
Rigorous Specification and Low-Latency Implementation of Technical
Market Indicators

Bakanov, K., Spence, I., Vandierendonck, H., & Gillan, C. J. (2014). Rigorous Specification and Low-Latency
Implementation of Technical Market Indicators. Paper presented at Parallel Programming for Analytics
Applications 2014, Orlando, United States. https://doi.org/10.1145/2567634.2567636

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in PPAA '14 Proceedings of the first workshop on Parallel programming for analytics applications Pages
43-52} http://doi.acm.org/10.1145/2567634.2567636"

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Oct. 2022

https://doi.org/10.1145/2567634.2567636
https://pure.qub.ac.uk/en/publications/26d993b6-0fbf-40e1-8438-51ac9328bdf9

Rigorous Specification and Low-Latency
Implementation of Technical Market Indicators

Konstantin Bakanov Ivor Spence
Hans Vandierendonck

Queen’s University of Belfast
kbakanov01@qub.ac.uk i.spence@qub.ac.uk

h.vandierendonck@qub.ac.uk

Charles Gillan

charlesgillan@handhold.eu

Abstract
Technical market indicators are tools used by technical an-
alysts to understand trends in trading markets. Technical
(market) indicators are often calculated in real-time, as
trading progresses. This paper presents a mathematically-
founded framework for calculating technical indicators. Our
framework consists of a domain specific language for the un-
ambiguous specification of technical indicators, and a run-
time system based on Click, for computing the indicators.
We argue that our solution enhances the ease of program-
ming due to aligning our domain-specific language to the
mathematical description of technical indicators, and that it
enables executing programs in kernel space for decreased
latency, without exposing the system to users’ programming
errors.

Keywords domain-specific languages, technical market in-
dicators, in-kernel processing, click router

1. Introduction
Technical Analysis is concerned with analyzing stock price
movements, identifying patterns in them and then taking
advantage of these patterns by making preemptive trades
[12]. Traders predominantly relying on technical analysis
to conduct their trading are sometimes called “technicians”
or “technical analysts”. There are many tools which techni-
cians use to first describe and later identify the patterns in
stock movements. These range from charting, where traders
visually identify patterns in charts, technical market indica-
tors, which usually consist of some mathematical formula
encompassing a sliding window view of the market, to more
complex tools, such as neural networks or a combination of
neural networks and technical market indicators [20, 21].

A technical market indicator is a mathematical formula
applied to time series data, which usually consists of high,
low, close prices and volume for a given period of time.
Conventionally this period of time used to be a trading day,
however in the modern age with the rise of day traders, the
period of time can be anything from a few seconds to a few

CCI = (M – A)/(0.015 * D)

where

M = (H + L + C)/3 = simple mean price for a period.
H = highest price for a period.
L = lowest price for a period.
C = closing price for a period.
A = n-period simple moving average of M.
D = mean deviation of the absolute value of the differ-
ence between mean price and simple moving average of
mean prices, M – A.

Figure 1. Definition of the Commodity Channel Index [7]
(quoted verbatim).

hours [14, 23]. The technical indicators are therefore used to
identify trends within markets and their associated charac-
teristics, such as momentum, sentiment and other properties
[8]. Some indicators are used to gauge an entire market, such
as Coppock Curve and Advance-Decline Line.

A system to compute technical market indicators in real-
time has to combine various properties. It must allow tech-
nicians to fairly easily specify the indicators, the specifica-
tion of the indicators must be rigorous and they must be exe-
cuted as fast as possible. These are significant challenges,
but ones that are well addressed by domain specific lan-
guages (DSLs). In this paper, we develop the basis for a do-
main specific language for specifying and computing tech-
nical market indicators.

The specification of technical market indicators is non-
trivial. Figure 1 lists the Commodity Channel Index, a price
momentum indicator. Clearly, such a specification is not
only hard to read, but it is also imprecise. To counter these
issues, the specification comes with a detailed computational
recipe [7], resembling an algorithm written in an imperative
programming style. We have found that there is generally
no uniformity of notations. This may lead to ambiguity in
interpreting indicators as our discussion on the definition of

1 2013/12/9

time intervals will show. This work aims to solve these issues
by presenting a mathematically founded framework for the
definition of technical indicators.

