]. BB is a systematic
method to solve non-convex optimization problems, and can be
applied to Problem (9a) by constructing and solving its convex
relaxation and branching the feasible space successfully. As
such, the key challenge to design the BB-based algorithm is
to find a proper convex relaxation for the considered MINLP
P0, as elaborated below.

1) Convex Relaxation of P0: To deal with the non-convex
data rate expression, we introduce a series of auxiliary vari-
ables S = {Smk}∀m,k∈K, I = {Imk}∀m,k∈K and r =
{rmk}∀m,k∈K. Specifically, Smk and rmk indicate the lower
bounds of the effective gain and the achievable rate for
decoding user k’s signal at user m, ∀m, k ∈ K, respectively.
Imk is the upper bound of the interference for decoding user
k’s signal at user m, ∀m, k ∈ K. Therefore, P0 can be
rewritten as:

P1 : max
W ,α,S,I,r

∑
k∈K

βkrkk (12a)

s.t. (9b)-(9d)

rmk ≤ log2

(
1 +

Smk
Imk

)
∀m, k ∈ K, (12b)

Smk ≤ |hHmwk|2 ∀m, k ∈ K, (12c)

∑
i̸=k

(1− αk,i) |hHk wi|2 + σ2 ≤ Ikk ∀k ∈ K, (12d)

∑
u<k (1− αm,u + αm,uαu,k) |hHmwu|2+∑

u>k (1− αm,uαk,u) |hHmwu|2 + σ2 ≤ Imk
∀m, k ∈ K,m ̸= k,

(12e)

rmk ≥ αm,krkk, ∀m, k ∈ K,m ̸= k, (12f)

It has been proved that Problems P0 and P1 are equivalent
in the sense that they have equivalent optimal solutions [5].

We further introduce auxiliary variables γ = {γmk}∀m,k∈K,
U = {umk}∀m,k∈K and L = {lmk}∀m,k∈K, such that

γmk = hHmwk, (13)

|γmk|2 ≤ umk, (14)

|γmk| ≥ lmk. (15)

Without loss of optimality, Problem P1 can be reformulated
into a more tractable form as given below

P2 : min
W ,α,S,I,r,γ,U ,L

−
∑
k∈K

βkrkk (16a)

s.t. (9b)-(9d), (12b), (12f), (13)-(15),

Smk ≤ lmk
2 ∀m, k ∈ K, (16b)∑

i̸=k

(1− αk,i)uki + σ2 ≤ Ikk ∀k ∈ K, (16c)

∑
u<k (1− αm,u + αm,uαu,k)umu+∑

u>k (1− αm,uαk,u)umu + σ2 ≤ Imk
∀m, k ∈ K,m ̸= k,

(16d)

Note that in P2, the term hHmwk,∀m, k in constraints
(12c), (12d) and (12e) are replaced with the newly introduced
variables γmk. The feasible region of P2 is non-convex due to
the constraints (9b), (12b), (12f), (15), (16b), (16c) and (16d),
while the objective function is convex. We construct a convex
relaxation of P2 by out-approximating its feasible space with
a convex set. By doing so, we can simply drop the binary
constraints and treat the variables as continuous ones in the
range [0, 1].

First, we construct convex relaxations for the constraint (15)
by applying the following proposition.

Proposition 1. Let D[φ
mk
,φ̄mk] (lmk) denote the subset of

complex numbers γmk = ρmke
jφmk , with amplitude and

phase respectively satisfying the inequalities ρmk ≥ lmk and
φ
mk

≤ φmk ≤ φ̄mk, where lmk ≥ 0 and 0 ≤ φ
mk

≤ φ̄mk ≤
2π. Suppose that φ̄mk − φ

mk
≤ π, then the convex envelop

of D[φ
mk
,φ̄mk] (lmk) is given by:

Conv(D[φ
mk
,φ̄mk] (lmk)) =

{γmk ∈ C| sin(φ
mk

)Re(γmk)− cos(φ
mk

)Im(γmk) ≤ 0,

sin(φ̄mk)Re(γmk)− cos(φ̄mk)Im(γmk) ≥ 0,
fmkRe(γmk) + gmkIm(γmk) ≥ (f2mk + g2mk)lmk}

(17)
where fmk = (cos(φ

mk
) + cos(φ̄mk))/2 and gmk =

(sin(φ
mk

) + sin(φ̄mk))/2.
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Figure 4. An illustration of D[
φ
mk

,φ̄mk

] (lmk) and

Conv(D[
φ
mk

,φ̄mk

] (lmk)).

Fig. 4 shows the relationship between sets D[φ
mk
,φ̄mk] (lmk)

and Conv(D[φ
mk
,φ̄mk] (lmk)). In Fig. 4, set D[φ

mk
,φ̄mk] (lmk)

is the light blue region outside the arc AB, which
is obviously a non-convex set, and its convex envelop
Conv(D[φ

mk
,φ̄mk] (lmk)) is the light blue region, which is

convex and is determined by three lines OA, OB and AB.
Proposition 1 has been proved in [32], and it can be verified
that as φ̄mk−φmk goes to zero, the convex envelope becomes
tight, i.e., Conv(D[φ

mk
,φ̄mk] (lmk)) = D[φ

mk
,φ̄mk] (lmk) .

