An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface


Published in:
Composite Structures

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Figure 1: Production of CNT forests.
Figure 2: (a) SEM image of CNT forest (b) HRTEM image of MWCNTs.
Figure 3: Transplantation of CNT forest (a) heat and pressure applied to silicon substrate (b) removal of the substrate after the cool down period (c) transplanted CNT forest infused with resin through capillary action and partially inserted into the prepreg.
Figure 4: Transplantation tests using combinations of heat and pressure (T700/SE84LV).
Figure 5: (a) CNT forest (b) detail of CNT forest showing complete wetting.
Figure 6: (a) Mode I DCB test (b) Mode II four-point bend test.
Figure 7: Representative R-curves from GURIT T700/SE84LV Mode I DCB tests.
Figure 8: Representative R-curves from HEXCEL T700/M21 Mode I DCB tests.
Figure 9: Representative R-curves from HEXCEL T700/M21 Mode II DCB tests.
Figure 10: (a) SEM image showing embedded CNT forest (b) CNT forest wrapped around carbon-fibre.
Figure 11: Fracture surface showing ‘sword-in-sheath’ failure mechanism of MWCNTs.
Table 1: Mode I and Mode II fracture toughness values (average ± one standard deviation)

<table>
<thead>
<tr>
<th>Specimen material</th>
<th>Fracture mode</th>
<th>Specimen type</th>
<th>Average fracture toughness (J/m²)</th>
<th>Number of specimens</th>
<th>Average increase in fracture toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>T700/SE84LV</td>
<td>I</td>
<td>Pristine</td>
<td>210 ± 17.8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNT forest</td>
<td>338 ± 96.2</td>
<td>3</td>
<td>61%</td>
</tr>
<tr>
<td>T700/M21</td>
<td>I</td>
<td>Pristine</td>
<td>331 ± 19.2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNT forest</td>
<td>435 ± 12.0</td>
<td>2</td>
<td>31%</td>
</tr>
<tr>
<td>T700/M21</td>
<td>II</td>
<td>Pristine</td>
<td>443 ± 283</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNT forest</td>
<td>1155 ± 479</td>
<td>5</td>
<td>161%</td>
</tr>
</tbody>
</table>