In order to make the specification of technical indicators
rigorous, we base our DSL on the mathematical specification
of technical market indicators, as elaborated in Section 2.
In essence, a technical indicator operates over a sequence
of timestamped values (trades), which are summarized into
high, low, open and close prices over specific time intervals.
Technical indicators are then functions over sequences of
high, low, open and close prices. Our DSL will be closely
aligned to these mathematical definitions, closing the seman-
tic gap between the specification (mathematics) and the pro-
gramming language.1 Moreover, our formulation is modu-
lar, as different operations may be defined individually and
reused at will. As an example, we define the exponential
weighted moving average (EWMA) as a reusable compo-
nent in Section 3. This way, we can build up a library of
commonly used computations in technical market indicators,
which simplifies the programming task.

We apply our framework to the formulation of the direc-
tional movement index (DMI), a non-trivial technical market
indicator [9]. Section 4 shows how we can specify DMI in a
few steps by reusing definitions of high, low, open and close
prices as well as EWMA.

We select the Click modular router [15] as a runtime sys-
tem for our DSL. As such, it is invisible to the program-
mer and other runtime systems may be selected or designed.
Click is, however, particularly appropriate as it is designed
to react to incoming (network) packets (in our case trades)
and process packets as they arrive. The mapping of func-
tional components in our DSL to Click components is quite
straightforward and is well suited to apply code optimization
strategies to specialize the Click components to the technical
indicators computed. Moreover, the Click router is capable
of working with raw market data, coming directly from the
exchange (known as a market data feed), thus making it pos-
sible to use it as part of a low latency system, which can be
appealing to high frequency traders.

As the latency of calculating technical market indica-
tors can be extremely important in algorithmic trading, we
demonstrate the use of our DSL to perform the computa-
tion of indicators in kernel space (Section 5). Executing pro-
grams in kernel space is extremely dangerous, as any soft-
ware bug may affect the whole system. However, by using
a DSL, where the programming language is restricted and
where memory accesses are under full control of the DSL
compiler and runtime system, we can provide a safe system
to execute programs in kernel space. This way, we demon-
strate improved processing latency/throughput for the DMI
indicator when evaluating the indicator in kernel space.

1 We do not yet define a DSL in this paper, as we are still exploring the
principles and appropriate concepts to use, yet the mathematical description
and DSL are in direct correspondence.

Finally, Section 6 concludes this paper and discusses fu-
ture work.

2. The Fundamentals of Technical Indicators
The basic building blocks of a technical indicator are the
following properties: High Price, Low Price, Closing Price,
Opening Price (rarely) and Volume. Any one of these char-
acteristics is calculated for a given time interval. Once those
values are calculated for every interval in question, then any
technical indicator can be represented as a rigorous mathe-
matical formula.

Some indicators are simple and can be recorded with one
expression, as in the previous CCI example. Some formulas
are more complex and are better recorded as a cascade of
functions.

However before moving onto the more complex con-
structs let us consider first the most basic building block of
any technical indicator - that is the time-price interval. For
this purpose let us define the prices, the volumes and the
times at which these trades have occurred as a sequence of
3-tuples. Let us name this sequence D. In order to select any
one member of a given tuple d, let us define 3 helper func-
tions:
time(d) - which returns the time component of a tuple d.
price(d) - which returns the price component of a tuple d.
volume(d) - which returns the volume component of a tuple
d.
Let us also assume that the observations started at time 0.

Now we need to select values d from the sequence D,
which fall inside a given interval. We need this to calculate
High, Low, Close, Open, as these are defined per a given
interval. However we have a number of choices in this.
Firstly let us name the length of interval a, let us name the
current time T and let us number the intervals. We’ll use
variable i for this purpose, so that the first interval would
be i0, the second interval would be i1, the one after i2 and
so on. The number of current interval k can be calculated
as k = bT/ac. Then the main question can be formulated
as this: how do we select values d (for calculating High,
Low, Close, Open) when time T occurs inside an interval
ik? There are 3 options here:

1. We only calculate High, Low, Close, Open after an inter-
val has elapsed. I.e. during an interval ik the most recent
High, Low, Close, Open would be the ones calculated for
the previous interval ik−1. Therefore if a technical indica-
tor operates on High, Low, Close, Open from, say, 3 last

Figure 2. Selection of time intervals under options 1 and 2.
Intervals are fixed and are all of equal length.