Note that the convex envelope does not take effect when
φ̄mk − φ

mk
> π. According to Proposition 1, the constraint

(15) can be replaced by γmk ∈ Conv(D[φ
mk
,φ̄mk] (lmk)).

Next, by defining µmk = αm,krkk, ψmk = l2mk, ζmu =
αm,uumu, ηu1km = αu,kζmu(u < k) and ηu2km = αk,uζmu(u >
k), we can reformulate (12f), (16b), (16c) and (16d) as below

rmk ≥ µmk, ∀m, k ∈ K,m ̸= k, (18)

Smk ≤ ψmk, ∀m, k ∈ K, (19)∑
i ̸=k

(uki − ζki) + σ2 ≤ Ikk ∀k ∈ K, (20)

∑
u<k(umu − ζmu + ηu1km) +

∑
u>k(umu − ζmu + ηu2km)

+σ2 ≤ Imk,∀m, k ∈ K,m ̸= k.
(21)

We address the relaxation of the bilinear terms defined
above using their convex and concave envelopes. According
to [31], for three variables x, y and z, the set S(x,y,z) =
{(x, y, z) ∈ R3|x ∈ [xl, xu], y ∈ [yl, yu], z = xy} is relaxed
using the convex and concave envelopes:

Conv(S(x,y,z)) = {(x, y, z) ∈ R3|
z ≥ xuy + yux− xuyu,

z ≥ xly + ylx− xlyl,

z ≤ xuy + ylx− xuyl,

z ≤ xly + yux− xlyu} (22)

Then, by defining νmk = xmkImk and introducing a
constraint that

xmk ≤ 2rmk − 1 (23)

the constraints (12b) is relaxed as:

vmk ≤ Smk ∀m, k ∈ K, (24)

Finally, we can write the convex relaxation of P2 as below,
where Z = {µ,ψ, ζ,η,V ,X}, Constraint (9b) is eliminated
and P3 is a convex problem. Note that although Constraint (9b)
is eliminated here, and the branch method in Section IV-B2
ensures the binary constraints.

P3 : min
W ,α,S,I,r,γ,U ,L,Z

−
∑
k∈K

βkrkk (25a)

s.t. (9c)-(9d), (13)-(14), (18)-(21), (23), (24),

γmk ∈ Conv(D[φ
mk
,φ̄mk] (lmk)) (25b)

(µmk, αm,k, rkk) ∈ Conv(S(µmk,αm,k,rkk)) (25c)

(ψmk, lm,k, lm,k) ∈ Conv(S(ψmk,lm,k,lm,k)) (25d)

(vmk, xmk, Imk) ∈ Conv(S(vmk,xmk,Imk)) (25e)

(ζmu, αm,u, umu) ∈ Conv(S(ζmu,αm,u,umu)) (25f)

(ηu1km, αu,k, ζmu) ∈ Conv(S(ηu1
km,αu,k,ζmu)) (25g)

(ηu2km, αk,u, ζmu) ∈ Conv(S(ηu1
km,αk,u,ζmu)) (25h)

2) BB-based Algorithm: We adopt the BB-based algorithm
in [32] to solve P2, which is equivalent to P0. For ease of
notation, we denote the variable matrix of interest as Z =
[α, [r11, r22, ..., rKK ]

T
], where α is defined in P0. Initially,

the matrix belongs to the box B0 = [Υ,Υ] where

Υ = 0K×(K+1),Υ = [1K×K , Rup1K×1]. (26)

where Rup is an upper bound of the user rate.
The BB-based algorithm involves a sequence of iterations

indexed by l ∈ N. In the l-th iteration, Ll denotes the box list,
which is the set of boxes with possible feasible regions, and
is initialized with B0, ΦlU and ΦlL denote an upper bound and
a lower bound of the optimal objective function value of P2,
respectively. For convenience, we denote ΦU (B) and ΦL (B)
as an upper bound and a lower bound of the objective function
value of P2 over a given box B, which are obtained as follows.

• Lower bound: Given a box B, the lower bound ΦL (B)
is obtained by solving the convex relaxation problem
P3 using any general-purpose solver [33], where the
variables α and [r11, r22, ..., rKK ]

T are searched over B.
• Upper bound: Given a box B, the upper bound ΦU (B)

is a feasible solution of P2 that satisfies all constraints,
and can be obtained by scaling the optimal solution
of P3 to meet the constraints in P2. Specifically, we
denote {α∗, [r∗11, r

∗
22, ..., r

∗
KK ]

T } as the optimal solution
of P3 over the box B. To make the scaling process
more tractable, the upper bound is simply set to +∞ if
α∗ /∈ BK×K . If α∗ ∈ BK×K and constraints (12b), (12f)
and (15)-(16d) are satisfied, then the optimal solution of
P3 is already an upper bound of P2. If these constraints
are not satisfied, we can scale [r∗11, r

∗
22, ..., r

∗
KK ]

