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ABSTRACT
Increased system variability and irregularity of parallelism in
applications put increasing demands on the efficiency of dy-
namic task schedulers. This paper presents a new design for
a work-stealing scheduler supporting both Cilk-style recur-
sively parallel code and parallelism deduced from dataflow
dependences. Initial evaluation on a set of linear algebra ker-
nels demonstrates that our scheduler outperforms PLASMA’s
QUARK scheduler by up to 12% on a 16-thread Intel Xeon
and by up to 50% on a 32-thread AMD Bulldozer.

1. INTRODUCTION
The many-core roadmap for processors dictates that the

number of cores on a processor chip increases at an expo-
nential rate. Moreover, cores tend to operate at different
speeds due to process variability and thermal constraints.
As such, parallel task schedulers in the exascale era must
make dynamic (runtime) scheduling decisions [1].

The task dataflow notation has been studied widely as
a viable approach to facilitate the specification of highly
parallel codes [2, 3, 4]. Task dataflow dependences specify an
ordering of tasks (they leverage a task graph), which by its
nature exposes a higher degree of parallelism than barrier-
based models where threads wait periodically for all running
tasks to complete. Dynamic schedulers are, however, prone
to result in less performance than static schedulers due to
runtime task scheduling overhead.

This work investigates a new design for a task dataflow
dynamic scheduler. The key design goal is to minimize run-
time overhead without affecting the task dataflow program-
ming interface. The scheduler supports programs mixing
recursive divide-and-conquer parallelism and task dataflow
parallelism. This hybrid design simplifies, for instance, the
exploitation of parallelism across multiple kernels called in
succession. The scheduler combines the efficiency of Cilk’s
work stealing scheduler [5] for recursively parallel programs
with the efficiency of the steal-half queue [6] for programs
generating large numbers of simultaneously ready tasks.

We evaluate our design experimentally and compare against
PLASMA’s QUARK [2] scheduler on a set of level-3 BLAS
kernels with irregular parallelism. In comparison to QUARK,
our scheduler reduces end-to-end execution time of several
linear algebra kernels by up to 12% on an Intel Xeon (Sandy
Bridge) and by up to 50% on an AMD Bulldozer.

2. RELATED WORK
Several approaches to task dataflow scheduling have been

experimented with. Several authors have implemented Toma-
sulo’s algorithm in software [7, 8]. QUARK [2] is a work-
stealing scheduler tuned to linear algebra problems. QUARK
attempts to optimize data locality. QUARK records and
enforces dependences using the starting address of a task
argument. As such it is dependent on a fixed argument size.
SMPSs [9] uses a comparable work stealing design with many
design decisions that are similar from a high level point of
view. An SMPSs extension for strided and sparse access pat-
terns incurs a high performance penalty by scanning across
all outstanding tasks when scheduling a task [10].

PARSeC/DAGuE is a distributed task scheduler [3]. It
pre-computes and distributes the task graph in order to ob-
tain low overhead scheduling.

StarPU [4] schedules tasks according to predicted task la-
tency. Task latency is predicted using performance models
selected by the programmer.

Swan [11] is a task dataflow scheduler built as an extension
to Cilk [12]. As such, it fully supports nested parallelism.
Contrary to other approaches, Swan attempts to keep the
task graph small during execution and only expands it when
necessary to discover parallelism. In the initial design, task
graphs were retained centrally with the parent procedure.
In this paper, a distributed storage of the task graph among
the worker threads is proposed.

OpenSTREAM [13] is focused on stream parallelism. As
such, the scheduler is organized the matching of producers
with consumers.

XKaapi [14] employs a number of pattern-specific schedul-
ing heuristics in order to reduce scheduling overhead. Others
have similarly proposed heuristics to reduce the overhead of
specific parallel patterns [15].

3. SWAN
Swan is a task based programming model that extends

the Cilk language with dataflow annotations and dataflow-
driven execution [11, 16]. In this language, the spawn key-
word is inserted before a function call to indicate that the
call may proceed in parallel with the continuation of the
calling procedure. The sync keyword indicates that the exe-
cution of the procedure should be delayed until all spawned
procedures have finished execution.

Figure 1 shows an example Swan program that imple-
ments matrix multiply. The various components of the pro-
gramming model are explained below.