2 2013/12/9

Figure 3. Selection of time intervals under option 3. When
calculating indicators in response to the trade occurring at
tick 2 the intervals are shifted slightly to more recent trades
compared to when calculating indicators in response to tick
1.

intervals, then these intervals will be ik−1, ik−2, ik−3.
The figure 2 illustrates the time intervals.

2. Alternatively at the start of the interval ik we set High,
Low, Close, Open to that of the interval ik−1. Then as
prices come in during the current interval ik we update
High, Low, Close, Open. In this case the very same indi-
cator as in the option #1 operating on 3 last intervals will
use trades occurring in the intervals ik, ik−1, ik−2.

3. In contrast with the first two options we now consider
the case when intervals’ boundaries are not set, but rather
move with every trade. I.e. the time T will always coin-
cide with the end of interval ik. See figure 3 for an illus-
tration of this.

We must also consider the cases when the user at time
T wishes to retrieve the technical indicator value at time
T − b, where b is a random time interval. For the purpose of
this discussion we will lay the responsibility for recording
previous indicator values upon the user. I.e., in this paper
we focus on real-time and leave historical values as future
work. Also it is important to note that our point of reference
is current interval k and all other intervals are defined as an
offset i from k.

With the above points in mind let us mathematically for-
mulate the selection of time intervals from a relation D. The
selection can be done using sequence comprehension. Let us
name the function, which does the selection, an F - for filter.

For the option #1 the formulas will look as follows:

F1(D,T, i, a) =[d : D|(k − i) ∗ a ≤ time(d) <

(k − i+ 1) ∗ a ∧ (k − i) ≥ 0] (1)

where
d is a dummy variable.
T is the current time.
a is the length of the interval in question.
k is the number of the current interval, calculated as

k = bT/ac.
i is the offset of the interval in question from the
current interval. By definition i is equal to or greater
than 1.

This formula reads like this: for every d in the sequenceD
select the ones, whose time values are greater than or equal
to (k − i) ∗ a, but less than (k − i + 1) ∗ a. (k − i) ≥ 0 is
used to ensure that we select a valid interval.

For the option #2 the formula 1 will hold for the intervals
ik−1 and below, but for the interval ik it will change, so that:

F2(D,T, i, a) =if(i > 0)

then F1

else[d : D|T −∆t ≤ time(d) ≤ T]
(2)

where
∆t is the time between T and the end of the previous
interval. It can be computed as T mod a.

For the option #3 for all the intervals the formula will
change to:

F3(D,T, i, a) = [d : D|(∆t+ (k − i− 1) ∗ a ≤
time(d) < ∆t+ (k − i) ∗ a) ∧ (k − i− 1) ≥ 0]

(3)

Each of F1−3 would be preferred for different use cases.
E.g. F1 would be preferred for a case, when a user does not
mind if an indicator is slightly lagging (up to the length a of
an interval) behind the current state of the market. F2 would
be preferred when a user is interested in a more up-to-date
state of the market than what F1 provides. F3 would give the
most accurate look of the market, but would require more
computational resources.

In practice, option #2 is the most common [10].
Using function F2(D,T, i, a) we can now define func-

tions that help us calculate High, Low, Open, Close prices
for the interval selected. Also it is important to understand
that sometimes for rarely traded instruments we may receive
no trades in a given time interval. We handle this situation by
copying the High/Low/Open/Close price from the previous
interval. If the previous interval has no prices, we continue
traversing our sequence D until we reach the start of our ob-
servation at time 0 in which case the resultant value is 0.

Let us start with defining a generic function I , which
searches for non-empty interval i and applies an arbitrary
function X to the subsequence of values d, that fall within a
selected interval.

3 2013/12/9

I(D,T, i, a,X) =if (F2(D,T, i, a) = ε)

then if(T − (∆t+ (i+ 1) ∗ a) > 0)

then (I(D,T, i+ 1, a,X))

else 0

else price (X(F2(D,T, i, a)))

(4)

where
ε is an empty sequence.
X is an arbitrary function that takes a sequence as
a parameter and returns an element of that sequence
(e.g. head, which returns the first element).