T to
be feasible. In particular, we define the scaling factor
for L,S, I and R as κ1 ≜

{
κ1mk,∀m, k ∈ K

}
, κ2 ≜{

κ2mk,∀m, k ∈ K
}

, κ3 ≜
{
κ3mk,∀m, k ∈ K

}
and κ4 ≜{

κ4kk,∀k ∈ K
}

, respectively. That is, the scaled solution
is given by ˜lmk = l∗mk/κ

1
mk,

˜Smk = S∗
mk/κ

2
mk,

˜Imk =
I∗mkκ

3
mk, ˜rkk = r∗kk/κ

4
kk. The scaling factor κ1,κ2,κ3
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and κ4 is chosen such that the scaled solution meets the
constraints (12b), (12f) and (15)-(16d):

κ1mk = max(1,
l∗mk
|γ∗mk|

),∀m, k ∈ K, (27)

κ2mk = max(1,
S∗
mk

˜lmk
2 ),∀m, k ∈ K, (28)

κ3mk =



max((
∑
u<k

(
1− α∗

m,u + α∗
m,uα

∗
u,k

)
u∗mu +∑

u>k

(
1− α∗

m,uα
∗
k,u

)
u∗mu + σ2)/I∗mk , 1),

∀m, k ∈ K,m ̸= k,

max(1,
∑

i̸=k(1−α
∗
k,i)u

∗
ki+σ

2

I∗kk
),

∀m, k ∈ K,m = k,
(29)

κ4kk = max(1,maxm̸=k
r∗mkα

∗
mk

log2

(
1+

˜Smk
˜Imk

) ,
r∗kk

log2

(
1+

˜Skk
˜Ikk

) ), ∀k ∈ K.
(30)

From the scaled feasible solution, we can obtain an upper
bound of P2 over the box B as ΦU (B) = −

∑
k∈K βk ˜rkk.

Now we are ready to present the BB-based algorithm, which
consists of two main parts, i.e., Branch and Bound in each
iteration, as elaborated below.

1) Branch: At the l-th iteration, we select the box with
the least lower bound from the box list Ll, i.e.,
B∗ = argminB∈Ll ΦL (B). Then the selected box
B∗ = [L,U ] is split along the longest edge, i.e.,
i∗, j∗ = argmaxi,j{ui,j− li,j} to create two boxes with
equal size, which is

B∗
1 =

{
[L,U − Ji∗j∗ ], if j∗ ≤ K + 1

[L,U − 1
2 (bi∗,j∗ − ai∗,j∗)Ji∗,j∗ ], else

(31)

B∗
2 =

{
[L+ Ji∗,j∗ ,U ], if j∗ ≤ K + 1

[L+ 1
2 (bi∗,j∗ − ai∗,j∗)Ji∗,j∗ ,U ], else

(32)
where Ji∗,j∗ is a K×(K+1) matrix with i∗, j∗-th entry
equal to 1 and all other entries equal to 0. This branch
method makes sure that when the split edge belongs
to the variable α, this edge will be divided into two
edges, [0,0] and [1,1], satisfying Constraint (9b). When
the iteration number is large enough, some boxes will
satisfy the constraint that α ∈ BK×K .

2) Bound: The bounding operation consists in computing
the upper bound and the lower bound over the newly
added box B ∈ {B∗

1 ,B∗
2}, and update the lower bound

ΦlL and the upper bound ΦlU . Specifically, recall that
ΦL (B) and ΦU (B) are the lower bound and upper
bound over a given box B. In the l-th iteration, we obtain
ΦL (B∗

i ) , i = 1, 2 and ΦU (B∗
i ) , i = 1, 2. Note that the

lower bound as well as the upper bound are set to +∞
if the relaxation problem P3 is infeasible over the box.
After obtaining the lower bounds of two new boxes,
we update the box list by removing B∗ and adding B∗

1

and B∗
2 if their lower bounds are not bigger than the

current upper bound ΦlU , i.e., Ll+1 = (Ll − {B∗}) ∪

Algorithm 1 The BB-based Algorithm
Initialization: Initialize Ll with B0. Find the lower bound
ΦL (B0) by solving the convex relaxation problem P3, and
the upper bound ΦU (B0). Set l = 0, Φ0

L = ΦL (B0), Φ0
U =

ΦU (B0), and the tolerance ϵ > 0.
While (ΦlU − ΦlL)/Φ

l
L > ϵ:

1. Branch: Select the box B∗ with the least lower bound
from the box list Ll, and split it into two boxes B∗

1 and B∗
2 .

2. Bound: For each box B∗
i (i = 1, 2), find its lower bound

ΦL (B∗
i ) and its upper bound ΦU (B∗

i ).
3. Update Ll+1 = (Ll − {B∗}) ∪ {B∗

i |ΦL (B∗
i ) ≤ ΦlU , i =

1, 2}.
4. Update Φl+1

L = minB∈Ll+1 ΦL (B).
5. Update Φl+1

U = minB∈Ll+1 ΦU (B).
6. t = t+ 1.