3.1 Objects
Objects are special program variables of type versioned
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1 typedef float (∗block t )[16]; // 16x16 tile
2 typedef versioned<float[16][16]> vers block t ;
3 typedef indep<float[16][16]> in block t ;
4 typedef inoutdep<float[16][16]> inout block t ;
5
6 void mul add(in block t A, in block t B, inout block t C) {
7 block t a = (block t)A; // Recover pointers
8 block t b = (block t)B; // to the raw data
9 block t c = (block t)C; // from the versioned objects

10 // ... serial implementation on a 16x16 tile ...
11 }
12
13 void matmul(vers block t ∗ A, vers block t ∗ B,
14 vers block t ∗ C, unsigned n) {
15 for( unsigned i=0; i < n; ++i ) {
16 for( unsigned j=0; j < n; ++j ) {
17 for( unsigned k=0; k < n; ++k ) {
18 spawn mul add( (in block t)A[i∗n+j],
19 ( in block t )B[j∗n+k],
20 ( inout block t )C[i∗n+k] );
21 }
22 }
23 }
24 sync;
25 }

Figure 1: Square matrix multiplication expressed in a lan-
guage supporting runtime tracking and enforcement of task
dependences.

that express inter-task dependences. Objects may be passed
as arguments to tasks using annotated task arguments that
express the side-effects of the task on that argument. Anno-
tated task arguments can only accept objects as arguments,
not constants or generic variable types.

An object may be renamed, which means that its address
is changed by the runtime system. The runtime system per-
forms renaming to increase parallelism. The runtime system
also makes sure that latent pointers to renamed objects are
properly translated to the appropriate version of the object
before accessing memory.

The runtime systems associates metadata to each object,
e.g. to perform dependence analysis and to recover its most
recent version after renaming. The runtime system stores
this metadata side-by-side with the object in order to speedup
the retrieval of metadata.

We further stipulate that all arguments passed to a task
are unique objects. This is to avoid circular dependences of
a task on itself.

3.2 Memory Usage Annotations
The arguments of spawned procedures may be annotated

with memory usage information, i.e. how the argument is
accessed by the task. The memory usage may be input,
output, input/output, commutative in/out or reduction. An
input argument is read but not written to. An output ar-
gument is written and may be read, but it is always written
before it is read. Consequently, its value upon initiation of
the task is irrelevant. An input/output argument (or in/out
for short) may be read and written and it may be read before
it is written.

A commutative in/out annotation extends the in/out se-
mantics with the notion that consecutively spawned tasks

may be executed in any order, but may not execute concur-
rently. Reordering is subject to the absence of other inter-
task dependences. The runtime system guarantees that com-
mutative tasks do not execute concurrently by associating a
lock with each object to enforce mutual exclusion.

Our model also supports reductions, details of which have
been previously published [17]. We will not discuss the sup-
port for reductions here as they pose no specific constraints
for the purposes of this work.

Hyperqueues extend the programming model with queue
usage annotations such as push and pop [18]. These annota-
tions are not fundamentally different than the annotations
listed above as they allow to use the same dependence track-
ing and scheduling techniques as discussed above.

3.3 Execution Model
The Swan execution model is an extension of the Cilk

execution model. Swan behaves identical to Cilk in the ab-
sence of task arguments with memory usage annotations.
The execution model differs when dataflow dependences be-
tween tasks are specified. These dataflow dependences are
restricted within a procedure body. In other words, a task
can depend only on a sibling, i.e., another task spawned by
the parent of the first task. The dataflow dependences are
furthermore determined by the order of the spawn state-
ments in the procedure body. It is assumed that a sequen-
tial thread of execution steps through the procedure and,
in the process, encounters a sequence of spawn statements.
This sequence, together with the memory usage annotations,
defines dependences between the spawned tasks. A depen-
dence states that a pair of tasks must execute in the order
that they were spawned. These tasks are added one by one
to the task graph, where nodes represent dynamic task in-
stances and edges represent task dependences.

The task graph is a directed acyclic graph (DAG) because
tasks can only depend on tasks that appear before them in
(serial) program order. At any moment, the roots of the
DAG are tasks that are either executing or that are ready
to execute. We call the list of root tasks that are ready to
execute the ready list. It provides direct access to the ready
tasks when one is needed.