The functions for computing High, Low, Open and Close
can then be defined as follows:

High:
H(D,T, i, a) = I(D,T, i, a,maxp) (5)

where
maxp is the function returning an element of a se-
quence of 3-tuples with the highest price.

Low:
L(D,T, i, a) = I(D,T, i, a,minp) (6)

where
minp is the function returning an element of a se-
quence of 3-tuples with the lowest price.

Close:
C(D,T, i, a) = I(D,T, i, a, last) (7)

where
last is the function returning the last element of a
sequence.

O(D,T, i, a) = I(D,T, i, a, head) (8)

where
head is the function returning the first element of a
sequence.

Some indicators take into account the volume for a given
interval. Unlike High/Low/Open/Close we do not need to
retrieve the volume from any of the previous intervals if the
current interval’s volume is 0.

V ol(D,T, i, a) =

#F2(D,T,i,a)−1∑
j=0

volume(F2(D,T, i, a).j)

(9)
where
j is used to select a member of a sequence, returned
by F2 function [11].
volume is used to select the volume member of a 3-
tuple as defined earlier in this section.
#F2(D,T, i, a) is used to retrieve the length of a
sequence.

3. EWMA - Exponentially Weighted Moving
Average

Many indicators (including DMI indicator, which we discuss
in the following sections) use EWMA. For the benefits of
performance usually an EWMA is calculated according to
this formula [19]:

X̂0,α = X0

X̂k,α = (1− α) ∗Xk + α ∗ X̂k−1,α (10)

where
X̂k is the value of exponentially smoothed price for
the interval k.
Xk is the price for the interval k.
α is a weighting parameter, which is chosen by the
user. It needs to be in the range 0 < α ≤ 1.

From this formula one can see that we only need to store 1
previous value of EWMA to calculate the present value of
EWMA.

Let us re-write the above formula for EWMA using our
notation. First we need to calculate EWMA for the first
period:

EWMAX(D,T, k, a, α) = X(D,T, k, a) (11)

where
k is the number of the current interval, calculated as
k = bT/ac.
By using k as a value for i we can refer to the first (in-
dex 0) interval of our observations. Thus in the above
formula we set the EWMA value of a first interval to
the value of function X of that same interval.
Recall the meanings of the other variables:
D is the sequence of 3-tuples, denoting time, price
and volume of the trade.
T is the current time.
a is the length of an interval.
X(D,T, i, a) (with k as a value for i) is used to
denote H(D,T, i, a), L(D,T, i, a), C(D,T, i, a),
O(D,T, i, a) or any other functions derived from
these.

For every subsequent interval EWMA looks like follows.

EWMAX(D,T, i, a, α) = (1− α) ∗X(D,T, i, a)+

α ∗ EWMAX(D,T, i+ 1, a, α) (12)

where
i is the offset from the current interval.

4. DMI indicator
Let us now demonstrate our mathematical concepts in action
by creating a rigorous model of Directional Movement Index
(DMI) indicator. DMI is characterized as “a rather complex
trend-following indicator” [9].

4 2013/12/9

First, positive and negative directional movements are
calculated - named PDM andNDM respectively. PDM is
current period’s high minus previous period’s high. NDM
is previous period’s low minus current period’s low.

PDMtran(D,T, i, a) = H(D,T, i, a)−H(D,T, i+1, a)
(13)

NDMtran(D,T, i, a) = L(D,T, i+1, a)−L(D,T, i, a)
(14)

where
i is an offset from current interval k, which is com-
puted as k = bT/ac.
tran stands for transitional and denotes transitional
PDM and NDM respectively, i.e. not the final ones.

PDM is zero if PDMtran is negative, or less than
NDMtran. Otherwise it is equal to PDMtran. The same
logic applies to NDM .

PDM(D,T, i, a) =if (PDMtran(D,T, i, a) <

NDMtran(D,T, i, a))

then 0

else max(PDMtran(D,T, i, a), 0)
(15)

Likewise NDM is:

NDM(D,T, i, a) =if (NDMtran(D,T, i, a) <

PDMtran(D,T, i, a))

then 0

else max(NDMtran(D,T, i, a), 0)
(16)

At the same time true range is calculated, which is the
largest value of: current high minus current low, current high
minus previous close or previous close minus current low.