End

{B∗
i |ΦL (B∗

i ) ≤ ΦlU , i = 1, 2}. Then we update the
lower bound and upper bound of the optimal objective
function value of P2, i.e., Φl+1

L = minB∈Ll+1 ΦL (B),
Φl+1
U = minB∈Ll+1 ΦU (B).

The proposed BB-based algorithm is summarized in Algo-
rithm 1.

3) Convergence and Complexity Analysis: We denote
size(B) as the maximum half-length of the sides of box B.
Following the Theorem 1 in [32], the upper bound and the
lower bound of a box region become tight as the box is small
enough and shrinks to a point. In other words, as size(B) goes
to zero, the gap between the lower bound and the upper bound
converges to zero.

By adopting the splitting rule in section IV-B2, at least one
box in the partition has size not exceeding ϵ if l is sufficiently
large. It follows from the Theorem 1 in [32] that when the
corresponding box is added to the list at the l-th iteration, the
algorithm should terminate and return ϵ-optimal solution.

Following the similar analysis in [32], we can prove that the
number of iterations of the BB-based algorithm for obtaining
the solution is finite:

Theorem 1. For any given ϵ > 0, the proposed BB-based
algorithm returns an ϵ-optimal solution of the given problem
within at most TB iterations, where

TB =

(
2Rup

ϵ2

)K
+ 1. (33)

At each iteration, the complexity of the proposed BB-
based algorithm is dominated by calculating the lower bounds.
Obtaining the lower bound requires solving a convex quadratic
problem via a general-purpose solver, e.g., MOSEK in CVX
[34] with a complexity of O((K2)3.5). Assuming that the
BB-based algorithm converges after TB iterations, the worst-
case computational complexity can be expressed as O(TBK

7).
Theorem 1 shows that TB can be very large if the tolerance ϵ
is small. Nevertheless, the proposed BB-based algorithm can
be used as a performance benchmark.
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Algorithm 2 TSRL-JBSO Algorithm

Input: The initial policy parameters θ0 ∈ Θ.
for t = 0, 1, · · · do
Long-term Stage Optimization:

1. Sample an action at ∼ πθt(·|st).
2. Short-term Stage Optimization:

(a) Optimize the MINLP problem (9a) based on the action
at =

{
βt

}
, and obtain the transmitted rate of each user.

(b) Obtain reward and update the environment status.
3. Update the data storage.
4. Update policy parameter θt+1 using SCAOPO in [37].
algorithm.

end for

C. The Hybrid RL Algorithm in the Long-term Stage

In the long-term stage, we adopt a fast converged hybrid
reinforcement learning (HRL) framework to solve the MDP
problem (11). In HRL framework, both policy reuse [35] and
domain specific knowledge are exploited to accelerate the
convergence speed. Specifically, there are N ≥ 1 old policies
π1, ..., πN trained under other similar environments (param-
eterized by DNNs), a domain knowledge (DK) policy πN+1

(e.g., we use the Q-weighted algorithm [36] as the DK policy
in the simulations), and the new policy π0 ≜ πγ0 (parame-
terized by DNN with parameter γ0). In each iteration t, the
agent randomly chooses policy πm,m ∈ {0, 1, ..., N,N + 1}
with probability pm. Then the agent generates the action at
according to πm based on the current state st, interacts with
environment and obtains the cost, and updates the data storage.
Finally, the data storage is used to update the hybrid policy
πθ with parameters θ = [p;γ0], where p = [p0, ..., pN+1].

The hybrid policy πθ can be viewed as a stochastic pol-
icy whose actions are generated from a mixture distribution
πθ (a | s) =

∑M
m=1 pmπm (a | s), and the parameters of this

stochastic policy are given by θ = [p;γ0] ∈ Θ , where γ0

is the parameter of the new policy and p is the probability
of using each sub-policy. The old policies π1, ..., πN and DK
policy πN+1 help to accelerate the initial convergence speed.
Such a stochastic policy can be seen as a generalization of
the conventional stochastic policy with only a single sub-
distribution, e.g., the Gaussian policy, is a special case when
there is only one sub-policy/sub-distribution. As such, all the
existing RL algorithms that work for stochastic policy can
be directly applied to update the hybrid policy πθ. In the
simulations, we adopt the successive convex approximation
based off-policy optimization (SCAOPO) algorithm in [37] to
update the hybrid policy πθ. The SCAOPO enables to reuse
old experiences from previous updates, thereby significantly
reducing the implementation cost when deployed in the real-
world engineering systems that need to online learn the
environment. Compared to conventional DRL approaches, the
proposed DRL can better adapt to the change of state distri-
bution and maintain a much smaller probability of violating
the delay constraints.

The overall two-stage RL based algorithm is summarized
in Algorithm 2.