Note that a Swan program may have up to one dataflow
task graph per procedure body. Execution of the program
may proceed by executing tasks from multiple task graphs
concurrently. Swan uses random work stealing to balance
execution between task graphs dynamically, depending on
the degree of parallelism in each task graph.

4. SCHEDULING
The Swan scheduler is responsible for deciding what task

is executed next by each worker thread. Like Cilk, the Swan
scheduler is symmetric, i.e., all workers execute the same
scheduling algorithm.

On encountering a spawn statement, the scheduler first
checks that all dependences have been satisfied. If so, the
scheduler proceeds as in the Cilk case, pursuing a work-first
execution. A stack frame is pushed on the worker’s deque
(double-ended queue), which is managed like a call stack.

If dependences are not satisfied, then the task is not started
for execution at this point. Instead, it creates a pending
frame, a new type of frame in the Swan scheduler that rep-
resents an uninitiated task. The pending frame is inserted
into the task graph that corresponds to the stack frame that
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Figure 2: The Swan runtime data structures for two worker
threads.

is currently at the tail of the spawn deque.1 The scheduler
then resumes execution of the stack frame at the tail of the
spawn deque. Figure 2 shows the position of the ready list
and the task graph in the scheduler.

The Swan scheduler applies three operations to task graphs:
issue, release, and get-task. The issue operation registers
that a task is accessing its operands (which are objects
in Swan) and records the memory usage annotation. If
other tasks are registered on the same objects, then the
dependences are deduced and recorded, which amounts to
linking the task in the task graph. If no dependences are
present, then the task is executed immediately, or inserted
in the ready list. The release operation unregisters a task,
i.e., dependent tasks are notified that dependences are re-
leased and, if applicable, the dependent tasks are moved to
the ready list. Finally, the get-task operation retrieves a
runnable task from the ready list.

When a spawn deque becomes empty after completing a
procedure, the scheduler first attempts to execute a ready
task on the worker’s ready list. This choice ensures that
task graphs are kept small, as completing a task is likely to
wakeup other pending tasks.

If the scheduler cannot identify ready tasks on the local
ready list, it attempts a provably-good steal of the parent
task. If the provably-good steal is unsuccesful, then random
work stealing is attempted. Random work stealing is again
designed to pick up ready pending tasks. First, a random
worker is selected called the victim. If the victim has a non-
empty ready list, then half of the tasks on the ready list are
transfered to the stealing worker. This strategy minimizes
work stealing [6]. One of the stolen tasks is moved to the
worker’s spawn deque and executed. If the vicitim’s ready
list is, however, empty then the scheduler tries to steal the
top frame on the victim’s spawn deque as in the Cilk sched-
uler. If all of this fails, another random victim is selected
and the algorithm is repeated.

5. PLASMA INTERFACE
For the purpose of the evaluation in this paper, we tightly

integrated Swan in the PLASMA system such that it can
be used as a replacement of the QUARK dataflow sched-
uler [2]. We have implemented a number of dynamically
scheduled level-3 BLAS kernels with irregular parallelism.

1As DAGs are restrained to a single procedure body,
spawned procedures may be not ready for execution only if
the parent procedure is executed in parallel, which requires
it to be at the tail of the deque.

Figure 3: PLASMA matrix parts

Our implementation respects the PLASMA API. This inte-
gration enables a one-to-one comparison between Swan and
QUARK as it is not affected by various implementation de-
cisions such as data layout, library interfaces, etc.

PLASMA parallelizes level-3 BLAS kernels by decompos-
ing them as blocked matrix operations. Hereto, matrices are
decomposed in blocks, assuming an internally tuned block
size. QUARK uses the starting addresses of matrix blocks
to track dependences: a matrix block is shared between two
tasks only if they both take the starting address of that block
as an argument. Some tasks only access part of a matrix
block and QUARK takes this into account. The commonly
occurring parts are the lower triangular part, the diagonal
and the upper triangular part of a matrix block (Figure 3).
While typically only matrix blocks on the diagonal of the
matrix are split in parts, it is necessary to allow per-part
dependences for all matrix blocks as PLASMA supports the
creation of sub-matrices which describe an arbitrary subset
of the matrix. As such, the diagonal blocks on a sub-matrix
may be non-diagonal blocks in the main matrix.