TR(D,T, i, a) =max(H(D,T, i, a)− L(D,T, i, a),

H(D,T, i, a)− C(D,T, i+ 1, a),

C(D,T, i+ 1, a)− L(D,T, i, a)) (17)

Then PDM,NDM and TR are smoothed with expo-
nentially weighted moving average (EWMA).

Having smoothed PDM,NDM and TR we can now
calculate positive and negative directional indices (PDI
and NDI respectively), which are calculated by division
of smoothed PDM by smoothed TR for PDI and by di-
vision of smoothed NDM by smoothed TR for NDI . The
author of the indicator suggests that α should be set to 1/14
or 0.07143.

PDI(D,T, i, a) = EWMAPDM (D,T, i, a, 1/14)/

EWMATR(D,T, i, a, 1/14) (18)

NDI(D,T, i, a) = EWMANDM (D,T, i, a, 1/14)/

EWMATR(D,T, i, a, 1/14) (19)

Next directional movement (DX) is defined as the the
absolute difference between PDI and NDI , divided by the
sum of PDI and NDI and the result multiplied by 100.

DX(D,T, i, a) =

100 ∗ abs(PDI(D,T, i, a)−NDI(D,T, i, a))/

(PDI(D,T, i, a) +NDI(D,T, i, a)) (20)

where
abs is the function returning an absolute value of a
number.

Finally average directional movement (ADX) is defined
as an EWMA of DX with α set to 1/14:

ADX(D,T, i, a) = EWMADX(D,T, i, a, 1/14) (21)

5. Implementation
5.1 Click Platform
We have implemented DMI indicator described above on top
of Click router. The Click Modular Router project [5, 16–
18] takes the approach of designing small objects which can
be joined together to create a workflow or configuration,
in an essentially arbitrary manner. Each object, known as a
Click element, implements a processing function on a packet
header at one of the layers of the OSI stack. The creation
of Click configuration is facilitated by the Click language,
that is a domain specific (DSL) language for building routing
functions. Click router can run in kernel space as well as in
user space, which should result in increased performance.
From a development point of view an added benefit of Click
router is that despite the integration with Linux kernel as
a module it still allows code to be written in C++. Click
router encompasses an entire framework, which provides
certain constructs, typically present in STL, but not available
to kernel developer, such as hashmaps, strings, vectors etc.

Figure 4. DMI indicator - topology.

5 2013/12/9

Another advantage is Click’s multithreaded design (not used
in our present tests), which allows to scale when deployed
on many core CPUs.

The choice of Click platform for implementation is not
binding. It can be any platform corresponding to a number
of requirements. The next section expands a little on what
makes Click a relatively good choice for this particular case.

5.2 Mapping Maths to Click
Our rigorous mathematical definition of a DMI indicator is
essentially a cascade of interrelated functions, operating on
a sequence of data (for most part). Click router has been de-
signed specifically to process streams of data using a cas-
cade of processing nodes (elements), which can be easily
configured with the use of a DSL. Therefore the purpose of
our experiments is to verify how well we can map the ele-
ments of our DSL onto the underlying platform (Click in this
case, but it can be any suitable platform). We do the mapping
manually. First we develop a set of Click elements (process-
ing nodes), which correspond to functional constructs in our
mathematical DSL. Second we link those elements together
with the use of Click language to form a complete processing
workflow - a DMI indicator. An overall picture of processing
nodes and links/edges is shown in figure 4.

After processing the raw market data in chix tra-

de handler (to generate trades) and selecting the sym-
bols of interest in symbol filter we pass the trades to
direct move, which calculates PDM and NDM , and to
true range, which calculates TR. The output of these ele-
ments is smoothed using various instances of EwmaElement.
di minus and di plus calculate NDI and PDI corre-
spondingly. Together, the output of di minus and di plus

is used to calculate DX (in dx element). The output of dx is
again smoothed using ewma dx, which makes it ADX .

5.3 Experimental Methodology
Fidessa, the company sponsoring this paper, has provided
the file with market data feed messages from Chi-X Europe
stock exchange. This file contains about 1 hour worth of
trading messages. The format of the messages corresponds
to “CHIXMD FEED SPECIFICATION” [6]. In our exper-
iments for simplicity purposes we have changed the trans-
portation method of market data messages from TCP (as in
original specification) to UDP, which is also widely used by
very similar protocols, such as Multicast PITCH [1].

