Extruded colour-based plastic film for the measurement of dissolved CO2

Published in:
SENSORS AND ACTUATORS B-CHEMICAL

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Supplementary Information

Extruded colour-based plastic film for the measurement of dissolved CO$_2$

Andrew Mills* and Dilidaer Yusufu
S1: Photographs of Thymol blue plastic film and typical solvent-based ink film when stored in ambient atmospheric conditions, in the dark for 7 days.

Fig. S1. Thymol blue plastic film and solvent-based ink film was stored in the dark under ambient air (T = 22°C, RH ca. 60%) and a picture was taken once a day.
S2: Photographs of thymol blue plastic film function as a CO₂ sensor in carbonated drink.

Fig. S2. Photographs of a typical TB plastic film partly immersed in sparkling (i.e. carbonated) drinking water turn yellow due to reaction (1) but recovers its original colour after 1 h, when removed from the sparkling water.
S2: Photographs of thymol blue plastic film function as a CO\textsubscript{2} sensor in pH = 2 acid solution.

Fig. S3. Photographs of a typical TB plastic film partly immersed in 0.01 M HCl, in which it retains its original green colour until CO\textsubscript{2} is bubbled into the solution pH = 2, whereupon it turn yellow. Once removed from the acidic, carbonated solution, the TB plastic film regains its original colour.