To integrate with PLASMA, we define the equivalent of
a PLASMA descriptor (which describes the matrix layout)
and PLASMA-specific dependence types that record depen-
dences on matrix blocks (Figure 4). The Swan descriptor of
a PLASMA matrix consists of the PLASMA descriptor and
a 2D-array of dependence tokens. The dependence tokens
consists of metadata to record actions of spawned tasks but
contrary to normal variables, they do not contain data. In-
stead, the data is taken from the matrix. The tokens record
up to three dependences to account for individual usage of
the lower and upper triangular parts and the diagonal of
a matrix block. The class subobj_metadata records such
metadata and applies up to 3 times the standard Swan de-
pendence tracking algorithm, depending on what parts of a
matrix block are used by a task.

Input, output and input/output dependences can be ob-
tained from the Swan descriptor using the get_indep(),
get_outdep() and get_inoutdep() methods (only indep’s
are shown in Figure 4, other dependence types are defined
similarly). These dependences hold a pointer to the cor-
responding token and the starting address of the matrix
block’s data.

Given the definition of the PLASMA matrix descriptor
and dependence types in Swan, linear algebra kernels can be
expressed in Swan and scheduled using task dataflow paral-
lelism. Figure 5 shows how the dormqr function is declared
and how it is used. dormqr accesses the lower-triangular part
of a block A (indicated by the additional template argument
sub::lo) and accesses blocks T and C in full. After instanti-
ating the matrix descriptors in PLASMA and Swan formats,
the appropriate matrix blocks, annotated with usage infor-
mation, are obtained using the get_X dep() methods.
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1 struct sub {
2 enum parts id t {
3 lo = 1, diag = 2, up = 4,
4 lodiag = lo | diag ,
5 updiag = diag | up,
6 all = lo | diag | up };
7 };
8 template<typename T, sub::parts id t parts=sub:: all>
9 class plasma indep {

10 static const sub :: parts id t parts = parts ;
11 subobj metadata<sub> ∗ meta; // dependence tracking
12 T ∗ addr;
13
14 static plasma indep<T, Part>
15 create ( subobj metadata<sub> ∗ meta, T ∗ addr ) { ... }
16
17 public :
18 const T ∗ get addr() const { return addr; }
19 };
20
21 template<typename T>
22 class swan desc {
23 PLASMA desc desc;
24 subobj metadata<sub> ∗ tokens;
25
26 public :
27 swan desc( const PLASMA desc & desc ) {
28 // Copy PLASMA desc and setup 2D array of tokens
29 }
30 T ∗ get addr( int m, int n ) const {
31 return plasma getaddr( desc, m, n );
32 }
33 template<sub::parts id t part = sub:: parts id t :: all>
34 plasma indep<T,part> get indep( int m, int n ) const {
35 return plasma indep<T,part>::create(
36 get token( m, n ), get addr( m, n ) );
37 }
38 private :
39 subobj metadata<sub> ∗ get token( int m, int n ) {
40 return tokens [...];
41 }
42 };

Figure 4: Swan interface to PLASMA descriptor

1 void
2 dormqr( ..., // dimensions, transforms
3 plasma indep<double,sub::lo> A,
4 plasma indep<double> T,
5 plasma inoutdep<double> C );
6
7 PLASMA desc A = ...;
8 PLASMA desc T = ...;
9 swan desc<double> As( A );

10 swan desc<double> Ts( T );
11 spawn dormqr( ...,
12 As.get indep<sub::lo>(k, k),
13 Ts.get indep(k, k), // defaults to sub :: all
14 As.get inoutdep(k, n), ... );

Figure 5: Usage of Swan/PLASMA descriptor

6. EVALUATION
We compare the performance of Swan and QUARK to

schedule three linear algebra kernels with irregular paral-
lelism: Cholesky factorization, QR factorization and LU
factorization with partial pivoting. Our comparison is per-
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Figure 6: Overhead of tripple dependence tracking.

formed on two machines: a dual-socket 2 GHz Intel Xeon
Sandy Bridge E5-2650 (2x8 threads) and a dual-socket 2.1GHz
AMD Opteron 6272 (2x16 threads). In the AMD processor,
every pair of cores shares a floating-point unit.