Since Linux kernel kernel does not immediately allow
to do floating point calculations, we had to use fixed point
arithmetic library to handle prices and other floating point
calculations [2].

Click version 2.0.1 is used. Click package has been com-
piled for kernel space execution (as a kernel module) and
for user space execution (as a standalone application). Linux
kernel version 2.6.34.13 has been changed to enable the in-
terception of packets. Two hooks were added to kernel net-
if receive skb function. The first hook is used by ti-

mestamper kernel module, which attaches a time stamp
(produced by rdtsc instruction) to a network packet of in-
terest. The second hook is used only by Click in kernel mode
to intercept the packet. Intel(R) Core(TM) i7 CPU 930

processor running at 2.8 GHz was used for running the DMI
indicator. This processor possesses an invariant time stamp
counter [13], which allows to use it for accurate and pre-
dictable measurements. The latency was measured between
the time stamp, produced by the timestamper kernel mod-
ule, and the time stamp produced by StatPrinter element.

The rest of system settings were set to their default values
as per standard Ubuntu distribution 12.04 and per generic
Linux kernel version 2.6.34.13.

When Click is running in user space, it runs as a stan-
dalone application and simply consumes packets from a raw
socket.

5.4 Results
A simple application was written, which sends UDP pack-
ets at a configurable message rate over computer network.
Latency measurements were performed at 4 various rates:
10000, 50000, 100000 and 200000 messages per second.
The results are shown in figure 5. SymbolFilter element
was configured to filter trade messages for 2 of the most
frequently traded symbols: BARCl and LLOYl. The latency
measured is an average (mean) latency calculated over 6500
updates that reached StatPrinter. Standard deviation is
calculated over the same 6500 messages as well. It is impor-
tant to note that only around 2% of all market data contained
in a file are trade messages.

The graphs present the results as candlesticks: the line
in the middle is the average (mean) latency, the top and the
bottom of the box are offset 0.5 of standard deviation from
the mean. The maximum and the minimum values are rep-
resented by the top and bottom whiskerbars respectively. As
one may see from the graphs, the in-kernel processing la-
tency is significantly lower than that in userspace. We be-
lieve this is in part due to short processing path of DMI indi-
cator relative to the processing path of network stack, which
we bypass. The standard deviation in kernel space is also
lower, meaning that much of the variability in execution time
is caused by the network stack and OS/user space context
switch. At 100000 messages per second the load on the sys-
tem starts being excessive, leading to higher standard devia-
tion. At 200000 messages per second the user level version
of DMI indicator cannot keep up with data rates and only
circa 2100 updates are processed, the rest are dropped. How-
ever the kernel space version of DMI indicator still manages
to process all 6500 updates although at a cost of increased
latency.

6. Conclusion and Future work
In this paper we have outlined the underpinning mathemati-
cal concepts for the rigorous construction of technical mar-

6 2013/12/9

Figure 5. Execution time distribution of the DMI indicator in kernel space (left) and user space (right). The candlesticks
indicate the minimum observed latency, half of a standard deviation below the mean, the mean observed latency, half of a
standard deviation above the mean and the maximum latency. Latencies are depicted on a logarithmic scale.

ket indicators. These concepts are important because in a
current environment there is no common notation for tech-
nical market indicators, neither there is any uniformity of
notations. We hope that our paper will help to address both
of these issues. Using mathematical concepts we have pro-
duced the model of a sample indicator: DMI indicator. We
then produced an implementation of our sample indicator on
top of Click router. The sequence data structure used in our
model has mapped well onto the stream processing nature
of Click router and the functional elements of DMI indicator
have mapped well onto Click’s concept of elements.

As expected, the latency of DMI indicator executing in
kernel space is significantly lower than that in user space.

In the future we intend to expand our work to encompass
running simultaneously a number of technical market indica-
tors in a multi-threaded environment. We will concentrate on
jointly optimising the Click routing functions for a set of in-
dicators and instruments. We will also consider the process-
ing of historical data as a computational problem, that allows
a different set of code optimisations compared to real-time
processing.