D. Convergence Analysis of the Long-term Stage Algorithm
It has been explained in Section IV-B3 that when the data

rate region is strongly convex, using the priority weights as
the control action and maximizing the WSR will not lose
any optimality compared to directly controlling all of the
variables. Therefore, the optimal solution of the proposed two-
stage approach is equivalent to the optimal solution of the
conventional single-stage approach, when the data rate region
is strongly convex. In other words, if the BB-based algorithm
finds the optimal solution of the WSR maximization problem
in the short-term stage and the hybrid RL algorithm finds
the optimal solution of the MDP problem in the long-term
stage, the proposed two-stage approach can find the optimal
solution of the original problem. Simulations show that the
proposed algorithm is still very efficient even when the rate
region considered in this paper is not strongly convex.

In Section IV-B3, we have proved that the BB-based
algorithm can find an ϵ-optimal solution of the short-term
problem. Now we focus on the convergence of the hybrid RL
algorithm in the long-term stage of the two-stage approach,
i.e., the hybrid reinforcement learning framework, which can
be viewed as a stochastic policy whose actions are generated
from a mixture distribution, and both the probability of using
policy p and the parameter of new policy γ0 are updated
using SCAOPO in [37]. Following the similar convergence
analysis as in [37], we can prove that the long-term stage
algorithm can converge to a KKT point. If the KKT point
found by the hybrid RL algorithm is also the optimal solution
of the MDP problem in the long-term stage, then the overall
solution found by the proposed two-stage approach is the
optimal solution of the original problem, when the data rate
region is strongly convex. Of course, since the problem is non-
convex, a KKT point is not necessarily optimal. However, this
is also true for the conventional single-stage approach, which
still cannot guarantee the convergence to the global optimum
for non-convex problem. In fact, due to the huge action space
and complicated constraints, directly applying the single-stage
approach to this problem cannot even converge, as explained
above. Simulations show that the two-stage approach has a
much better convergence behavior and the KKT point found by
it is indeed a good solution compared to the baselines. As such,
we adopt this method in our framework since it significantly
reduce the action space and can achieve a good solution that
satisfies the KKT conditions.

Please refer to [37] for the detailed convergence proof.

V. PROPOSED LOW COMPLEXITY ALGORITHM FOR THE
SHORT-TERM PROBLEM

In this section, we first propose a low complexity two-
loop greedy algorithm based on the user channel correlation
coefficients, where the outer loop add users one by one
based on the WSR in a greedy manner, and the inner loop
generates a near-optimal SIC operation based on both the
channel correlation coefficients and WSR in a greedy way.
Then, the details of the channel correlation based greedy SIC
operation algorithm are introduced. Finally, we compare the
complexity of the proposed two-loop greedy algorithm with
an exhaustive search method.
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A. The Channel Correlation based Two-loop Greedy Algo-
rithm

Although the short-term BB-based algorithm can find the
optimal solution of the MINLP problem, it has high complex-
ity, so it is not suitable to be applied in each iteration of the
RL algorithm. To accelerate computation on each iteration,
we propose a low complexity channel correlation based two-
loop greedy (CC-TLG) algorithm to optimize the MINLP
with almost no performance loss compared to the BB-based
algorithm. CC-TLG maximizes the WSR of users by adding
one user at each iteration in a greedy way.

Specially, in each outer loop iteration, CC-TLG adds the
user which maximizes the WSR of users under the operation
constraints to the user set. We define the set of selected users
as KqGI , then at the q-th iteration, the user that would be
selected from K/KqGI can be expressed as

kq = arg max
k∈K/Kq

GI

WSR(k ∪ KqGI ,α
∗
k∪Kq

GI
), (34)

where WSR(k ∪ KqGI ,α∗
k∪Kq

GI
) is the maximum WSR that

scheduling the user set k ∪ KqGI can achieve while meeting
the operation constraints, α∗

k∪Kq
GI

∈ BK×K is a near-optimal
SIC operation generated based on the user channel correlation
coefficients in a greedy way, which would be further explained
in Section V-B. Theoretically, it needs to go through all
3(|K

q
GI |+1)|Kq

GI |/2 possible SIC operations of the user set
k∪KqGI to obtain the maximum WSR, but the search space is
very large. Therefore, we adopt a channel correlation (CC)
based greedy SIC operation method to reduce the search
space among possible SIC operations. Moreover, to reduce the
complexity of beamforming optimization, the rate of each user
is calculated by assuming the simple RZF precoder with equal
power allocation, which is widely used in practical systems
and is asymptotically optimal for large Nt and/or high SNR
[38].

CC-TLG adds user iteratively until the WSR does not
increase or K/KqGI = ∅. Finally, after obtaining the SIC
operation and user selection, the beamforming is optimized
using the successive convex approximation (SCA) algorithm
in [39] for a better performance.

B. Channel Correlation based Greedy SIC Operation Method
(Inner Loop)

For a given user set U , we have to determine the SIC
operation between all pairs of users in it, and there are three
kinds of SIC operations between user i and user j, i.e.,
{(αi,j , αj,i)|(αi,j , αj,i) ∈ {(0, 0), (0, 1), (1, 0)}}. Therefore,
the total possible number of SIC operations for a user set
U is 3

|U|2−|U|
2 , which is extremely large. In this subsection, a

channel correlation based greedy method is proposed to reduce
the search space by generating a near-optimal SIC operation
in a heuristic way.