We use PLASMA 2.6.0, gcc 4.9.2 and CentOS 6.5 on both
machines. On Intel we use Intel MKL 11.1.2 for the ba-
sic single-threaded BLAS kernels. On AMD we use ACML
5.3.1.

6.1 Dependence Tracking on Object Parts
Firstly, we validate the design of tracking dependences

on object parts (one dependence chain per part of a matrix
block). This analyses is performed exclusively using Swan on
the Intel machine. Figure 6 compares three scenarios. The
first scenario (“std deps”) measures the performance of QR
factorization while assuming that tasks access full matrix
blocks. Only one dependence is recorded per matrix block.
In the second scenario (“std deps, 3x”), we make the same
assumption but we record 3 dependences per block, one for
each part. The parallelism in the first two versions is iden-
tical. In the third version (“partial deps”), again three de-
pendences are recorded per usage of a full matrix block, but
the QR algorithm correctly records dependences on parts of
matrix blocks. As such, the parallelism is higher in the third
scenario, although dependences are recorded three times in
the majority of cases. We furthermore vary the matrix di-
mension (the block size is kept constant to PLASMA’s de-
fault of 128).

Figure 6 demonstrates that tracking dependences three
times per task argument incurs little overhead. In fact, it
results in a minor speedup. However the standard deviation,
depicted using error bars, shows that this speedup is not
statistically significant. Annotating partial usage of matrix
blocks results in reduced execution time. We note this im-
provement for matrices with dimensions 500 to 2000, which
in practice means that the degree of parallelism must be low
in comparison to the block size and number of threads.

We conclude that our implementation enables increased
parallelism without significant performance overhead in cases
where only full matrix blocks are accessed.

6.2 Evaluation on Sandy Bridge
Figure 7 shows the performance of cholesky, QR and LU

with partial pivoting when executing on 16 threads. Cholesky
decomposition performs nearly equally with Swan and QUARK.
Performance of QR, however, is between 3.8% and 12.5%
faster with Swan than with QUARK for matrix dimensions
up to 4000. LU is between 5.8% and 11.9% faster with Swan
for matrix dimensions up to 4500.

Figure 8 shows that the performance differences grow with
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Figure 7: Performance comparison of Swan and QUARK for varying matrix dimension on Sandy Bridge using 16 threads.
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Figure 8: Performance comparison of Swan and QUARK for varying thread count and a 1500x1500 matrix on Sandy Bridge.

an increasing thread count for a 1500x1500 matrix. At the
highest thread count, Swan executes Cholesky, QR and LU
faster by 3.8%, 12.5% and 11.9%, respectively.

6.3 Evaluation on Bulldozer
Figure 9 shows the performance of the kernels when using

the full Bulldozer machine (32 threads). We do not find
noteworthy performance differences in this comparison for
Cholesky. On LU, Swan outperforms QUARK by 5.6%–
10.6% for matrix dimensions between 3000 and 5000. On
QR, Swan is significantly faster, over 12% and up to 22.8%
for matrix dimensions larger than 2500.

Investigating the variation with thread count (Figure 10),
we see a marked difference between Swan and QUARK on
the three kernels. Note that we applied thread pinning for
both runtimes such that no floating-point units are shared
between threads when 16 threads or less are used. Swan
is able to quickly utilize most of the available performance,
while performance increases more slowly after 16 threads. In
contrast, QUARK needs to utilize all threads to reach close
to peak performance. On 16 threads, Swan outperforms
QUARK by 44–53%.

7. CONCLUSION
Swan is a versatile scheduler that has been proven in

distinct scenarios, including pipeline parallelism, recursive
parallelism and in this paper for linear algebra computa-
tions. The scheduler is optimized to schedule both recur-
sive (divide-and-conquer) parallelism and task dataflow par-
allelism. In a one-to-one comparison with PLASMA, we
demonstrate performance benefits up to 10% on a range of
matrix dimensions on an Intel Sandy Bridge machine. More-
over, we demonstrate up to 22.8% performance improvement
on a fully utilized AMD Bulldozer machine.
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Figure 9: Performance comparison of Swan and QUARK for varying matrix dimension and maximum threads on Bulldozer.
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Figure 10: Performance comparison of Swan and QUARK for varying thread count and a 4500x4500 matrix on Bulldozer.
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