7. Related Work
Various online brokerage companies provide the software
platforms for trading. These platforms often include the pro-
gramming IDE and the language to allow users to create their
own custom indicators. Sometimes the language in question
is a general purpose imperative language, such as JavaScript
in eSignal, C# in Wealth-Lab, VB.NET in Stockfinder and
others, but often it’s a custom-made domain specific lan-
guage (DSL), such as imperative EasyLanguage in Tradesta-
tion and Multicharts, the imperative AIQ EDS language in
AIQ, imperative QScript in Wave59 and others. These DSLs
are usually quite expressive and once again aimed at apply-
ing mathematical formulas to time series data. Quite often
they are also tightly integrated with the trading platform, al-
lowing the coding of execution strategies, alerts and other
custom objects. The differences between DSLs make migra-

tion from one platform to another not as easy and painless as
it could be. One exception to this is EasyLanguage, which is
used by both the TradeStation and MultiCharts.

FFTI [25] is an attempt to define a uniform notation
for expressing technical market indicators. The authors take
an approach whereby they define a number of aggregate
functions, such as average, sum, product, min, max etc, and
then use those functions with auxiliary parameters to define
technical market indicators. They implement their concept as
a web based tool. FFTI has little in common with our work
as it uses a different approach, doesn’t provide the same low
level of underpinning mathematical concepts and does not
intend to be modular and stream based in a way that our
concept does.

Two books [3, 7] provide some of the most comprehen-
sive overviews on the topic of technical market indicators,
including their description, returns analysis and trading ad-
vice.

From time to time kernel space execution also receives
its share of attention. Shukla et al [22] evaluate the perfor-
mance of user space µserver and kernel space server TUX.
Birch [4] evaluates the performance of an in-kernel packet
capturing utility and Zander et al [24] compare the perfor-
mance of an in-kernel UDP traffic generator and receiver
vs. conventional tools such as tcpdump and CRUDE. All of
them conclude that in certain (if not most) situations kernel
space execution is superior to user space execution in terms
of latency, performance and CPU load.

Acknowledgments
This work has been carried within the Northern Ireland Cap-
ital Markets Collaborative Network funded by a consortium
of Queen’s University Belfast, University of Ulster, Fidessa,
NYSE Euronext, Citi, First Derivatives, Kofax and Invest
Northern Ireland. The authors are grateful to Fidessa UK Ltd
for providing the Chi-X data set which was used to conduct
the experiments reported in this paper and for many useful

7 2013/12/9

discussions with Fidessa on this work. Konstantin Bakanov
is supported by a PhD studentship from the Department of
Employment and Learning NI. The research was carried out
at the ECIT Institute at Queen’s University Belfast.

The research leading to these results has received fund-
ing from the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under the project NovoSoft, REA grant
agreement no 327744.

References
[1] BATS Chi-X Europe || Support, . URL

http://www.batstrading.co.uk/support/.
[2] Fixed Point Math Library for C | Free soft-

ware downloads at SourceForge.net, . URL
http://sourceforge.net/projects/fixedptc/.

[3] R. J. Bauer and J. R. Dahlquist. Technical Markets Indicators:
Analysis & Performance (Wiley Trading). John Wiley & Sons,
Inc., 605 Third Avenue, New York, NY 10158-0012, 1 edition,
1999.

[4] S. W. Birch. Performance characteristics of a Kernel-Space
Packet Capture Module. Master’s thesis, Dept. of Electrical
and Computer Engineering, Air Force Institute of Technology,
Air University, Wright-Patterson Air Force Base, OH, 2010.

[5] B. Chen and R. Morris. Flexible control of parallelism in a
multiprocessor pc router. In Proceedings of the 2001 USENIX
Annual Technical Conference (USENIX ’01), pages 333–346,
Boston, Massachusetts, June 2001.

[6] Chi-X Europe Limited. CHIXMD Feed Specification. Doc
Revision: 1.6. Historical specification, may be available from
BATS Trading Limited: http://www.batstrading.co.uk/, June
2010.

[7] R. W. Colby. The Encyclopedia Of Technical Market Indi-
cators, Second Edition. McGraw-Hill, Two Penn Plaza, New
York, USA, 2 edition, 2003.