In the inner loop, for a given user set U , a near-optimal SIC
operation α∗

U is generated based on the channel correlation
coefficients in a greedy way.

Step 1: Calculate the channel correlation coefficients
between all pairs of users in the user set, and sort the user

pairs by channel correlation in descending order. Define the
sorted user pairs and the corresponding coefficients as ΓU =
{(ρi1,j1 , i1, j1), ..., (ρi|U|2−|U|,j|U|2−|U|

, i|U|2−|U|, j|U|2−|U|)}
satisfying ρi1,j1 ≥ ... ≥ρi|U|2−|U|,j|U|2−|U|

and
{(ρi,j , i, j)|1 ≤ i < j ≤ |U|}, where ρi,j denotes the
channel correlation coefficient between user i and j, which
can be expressed as

ρi,j =
|hHi hj |

||hi|| · ||hj ||
. (35)

Step 2: Determine the SIC operation sequentially according
to the channel correlation order. Specifically, the SIC operation
between the user pair i1 and j1 with the highest channel
correlation coefficient is the first to be determined, and the
(i1, j1)-th and the (j1, i1)-th elements of α∗

U are chosen from
{(0, 1), (1, 0), (0, 0)} that could maximizes the WSR, then α∗

U
is updated; The SIC operation between the user pair i2 and j2
with the second highest channel correlation coefficient is the
second to be determined; and so on.

Define αρUas the SIC operation in the ρ-th inner-loop
iteration, with α0

U = I |U|. Then the update of αρU can be
expressed as

αρU = arg max
(α=αρ−1

U ,(αiρ,jρ ,αjρ,iρ )∈{(0,1),(1,0),(0,0)}

∑
m∈U

βm·

Rm→m (α,U) · I1 (α) , (36)

where Rm→m is the user rate defined in Section II, and
I1(α) is the indication function that indicates whether the SIC
decoding conditions (9e) are satisfied, i.e., I1(α) = 1 indicates
that all SIC decoding conditions are satisfied, and I1(α) = 0
otherwise.

The channel correlation based greedy SIC operation method
determines the SIC operation iteratively until the WSR does
not increase or ρ = |U|, and finally obtains α∗

U . The motivation
of such greedy design is that a user pair with higher channel
correlation coefficient is more likely to require SIC with
((αi,j , αj,i) ∈ {(0, 1), (1, 0)}) to eliminate the interference,
intuitively it is desired to first determine the SIC operation
between the user pair with the highest channel correlation
coefficient.

The overall two-loop algorithm is summarized in Algorithm
3.

C. Complexity Analysis

For the proposed CC-TLG algorithm, the main computa-
tional complexity comes from the calculation of the WSR,
which can be expressed as O(K2Nt+K

3). The proposed CC-
TLG requires at most

∑K
i=1(K − i + 1)3i = K(K+1)(K+2)

2
calculations of WSR. We choose exhaustive greedy method
as the baseline to compare with. Exhaustive greedy algorithm
also adds user iteratively in a greedy manner, but for a
given user set, it searches all possible SIC operations exhaus-
tively. Exhaustive greedy requires

∑K
i=1(K − i + 1)3

i(i−1)
2

calculations of WSR. As illustrated before, the worst-case
computational complexity of the BB-based algorithm can be
expressed as O(TBK

7). Note that TB can be very large if the
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Algorithm 3 CC-TLG Algorithm
Initialization: Initialize the selected user set K0

GI = ∅,
R0
total = 0, and the SIC operation matrix α∗ = IK .

for q = 0, 1, · · · do
Outer loop

1. for each user k ∈ K/KqGI do
(a) Obtain the sorted channel coefficients Γk∪Kq

GI
according

to step 1.
(b) Inner loop
Obtain α∗

U based on the channel correlation based greedy
method according to step 2.

2. Select the user kq with the maximum WSR.
3. If WSR(kq ∪ KqGI ,α∗

kq∪Kq
GI
) ≥ Rqtotal:

Update Kq+1
GI = KqGI∪kq , α∗ = α∗

kq∪Kq
GI

,

and Rq+1
total = WSR(kq ∪ KqGI ,α∗

kq∪Kq
GI
).

until K/KqGI = ∅
Optimize W using SCA.

tolerance ϵ is small (TB =
(

2Rup

ϵ2

)K
+ 1). The complexity

for BB-based algorithm is too high for it to converge in the
simulation, so we delete the unfeasible region of the first
several iterations and choose a small range for the rate, e.g.
Rup = 0.1. In this case, the computational complexity for
the BB-based algorithm is reduced to

(
200K + 1

)
K7 when

ϵ = 0.01, making the simulation for K = 3, 4 able to converge
in a limited time. In Table I, we compare the complexity of
the proposed CC-TLG algorithm with exhaustive greedy and
the BB-based algorithm for different values of K. It can be
observed in the simulations that the CC-TLG can significantly
reduce the complexity with almost no performance loss.

VI. NUMERICAL RESULTS

A. Simulation Setup

In the simulations, we adopt the commonly used exponential
correlation Rayleigh fading channel model [40] to generate the
channel of users, which can be given by

H = H̃Λ−1/2RH
1/2, (37)

where H̃ =
[
h̃1, ..., h̃K

]
stacks the small-scale fading vec-

tors. Λ is a diagonal matrix with the diagonal elements being
diag(Λ) = [L1(d1), ...LK(dK)], where the large-scale fading
Lk(dk) is given by the pathloss model 32.6+36.7 lg dk. More-
over, RH

1/2 denotes the correlation matrix at receivers, where
the (i, j)-th element signifies the channel spatial correlation
of user i and user j. For a channel realization, RHcan be
mathematically formulated as

RH =


1 c ... cK−1

cH 1 ... cK−2

... ... ... ...
(cK−1)H (cK−2)H ... 1

 , (38)

where c = corr × ejϕ with ϕ being the randomly gen-
erated phase within [0, 2π] and corr controlling the mean
channel correlation. For each user i, data packets whose
lengths follow a Poisson arrival distribution with mean λi

Figure 5. Convergence behavior of the BB-based algorithm for K = 3 under
configuration (1).

arrive at the start of each timeslot with probability PA. We
set K = {2, 3, 4, 5, 6, 7, 8, 9, 10}, Nt = 2 and the batch
of pakcets ς = 1. In simulations, we have chosen various
values of {Di}, {λi} and PA according to the parameters
reported in [41], which are typical values in burst traffic
application scenarios, and the proposed algorithm works under
all of those traffic conditions. We report in this section, the
simulation results under two configurations: (1) Di ∈ [4, ..., 7]
timeslots,λi ∈ [15, 25] Kbit, PA = 0.3; (2) Di ∈ [4, ..., 7]
timeslots,{λi} ∈ [20, 40] Kbit, PA = 0.3.

B. Simulation Results and Discussions

1) Convergence of the Short-term BB-based Algorithm:
Fig 5 presents the convergence behavior of the proposed BB-
based algorithm for K = 3 under configuration (1). It can
be observed that the lower bound are non-decreasing and the
upper bound are always higher than the lower bound. As the
iteration index increases, the gap between the upper bound and
the lower bound becomes smaller and infeasible sub-regions
are removed. The iteration ends when the gap is smaller than
the tolerance ϵ.

2) Performance of the Short-term CC-TLG Algorithm: We
compare the performance of the proposed CC-TLG algorithm
with the BB-based algorithm and exhaustive greedy algorithm,
which is introduced in Section V-C. To further demonstrate
the performance of the proposed algorithms, we also consider
a low complexity matching-SCA algorithm proposed in [5]
as a baseline approach, which is shown to guarantee the local
optimality in cluster-free NOMA framework. CC-TLG without
SCA is the solution (scheduled user set, SIC operation and
beamforming) obtained by the proposed low complexity algo-
rithm, but without the final step of optimizing the beamforming
by SCA.

Fig 6a shows the achieved WSR versus channel correlations,
corr, for the case with K = 3 users. It can be observed
that the proposed CC-TLG and exhaustive achieve almost
the same performance, and obtain a near-optimal solution
compare to the benchmark, i.e., the BB-based algorithm. The
matching-SCA leads to the worst performance compared to
other algorithms.

Fig 6b shows the achieved WSR versus number of users,
K, for the case with corr = 0.68. Note that we only present
the performance of the BB-based algorithm under the case of
K = {2, 3, 4}, due to its high computational complexity. It
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Table I
COMPLEXITY COMPARISON

Computational Complexity K = 3 K = 4 K = 5

CC-TLG algorithm K(K+1)(K+2)
2 (K2Nt +K3) 1.35e3 5.76e3 1.83e4

Exhaustive greedy
∑K

i=1(K − i+ 1)3
i(i−1)

2 (K2Nt +K3) 1.62e3 7.64e4 1.06e7

BB-based algorithm
(
200K + 1

)
K7 1.74e10 2.6e13 2.5e16

(a) Weighted sum rate versus channel correla-
tions corr. K = 3.

(b) Weighted sum rate versus number of users K.
corr = 0.68.

Figure 6. Performance comparisons for different cases.

can be observed that the proposed CC-TLG achieves almost
the same performance with exhaustive greedy method, but
with dramatically reduced complexity, as presented in Table
I. When K is small, i.e., K = 2,3, the gap between CC-
TLG and the BB-based algorithm can be almost ignored.
As the number of users increases, the performance loss of
the proposed CC-TLG grows, reaches 9.5% when K = 4.
In all cases presented in this section, the proposed CC-TLG
outperforms than the matching-SCA and the CC-TLG without
SCA, and achieves a near-optimal solution of the problem,
with significantly reduced complexity compared to the BB-
based algorithm

3) Convergence of the Two-Stage RL based Algorithm:
To demonstrate the performance of the proposed TSRL-
JBSO algorithm, we choose Q-weighted algorithm [36] as
the baseline, which is shown to perform well for light to
moderate traffic loading and can provide a stable scheduling
performance. Q-weighted JBSO decides the priority weight
based on the queue length, then optimizes the MINLP problem
using the same method as TSRL-JBSO, while TSRL-JBSO

Figure 7. Comparison of different short-term stage methods.

optimizes the policy to generate the weight, whose objective
is to maximize the long-term HLC-ET. We also compare the
proposed TSRL-JBSO which adopts the HRL algorithm in the
long-term stage, with TSRL-JBSO that adopts soft actor-critic
(SAC) [42], to illustrate the fast convergence of HRL.