[8] R. W. Colby. Types of Technical Market Indicators: Trend,
Momentum, Sentiment. In The Encyclopedia Of Techni-
cal Market Indicators, Second Edition, chapter 1, pages 7–8.
McGraw-Hill, Two Penn Plaza, New York, USA, 2 edition,
2003.

[9] R. W. Colby. Directional Movement Index (DMI). In The En-
cyclopedia Of Technical Market Indicators, Second Edition,
pages 212–213. McGraw-Hill, Two Penn Plaza, New York,
USA, 2 edition, 2003.

[10] Fidessa Group Plc. private communication.
[11] D. Gries and F. B. Schneider. A theory of sequences. In A

Logical Approach to Discrete Math, chapter 13, pages 251–
264. Springer-Verlag New York Inc., 185 Fifth Avenue, New
York, NY 10010, USA, 1993.

[12] C. D. K. II and J. R. Dahlquist. The Basic Principle of
Technical Analysis – The Trend. In Technical Analysis:
The Complete Resource for Financial Market Technicians
(2nd Edition), chapter 2, pages 9–11. FT Press, Upper Sad-
dle River, New Jersey, USA, 2 edition, July 2011. ISBN
9780137059447.

[13] Intel Corporation. Invariant TSC. In Intel 64® and IA-32
Architectures Software Developer’s Manual Volume 3 (3A &
3B): System Programming Guide, chapter 16.12.1, pages 16–

50. Intel, 2011.
[14] B. Johnson. Institutional trading types. In Algorithmic Trad-

ing and DMA: An introduction to direct access trading strate-
gies, chapter 1.4, pages 8–10. 4Myeloma Press, February
2010.

[15] E. Kohler. The Click Modular Router. PhD thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 2001.

[16] E. Kohler. Click for Measurement. Technical Report
TR060010, UCLA Computer Science Department, 405 Hil-
gard Ave Los Angeles, CA 90095, United States, February
2006.

[17] E. Kohler, R. Morris, and B. Chen. Programming
language optimizations for modular router configu-
rations. SIGARCH Computer Architecture News, 30
(5):251–263, Oct. 2002. ISSN 0163-5964. . URL
http://doi.acm.org/10.1145/635506.605424.

[18] E. Kohler, R. Morris, and M. Poletto. Modular components
for network address translation. In Open Architectures and
Network Programming Proceedings, 2002 IEEE, pages 39–
50, 2002. .

[19] J. Loveless, S. Stoikov, and R. Waeber. Online algo-
rithms in high-frequency trading. Commun. ACM, 56
(10):50–56, Oct. 2013. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/2507771.2507780.

[20] M. Resta. Towards an artificial technical analysis of finan-
cial markets. In Proceedings of the IEEE-INNS-ENNS Inter-
national Joint Conference on Neural Networks, 2000. IJCNN
2000, volume 5, pages 117–122, 2000. .

[21] A. Rodriguez-Gonzalez, F. Guldris-Iglesias, R. Colomo-
Palacios, G. Alor-Hernandez, and R. Posada-Gomez. Improv-
ing N calculation of the RSI financial indicator using neural
networks. In 2010 2nd IEEE International Conference on In-
formation and Financial Engineering (ICIFE), pages 49–53,
2010. .

[22] A. Shukla, L. Li, A. Subramanian, P. A. S. Ward, and
T. Brecht. Evaluating the performance of user-space and
kernel-space web servers. In Proceedings of the 2004 con-
ference of the Centre for Advanced Studies on Collaborative
research, pages 1–13, 2004.

[23] M. Tanaka-Yamawaki and S. Tokuoka. Adaptive use of tech-
nical indicators for the prediction of intra-day stock prices.
Physica A: Statistical Mechanics and its Applications, 383(1):
125 – 133, 2007. .

[24] S. Zander, D. Kennedy, and G. Armitage. KUTE A High
Performance Kernel-based UDP Traffic Engine. Technical
Report 050118A, Centre for Advanced Internet Architectures,
Swinburne University of Technology, Melbourne, Australia,
2005.

[25] A. Zubayer, M. Musharraf, and R. Ahmed. FFTI: Free Form
Technical Indicator. In 2011 3rd International Conference
on Computer Research and Development (ICCRD), volume 1,
pages 87–91, 2011. .

8 2013/12/9