In the simulations, we choose the low-complexity CC-
TLG as the short-term stage method since exhaustive greedy
and BB-based method have much higher complexity and the
simulation time will be unacceptable, while the Matching-SCA
proposed in [5] has a worse performance. We compare the
proposed algorithm with a two-stage algorithm which chooses
the Matching-SCA as the short-term stage method and also
adopts the hybrid RL framework to update the policy. As
shown in Fig. 7, the baseline with the Matching-SCA as the
short-term stage method converges to a stationary point that
better than the Q-weighted JBSO, but it still performs much
worse than the proposed TSRL-JBSO with the CC-TLG as the
short-term stage method.

Fig 8a shows different algorithms’ learning curves of HLC-
ET under configuration (1), where the traffic loading is mod-
erate. In this paper, batchsize means the number of experience
that used to update the policy. It can be observed that when
the traffic loading is moderate, Q-weighted JBSO can achieve
a fair performance, but much worse than both TSRL-JBSO
with 100 batchsize and TSRL-JBSO with 200 batchsize.
When the traffic loading goes heavy, as shown in Fig. 8b,
the performance gain of the proposed TSRL-JBSO becomes
much higher, with the highest gain of 226% (TSRL-JBSO
with 200 batchsize compared to the Q-weighted JBSO). In
both scenarios, TSRL-JBSO using SAC performs better than
Q-weighted JBSO, but converges slower than TSRL-JBSO
using HRL. Simulation results also show that with the same
old experiences, the proposed algorithm with larger batchsize
(newly added data) converges faster than that with smaller
batchsize at the cost of higher complexity per iteration, which
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(a) The learning curve of hard-latency con-
strained effective throughput under configuration
(1).

(b) The learning curve of hard-latency constrained
effective throughput under configuration (2).

Figure 8. HLC-ET comparison under different traffic scenario.

may due to a more stable gradient update of large batchsize.
To better illustrate the effectiveness of the proposed TSRL-

JBSO, we also compare the learning curve of packet loss
probability under different traffic cases, as shown in Fig. 9a
and Fig. 9b. It can be seen that following the same rule of the
learning curve of HLC-ET, when the traffic loading is mod-
erate, Q-weighted JBSO can achieve a fair performance, but
much worse than the proposed TSRL-JBSO. The performance
gain of TSRL-JBSO becomes much higher when the traffic
loading is heavy, which illustrate the effectiveness of TSRL-
JBSO in burst traffic transmission.

In order to prove the superiority of our two-stage RL
algorithm relative to single-stage methods, we simulate a
single-stage RL approach to solve the objective problem by
trying several commonly used DRL algorithms, such as SAC
and SCAOPO, to update the parameters of the policy, but
found the reward was very small and cannot converge at all. As
shown in Fig. 10, we compare the proposed TSRL-JBSO with
a single-stage RL approach, whose action is the beamforming
and the SIC operations, and the SIC and power constraints are
satisfied by projecting the action to the feasible region. It can
be found that the reward of the single-stage RL approach is
very small and the algorithm converges very slow. This is not
only because of the mixed large action space, but also due to
the complicated SIC operation constraints. The proposed two-
stage algorithm converges significantly faster, since the agent
only needs to generate the priority weight, and the problem
with complicated constraints can be solved in the short-term

(a) The learning curve of packet loss probability
under configuration (1).

(b) The learning curve of packet loss probability
under configuration (2).

Figure 9. Packet loss probability comparison under different traffic scenario.

Figure 10. Comparison with the single-stage RL approach.

stage by the designed optimization-based method.

VII. CONCLUSION

We proposed a novel TSRL-JBSO algorithm, which breaks
the entire optimization problem into two stages in different
timescales. We developed a BB-based algorithm to obtain
the optimal solution of the WSR maximization problem in
the short-term stage. We proved that the BB-based algorithm
can guarantee the convergence to an ϵ-optimal solution of the
WSR maximization problem, which belongs to the challenging
MINLP, within a finite number of steps. To accelerate compu-
tation in the short-term stage, we proposed a low-complexity
CC-TLG algorithm based on greed user selection in the outer
loop and channel correlation based greedy SIC operation in the
inner loop to significantly reduce the complexity with almost
no performance loss compared to the BB-based algorithm.
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Simulations shows the effectiveness of the proposed CC-TLG
in the short-term stage, and that the proposed overall TSRL-
JBSO algorithm achieves much better performance than the
baseline. In the non-stationary case when the channel/traffic
statistics change at a timescale comparable to the timeslot
duration, the performance of the proposed algorithm may de-
grade, which however, is also true for most resource allocation
algorithms. Future research may adopt the efficient context-
aware meta-learning to address this issue as well as consider
imperfect CSI.
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